251 research outputs found

    A Spiking Neural P System Simulator Based on CUDA

    Get PDF
    In this paper we present a Spiking Neural P system (SNP system) simulator based on graphics processing units (GPUs). In particular we implement the simulator using NVIDIA CUDA enabled GPUs. The massively parallel architecture of current GPUs is very suitable for the maximally parallel computations of SNP systems. We simulate a wider variety of SNP systems, after presenting a previous work on SNP system matrix representation which led to their simulation in GPUs, and the simulation algorithm included here. Finally, we compare and present the performance speedups of the CPU-GPU based simulator over the CPU only simulator.Ministerio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08-TIC-0420

    Simulating FRSN P Systems with Real Numbers in P-Lingua on sequential and CUDA platforms

    Get PDF
    Fuzzy Reasoning Spiking Neural P systems (FRSN P systems, for short) is a variant of Spiking Neural P systems incorporating fuzzy logic elements that make it suitable to model fuzzy diagnosis knowledge and reasoning required for fault diagnosis applications. In this sense, several FRSN P system variants have been proposed, dealing with real numbers, trapezoidal numbers, weights, etc. The model incorporating real numbers was the first introduced [13], presenting promising applications in the field of fault diagnosis of electrical systems. For this variant, a matrix-based algorithm was provided which, when executed on parallel computing platforms, fully exploits the model maximally parallel capacities. In this paper we introduce a P-Lingua framework extension to parse and simulate FRSN P systems with real numbers. Two simulators, implementing a variant of the original matrix-based simulation algorithm, are provided: a sequential one (written in Java), intended to run on traditional CPUs, and a parallel one, intended to run on CUDAenabled devices.Ministerio de Economía y Competitividad TIN2012-3743

    Simulating Spiking Neural P systems without delays using GPUs

    Get PDF
    We present in this paper our work regarding simulating a type of P system known as a spiking neural P system (SNP system) using graphics processing units (GPUs). GPUs, because of their architectural optimization for parallel computations, are well-suited for highly parallelizable problems. Due to the advent of general purpose GPU computing in recent years, GPUs are not limited to graphics and video processing alone, but include computationally intensive scientific and mathematical applications as well. Moreover P systems, including SNP systems, are inherently and maximally parallel computing models whose inspirations are taken from the functioning and dynamics of a living cell. In particular, SNP systems try to give a modest but formal representation of a special type of cell known as the neuron and their interactions with one another. The nature of SNP systems allowed their representation as matrices, which is a crucial step in simulating them on highly parallel devices such as GPUs. The highly parallel nature of SNP systems necessitate the use of hardware intended for parallel computations. The simulation algorithms, design considerations, and implementation are presented. Finally, simulation results, observations, and analyses using an SNP system that generates all numbers in N\mathbb N - {1} are discussed, as well as recommendations for future work.Comment: 19 pages in total, 4 figures, listings/algorithms, submitted at the 9th Brainstorming Week in Membrane Computing, University of Seville, Spai

    An Improved GPU Simulator For Spiking Neural P Systems

    Get PDF
    Spiking Neural P (SNP) systems, variants of Psystems (under Membrane and Natural computing), are computing models that acquire abstraction and inspiration from the way neurons 'compute' or process information. Similar to other P system variants, SNP systems are Turing complete models that by nature compute non-deterministically and in a maximally parallel manner. P systems usually trade (often exponential) space for (polynomial to constant) time. Due to this nature, P system variants are currently limited to parallel simulations, and several variants have already been simulated in parallel devices. In this paper we present an improved SNP system simulator based on graphics processing units (GPUs). Among other reasons, current GPUs are architectured for massively parallel computations, thus making GPUs very suitable for SNP system simulation. The computing model, hardware/software considerations, and simulation algorithm are presented, as well as the comparisons of the CPU only and CPU-GPU based simulators.Ministerio de Ciencia e Innovación TIN2009–13192Junta de Andalucía P08-TIC-0420

    GeNN: a code generation framework for accelerated brain simulations

    Get PDF
    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Full text link
    Objective: The advent of High-Performance Computing (HPC) in recent years has led to its increasing use in brain study through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a single acceleration (or homogeneous) platform to effectively address the complete array of modeling requirements. Approach: In this paper we propose and build BrainFrame, a heterogeneous acceleration platform, incorporating three distinct acceleration technologies, a Dataflow Engine, a Xeon Phi and a GP-GPU. The PyNN framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different instances of a state-of-the-art neuron model, modeling the Inferior- Olivary Nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal- network dimensions but also different network-connectivity circumstances that can drastically change application workload characteristics. Main results: The synthetic approach of three HPC technologies demonstrated that BrainFrame is better able to cope with the modeling diversity encountered. Our performance analysis shows clearly that the model directly affect performance and all three technologies are required to cope with all the model use cases.Comment: 16 pages, 18 figures, 5 table

    CuSNP: Spiking Neural P Systems Simulators in CUDA

    Get PDF
    Spiking neural P systems (in short, SN P systems) are models of computation inspired by biological neurons. CuSNP is a project involving sequential (CPU) and parallel (GPU) simulators for SN P systems. In this work, we report the following results: a P-Lingua le parser is included, for ease of use when performing simulations; extension of the matrix representation of SN P systems to include delay; comparison and analysis of our simulators by simulating two types (bitonic and generalized) of parallel sorting networks; extension of supported types of regular expressions in SN P systems. Our GPU simulator is better suited for generalized sorting as compared to bitonic sorting networks, and the GPU simulators run up to 50 faster than our CPU simulator. Finally, we discuss our experiments and provide directions for further work

    Improving Simulations of Spiking Neural P Systems in NVIDIA CUDA GPUs: CuSNP

    Get PDF
    Spiking neural P systems (in short, SN P systems) are parallel models of computations inspired by the spiking ( ring) of biological neurons. In SN P systems, neurons function as spike processors and are placed on nodes of a directed graph. Synapses, the connections between neurons, are represented by arcs or directed endges in the graph. Not only do SN P systems have parallel semantics (i.e. neurons operate in parallel), but their structure as directed graphs allow them to be represented as vectors or matrices. Such representations allow the use of linear algebra operations for simulating the evolution of the system con gurations, i.e. computations. In this work, we continue the implementations of SN P systems with delays, i.e. a delay is associated with the sending of a spike from a neuron to its neighbouring neurons. Our implementation is based on a modi ed representation of SN P systems as vectors and matrices for SN P systems without delays. We us massively parallel processors known as graphics processing units (in short, GPUs) from NVIDIA. For experimental validation, we use SN P systems implementing generalized sorting networks. We report a speedup, i.e. the ratio between the running time of the sequential over the parallel simulator, of up to approximately 51 times for a 512-size input to the sorting network
    corecore