7,347 research outputs found

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today’s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach

    Local Positioning Systems in (Game) Sports

    Get PDF
    Position data of players and athletes are widely used in sports performance analysis for measuring the amounts of physical activities as well as for tactical assessments in game sports. However, positioning sensing systems are applied in sports as tools to gain objective information of sports behavior rather than as components of intelligent spaces (IS). The paper outlines the idea of IS for the sports context with special focus to game sports and how intelligent sports feedback systems can benefit from IS. Henceforth, the most common location sensing techniques used in sports and their practical application are reviewed, as location is among the most important enabling techniques for IS. Furthermore, the article exemplifies the idea of IS in sports on two applications

    Predictive Health Analysis in Industry 5.0: A Scientometric and Systematic Review of Motion Capture in Construction

    Full text link
    In an era of rapid technological advancement, the rise of Industry 4.0 has prompted industries to pursue innovative improvements in their processes. As we advance towards Industry 5.0, which focuses more on collaboration between humans and intelligent systems, there is a growing requirement for better sensing technologies for healthcare and safety purposes. Consequently, Motion Capture (MoCap) systems have emerged as critical enablers in this technological evolution by providing unmatched precision and versatility in various workplaces, including construction. As the construction workplace requires physically demanding tasks, leading to work-related musculoskeletal disorders (WMSDs) and health issues, the study explores the increasing relevance of MoCap systems within the concept of Industry 4.0 and 5.0. Despite the growing significance, there needs to be more comprehensive research, a scientometric review that quantitatively assesses the role of MoCap systems in construction. Our study combines bibliometric, scientometric, and systematic review approaches to address this gap, analyzing articles sourced from the Scopus database. A total of 52 papers were carefully selected from a pool of 962 papers for a quantitative study using a scientometric approach and a qualitative, indepth examination. Results showed that MoCap systems are employed to improve worker health and safety and reduce occupational hazards.The in-depth study also finds the most tested construction tasks are masonry, lifting, training, and climbing, with a clear preference for markerless systems

    Real-time and automatic system for performance evaluation of karate skills using motion capture sensors and continuous wavelet transform

    Get PDF
    In sports science, the automation of performance analysis and assessment is urgently required to increase the evaluation accuracy and decrease the performance analysis time of a subject. Existing methods of performance analysis and assessment are either performed manually based on human experts’ opinions or using motion analysis software, i.e., biomechanical analysis software, to assess only one side of a subject. Therefore, we propose an automated system for performance analysis and assessment that can be used for any human movement. The performance of any skill can be described by a curve depicting the joint angle over the time required to perform a skill. In this study, we focus on only 14 body joints, and each joint comprises three angles. The proposed system comprises three main stages. In the first stage, data are obtained using motion capture inertial measurement unit sensors from top professional fighters/players while they are performing a certain skill. In the second stage, the collected sensor data obtained are input to the biomechanical software to extract the player’s joint angle curve. Finally, each joint angle curve is processed using a continuous wavelet transform to extract the main curve points (i.e., peaks and valleys). Finally, after extracting the joint curves from several top players, we summarize the players’ curves based on five statistical indicators, i.e., the minimum, maximum, mean, and mean  ± standard deviation. These five summarized curves are regarded as standard performance curves for the joint angle. When a player’s joint curve is surrounded by the five summarized curves, the performance is considered acceptable. Otherwise, the performance is considered unsatisfactory. The proposed system is evaluated based on four different karate skills. The results of the proposed system are identical to the decisions of the expert panels and are thus suitable for real-time decisions

    Wearable Sensors for Evaluation Over Smart Home Using Sequential Minimization Optimization-based Random Forest

    Get PDF
    In our everyday life records, human activity identification utilizing MotionNode sensors is becoming more and more prominent. A difficult issue in ubiquitous computing and HCI is providing reliable data on human actions and behaviors. In this study, we put forward a practical methodology for incorporating statistical data into Sequential Minimization Optimization-based random forests. In order to extract useful features, we first prepared a 1-Dimensional Hadamard transform wavelet and a 1-Dimensional Local Binary Pattern-dependent extraction technique. Over two benchmark datasets, the University of Southern California-Human Activities Dataset, and the IM-Sporting Behaviors datasets, we employed sequential minimum optimization together with Random Forest to classify activities. Experimental findings demonstrate that our suggested model may successfully be utilized to identify strong human actions for matters related to efficiency and accuracy, and may challenge with existing cutting-edge approaches

    Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors

    Get PDF
    This paper presents analysis of the standing-up manoeuvre in paraplegia considering the body supportive forces as a potential feedback source in functional electrical stimulation (FES)-assisted standing-up. The analysis investigates the significance of arm, feet, and seat reaction signals to the human body center-of-mass (COM) trajectory reconstruction. The standing-up behavior of eight paraplegic subjects was analyzed, measuring the motion kinematics and reaction forces to provide the data for modeling. Two nonlinear empirical modeling methods are implemented-Gaussian process (GP) priors and multilayer perceptron artificial neural networks (ANN)-and their performance in vertical and horizontal COM component reconstruction is compared. As the input, ten sensory configurations that incorporated different number of sensors were evaluated trading off the modeling performance for variables chosen and ease-of-use in everyday application. For the purpose of evaluation, the root-mean-square difference was calculated between the model output and the kinematics-based COM trajectory. Results show that the force feedback in COM assessment in FES assisted standing-up is comparable alternative to the kinematics measurement systems. It was demonstrated that the GP provided better modeling performance, at higher computational cost. Moreover, on the basis of averaged results, the use of a sensory system incorporating a six-dimensional handle force sensor and an instrumented foot insole is recommended. The configuration is practical for realization and with the GP model achieves an average accuracy of COM estimation 16 /spl plusmn/ 1.8 mm in horizontal and 39 /spl plusmn/ 3.7 mm in vertical direction. Some other configurations analyzed in the study exhibit better modeling accuracy, but are less practical for everyday usage
    corecore