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Summary. Spiking neural P systems (in short, SN P systems) are parallel models of
computations inspired by the spiking (firing) of biological neurons. In SN P systems, neu-
rons function as spike processors and are placed on nodes of a directed graph. Synapses,
the connections between neurons, are represented by arcs or directed endges in the graph.
Not only do SN P systems have parallel semantics (i.e. neurons operate in parallel), but
their structure as directed graphs allow them to be represented as vectors or matri-
ces. Such representations allow the use of linear algebra operations for simulating the
evolution of the system configurations, i.e. computations. In this work, we continue the
implementations of SN P systems with delays, i.e. a delay is associated with the sending
of a spike from a neuron to its neighbouring neurons. Our implementation is based on
a modified representation of SN P systems as vectors and matrices for SN P systems
without delays. We us massively parallel processors known as graphics processing units
(in short, GPUs) from NVIDIA. For experimental validation, we use SN P systems im-
plementing generalized sorting networks. We report a speedup, i.e. the ratio between the
running time of the sequential over the parallel simulator, of up to approximately 51
times for a 512-size input to the sorting network.
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1 Introduction

Membrane computing, initiated in [15], involves models of computations inspired
by structures and functions of various types of biological cells. Models in membrane
computing are known as membrane or P systems. The specific type of P system
we consider in this work are spiking neural P systems, in short, SN P systems. SN
P systems, first introduced in [7], are inspired by the pulse coding of information
that occur in biological neurons. In pulse coding from neuroscience, pulses known
as spikes are indistinct, so information is instead encoded in their multiplicity or
the time step(s) they are emitted.

SN P systems are known to be computationally universal (i.e. equivalent to
Turing machines) in both generative (an output is given, but not an input) and
accepting (an input is given, but not an output) modes. SN P systems can also
solve hard problems in feasible (polynomial to constant) time. Another active line
of investigation on the computability and complexity of SN P systems is taking
mathematical and biological inspirations in order to create new variants, e.g. asyn-
chronous operation, weighted synapses, rules on synapses, structural plasticity. We
do not go into details, and we refer to [7, 9, 14, 17, 5] and references therein.

Software simulators for P systems, whether sequential or parallel, have been
provided. Sequential simulators include for example those implemented using PLin-
gua, a programming language designed for P systems, e.g. [11]. Simulators using
massively parallel processors known as graphics processing units (in short, GPUs)
for cell-like P systems as well as SN P systems include [13], a comprehensive survey
in [12], and [4, 10].

In this work, we report our ongoing efforts to simulate SN P systems on GPUs
manufactured by NVIDIA. In particular, our contributions in this report are as
follows: (a) modified matrix representation of [18] in order to be able to simulate
SNP systems with delays, (b) the entire simulation of SN P systems with delays
is now performed in the GPU, compared to a small portion of the simulation in
[4], and (c) using generalized sorting network of SN P systems, we report up to 51
times speedup in our experiments with a 512 input size network. A preliminary
version of this work is available in [6].

This work is organized as follows: Section 2 provides preliminaries for the re-
mainder of this work; Section 3 provides the definition of SN P systems as well as
their linear algebra representations; Section 4 provides an overview of the NVIDIA
CUDA architecture; Section 5 provides the simulation algorithm for our work;
Section 6 provides experimental results for the sequential and parallel simulators;
Finally, Section 7 provides conclusions from our work as well as future research
directions.

2 Preliminaries

We recall some formal language theory (available in many monographs). We only
briefly mention notions and notations which will be useful throughout the paper.
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We denote the set of natural (counting) numbers as N = {0, 1, 2, . . .}, where N+ =
N − {0}. Let V be an alphabet, V ∗ is the set of all finite strings over V with
respect to concatenation and the identity element λ (the empty string). The set
of all non-empty strings over V is denoted as V +, so V + = V ∗ − {λ}.

A language L ⊆ V ∗ is regular if there is a regular expression E over V such
that L(E) = L. A regular expression over an alphabet V is constructed starting
from λ and the symbols of V using the operations union, concatenation, and +.
Specifically, (i) λ and each a ∈ V are regular expressions, (ii) if E1 and E2 are
regular expressions over V then (E1 ∪E2), E1E2, and E+

1 are regular expressions
over V , and (iii) nothing else is a regular expression over V . With each expression
E we associate a language L(E) defined in the following way: (i) L(λ) = {λ} and
L(a) = {a} for all a ∈ V , (ii) L(E1∪E2) = L(E1)∪L(E2), L(E1E2) = L(E1)L(E2),
and L(E+

1 ) = L(E1)+, for all regular expressions E1, E2 over V . Unnecessary
parentheses are omitted when writing regular expressions. If V = {a}, we simply
write a∗ and a+ instead of {a}∗ and {a}+. If a ∈ V , we write a0 = λ.

3 Spiking Neural P Systems

We assume some familiarity with membrane computing concepts, widely available
online (e.g. [1]) or in print (e.g. [16]). First, we formally define SN P systems,
followed by linear algebra representations of their computations.

3.1 Spiking Neural P System

A Spiking Neural P system Π is of the form:

Π = (O, σ1, ..., σm, syn, in, out)

1. O = {a} is the alphabet containing a single symbole (the spike);
2. σ1, ..., σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m where:

a) ni ≥ 0 is the initial number of spikes contained in σi.
b) Ri is a finite set of rules of the following two forms:

i. E/ac → ap; d where E is a regular expression over O and c ≥ p ≥
1, d ≥ 0.

ii. as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap; d
of type (i) from Ri, we have as 6∈ L(E);

3. syn ⊆ {1, 2, ...,m}x{1, 2, ...,m} with i 6= j for all (i, j) ∈ syn, 1 ≤ I, j ≤ m
(synapses between neurons);

4. in, out ∈ {1, 2, ...,m} indicate the input and the output neurons, respectively.

The rules of type (i) as mentioned in the construct of neurons are firing (or
spiking) rules while the type (ii) are called forgetting rules. An SN P system
whose firing rules have p = 1 is said to be of the standard type (non-extended).
Given a spiking rule, it is applied as follows. If a neuron σi contains k spikes, and
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ak ∈ L(E), k ≥ c, then the rule E/ac → ap; d ∈ Ri can be applied. This means
we remove c spikes so that k − c spikes remain in σi, the neuron is then fired and
produces p spikes (1 in the case of standard SN P systems) after d time units.

Spikes are fired after t+ d where t is the current time step of the computation.
For the case that d = 0, the spikes are fired immediately. When the time step of
the computation is between t and t + d, we say that the neuron σ has not fired
the spike yet and σ is closed, meaning it cannot receive spikes from other neuron
connected to it. In the case that a neuron with an in-going synapse to σ fires, the
spike(s) is(are) lost. During the time step t+d, the spikes are fired, and the neuron
is now open to receive spikes. At t + d + 1 the neuron can begin applying rules.
When neuron σi emits the spike, the spikes reach immediately all neuron σj such
that (i, j) ∈ syn and σj is open.

A forgetting rule is applied as follows. If the neuron σi contains exactly s
spikes, then the rule as → λ from Ri can be applied, meaning all of the s spikes
are removed from σi.

For rules of the form E/ac → ap; d of type (1) where E = ac, we write it in the
shortened form ac → ap; d. There are cases when two or more rules are applicable
in a step of the computation, at these cases, only one rule is applied and is non-
deterministically chosen. However, by definition, it is impossible to have a spiking
rule and a forgetting rule to be applied at the same time. In short, for each neuron,
at most one rule will be applied at a time unit.

A configuration or state of the system at time t can be described by Ct =
〈r1/k1, . . . , rm/km〉 for 1 ≤ i ≤ m, where neuron i contains ri ≥ 0 spikes and
remains closed for ki more steps. The initial configuration of the system is there-
fore C0 = 〈n1/0, . . . , nm/0〉. Rule application provides us a transition from one
configuration to another. A computation is any (finite or infinite) sequence of
configurations such that: (a) the first term is the initial configuration C0; (b) for
each n ≥ 2, the nth configuration of the sequence is obtained from the previous
configuration in one transition step; and (c) if the sequence is finite (called halt-
ing computation) then the last term is a halting configuration, i.e. a configuration
where all neurons are open and no rule can be applied.

Two common ways to interpret output of an SN P system are as follows: (1)
obtaining the time interval between exactly the first two steps when the output
neuron σout spikes, e.g. number n = tn − t1 is computed, where σout produced
its first two spikes at steps t1 and tn; (2) counting the number of spikes produced
by σout until the system halts. Note that for (1) the system need not halt, since
we only consider the first two steps when σout spikes. In this work, we consider
systems that produce their output using the manner given in (2).

Spiking Neural Systems are usually represented as a directed graphs. Figure
1 shows an example of an SN P system with 3 neurons. This system is formally
defined as:

Π = ({a}, σ1, σ2, σ3, {(1, 2), (2, 1), (1, 3), (3, 1)}, 1) where:

1. σ1 = (0, {a/a→ a; 0, a2/a2 → λ})
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a

a/a→ a; 1

a/a→ a

a→ a

a2 → λ

a

a/a→ a; 2

1

2 3

Fig. 1: Example of an SN P System

2. σ2 = (1, {a/a→ a; 1, a/a→ a})
3. σ3 = (1, {a/a→ a; 2})

Notice that in σ1, the rule a/a → a; 0 was written a → a which is convention
when L(E) = ap, we can only write ap. Also, we do not write the delay d if it is
equal to 0. In this example, some rules used this convention while others did not
to show the interchangeability between the two.

In Figure 1, there are three neurons, two of which have initial spikes (neurons
σ2 and σ3). Neurons 1 and 3 have synapses between each other, likewise between
σ1 and σ2. A synapse exist from σ1 to the environment to indicate it is the output
neuron. In the first step of computation, σ1 will not fire since it does not contain
any spike. Neuron 3 will fire and consume its spike but it will close and will not
transmit a spike yet since it has a delay. For σ2, we non-deterministically choose
which rule to apply. Assuming we choose the rule a/a → a; 1, the neuron will
consume all of its spikes and similar to σ3, it will close and will not send any
spikes yet.

Therefore, after the first step of computation, there are no spikes in the system.
In the next step of computation, no rules will spike since there are no spikes in
the system but σ2 will release a spike since the delay is done. After this step,
σ1 will contain a spike. At the third step of computation, σ3 will release a spike
that was delayed and σ3 becomes open also. Neuron 1 will send a spike to both
σ2 and σ3. After this step, each neuron will have one spike. Assuming we always
choose to apply the first rule of σ2, this SN P system will cycle every three steps
of computation.

Going back to the first step of computation, assuming we choose to apply the
second rule in σ2, in the next configuration, σ1 will have one spike while σ2 and
σ3 will have zero. Neuron 1 will then fire, sending a spike to σ2. Neuron 3 will
not receive a spike since it is currently closed. In the third step of computation,
assuming we selected the second rule in σ2 again, σ3 will send the delayed spike and
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σ2 will spike immediately. After this step, σ1 will have two spikes. The forgetting
rule will be applied and the computation halts.

3.2 Matrix Representation of Spiking Neural P systems with Delay

In [18], a matrix representation of SN P system without delay was introduced.
In this work we introduce modifications to this representation which allows us to
devise simulations for SN P systems with delay. Let Π be an SN P system with
delay having m neurons and n rules. We use the following definitions, modified
from [18], to represent our simulation algorithm:

Definition 1: (Configuration Vector). The vector C(k) = 〈c1, c2, ..., cm〉 is
called the configuration vector at the kth step of computation where each ci, i =
1, 2, ...,m, is the amount of spikes neuron i contains.

Specifically, the vector C(0) = 〈c1, c2, ..., cm〉 is called the initial configuration
vector of Π, where ci is the amount of the initial spikes present in neuron σi, i =
1, 2, ...,m before the computation starts.

Definition 2: (Spiking Vector). Let C(k) = 〈c1, c2, ..., cm〉 be the kth config-
uration vector of Π. Assume a total order d : 1, ..., n is given for all the n rules, so
the rules can be referred to as s1, ..., sn. A spiking vector S(k) is defined as follows:

S(k) = 〈s(k)1 , s
(k)
2 , ..., s(k)n 〉

s
(k)
i


1, if the regular expression Ei of rule ri is satisfied by

the numbers of spikes cj (rule ri is in neuron σj ) and

rule ri is chosen and applied;

0, otherwise

Definition 3: (Status Vector). The vector St(k) = 〈st1, st2, ..., stm〉 is called
the status vector at the kth step of computation where each sti, i = 1, 2, ...,m,
determines the status of the neuron m.

sti =

{
1, if neuron m is open

0, if neuron m is closed

Note that a neuron is said to be closed when a rule with a delay is activated and
is waiting for that delay to become zero. A neuron that is closed may not receive
any incoming spikes.

Definition 4: (Rule Representation). The set R = {r1, r2, ..., rn} is the set
of rules where each ri, i = 1, 2, ..., n is a vector representing each rule in Π. Each
ri is defined as follows.

ri = 〈E, j, d′, c〉
where:
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1. E is the regular expression for rule i
2. j is the neuron that contains the rule ri

3. d′ =


−1, if the rule is inactive (i.e. not applied)

0, if the rule is fired

≥ 1, if the rule is currently on delay (i.e. σj is closed)
4. c is the number of spikes that neuron σj will consume if it applies ri.

Definition 5: (Delay Vector). The delay vector D = 〈d1, d2, ..., dn〉 contains
the delay value for each rule ri, i = 1, 2, ..., n in Π.

Definition 6: (Loss Vector). The vector LV (k) = 〈lv1, lv2, ..., lvm〉 is the loss
vector where each lvi, for each neuron σi, i = 1, 2, ...,m, contains the number of
spikes consumed, c, if σi applies ri at step k.

Definition 7: (Gain Vector). The vector GV (k) = 〈gv1, gv2, ..., gvm〉 is the
gain vector which contains the total number of spikes gained, gvi, for each neuron
σi, i = 1, 2, ...,m, at the kth step of computation not considering whether the
neuron is open or closed.

Definition 8: (Transition Vectors). Given the total order d : 1, ..., n for all
the n rules, the transition vector Tv of the system Π, is a set of vectors defined as
follows:

Tv = 〈tv1, ..., tvn〉

tvi = 〈p1, ..., pm〉

pj =


p, if rule ri is in neuron σs(s 6= j and (s, j) ∈ syn)

and it is applied producing p spikes;

0, if rule ri is in neuron σs(s 6= j and (s, j) /∈ syn).

The set Tv replaces the spiking transition matrix used in [18] since in [18],
each matrix entry can contain values either from spikes consumed or produced by
each neuron with respect to rules of other neurons. Transition vectors, however,
contain only the p spikes gained from other neurons, otherwise 0.

Definition 9: (Indicator Vector) The indicator vector IV k = 〈iv1, iv2, ..., ivm〉
will be multiplied to Transition Vector, Tv · IV k, in order to get the net number
of spike a neuron will get not considering a neuron’s status.

Definition 10: (Net Gain Vector). Let LV (k) = 〈lv1, lv2, ..., lvm〉 be the
kth loss vector vector, GV (k) = 〈gv1, gv2, ..., gvm〉 is the kth gain vector vector,
and St(k) = 〈st1, st2, ..., stm〉 is the kth status vector vector. The net gain vector
at step k is defined as

NG(k) = GV (k) ⊗ st(k) + LV (k)

4 NVIDIA CUDA

CUDA or Compute Unified Device Architecture is a parallel programming comput-
ing platform and application programming interface model developed by NVIDIA
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[3]. CUDA allows software developers to use a CUDA enabled graphics processing
unit(GPUs) for general purpose processing, an approach known as GPGPU.

Functions that execute in the GPU, known as kernel functions, are executed
by one or more threads arranged in thread blocks. In the CUDA programming
model, the GPU is often referred to as the device, while the CPU is referred
to as the host. The CPU (the host) is the one performing kernel function calls
to be executed on the device (the GPU). CUDA works on an SPMD principle
or the single program multiple data principle. That is, similar code runs on the
threads, and the threads can be accessing multiple (possibly different values of)
data. CUDA also has implements a memory hierarchy, similar to how there exist
memory hierarchies and cache organizations within the CPU.

The host and the device have a separate memory space so copying data from
the host and device memory may be necessary. The memory hierarchy for the
device includes its global memory, shared memory, and constant memory. Each
memory type has its own advantage such as bandwidth size, access speed and
control. The developer has the ability to fine tune the memory use and type for
kernel functions in order to optimize computations. Poor memory management
can cause bottlenecks, e.g. when copying memory from device to host and vice-
versa often. A good memory access pattern would be transferring all the required
data to the device and do all the processing within the device before returning
the computation result to the host. This access pattern prevents the high-latency
transfers between the device and the host.

Optimizing block structure is also important to maximize the parallel structure
of the GPU. The physical execution of threads occur in warps of 32 and a not
optimal block structure could result in serializing of execution. Lastly, the kernel
code itself must be optimized to maximize the use of the threads. GPUs are often
used to accelerate computations involving highly parallelizable tasks such as linear
algebra operations, while the CPU is more efficient with highly sequential tasks.

5 Algorithm for simulating SN P Systems with delay

In our simulation of SN P systems with delays, we consider the following cases
when applying rules in the system:

1. Trivially, the spikes contained in the neuron do not satisfy the regular expres-
sion E of a rule, hence the rule is not applied.

2. When E of a rule is satisfied and the rule applied with a delay d > 0, hence
c spikes are consumed (the neuron becomes closed) and begin the countdown
of the delay until delay becomes 1.

3. When the countdown for the delay in Case 2 reaches 0 (neuron becomes open),
we consider the net number of spikes: those spikes produced to other neurons
and received from other neurons, possibly including previous spikes in the
neuron before the neuron closed.
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4. When a rule applied has d = 0 which is similar to Case 2 and 3 except that we
do not perform any countdown and the neuron for the rule does not become
closed.

We also introduce the operation ⊗, where C = A ⊗ B is the element-wise
multiplication of vectors A and B, i.e., for each xi ∈ A, yi ∈ B, zi ∈ C, zi =
xi ∗ yi. For example, given vector A = 〈2, 6,−4, 3〉 and B = 〈5, 6, 1, 2〉, we have
A⊗B = 〈10, 36,−4, 6〉.

The main simulation algorithm is given in Algorithm 1, which refers to def-
initions given in Section 3.2. The algorithm is devised to return or produce the
(k + 1)th configuration of an SN P system, given the current step k.

1: procedure Simulate SNP (C(k), R, Tv, St(k))
2: Reset(Lv(k))
3: Reset(Gv(k))
4: Reset(NG(k))
5: Reset(Iv(k))
6: Compute S(k)

7: for ri = 〈E, j, d′, c〉 ∈ R do . Check for the cases

8: if S
(k)
i = 1 then . Case 2

9: Lv
(k)
j ← c

10: d′ ← di
11: St

(k)
j ← 0

12: if d′ = 0 then . Case 4
13: Iv

(k)
j ← 1

14: St
(k)
j ← 1

15: end if
16: else if d′ = 0 then . Case 3
17: Iv

(k)
j ← 1 . Set indicator bit to 1

18: St
(k)
j ← 1

19: end if
20: end for
21: Gv(k) ← Tv ∗ Iv(k)
22: NG(k) ← Gv(k) ⊗ St(k) + Lv(k)

23: C(k+1) ← C(k) +NG(k)

24: for ri = 〈E, j, d′, c〉 ∈ R do . Countdown
25: if d′ 6= −1 then
26: d′ ← d′ − 1
27: end if
28: end for

return C(k+1)

29: end procedure

Algorithm 1: Simulation of Π from C(k) to C(k+1).
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Note that Reset(X) for some vector X resets the vector to a 0 vector to prevent
its previous values from interfering with the next iteration of the simulation (i.e. the
next step of the computation). Also, the algorithm does not discriminate between
the firing and the forgetting rule. That is, a forgetting rule is simply treated as a
firing rule that doesn’t produce any spikes.

Algorithm 1 takes in an SN P system Π represented using definitions in Section
3.2. The algorithm accepts the initial configuration vector C(0), the rules represen-
tation R, the transition vectors Tv, and the status vector St(k). After determining
the Spiking Vector S(k), details provided below in Algorithm 2, we check the three
cases defined previously (except the trivial case 1). If case 2 applies, where a rule
is applied, we set the Loss Vector Lv(k) to c (for the corresponding neuron that
contains the rule). Then the counter is started by setting the d′ = di. We then
make sure only one applied rule in a neuron will modify a single element of Lv(k),
based on the semantics of rule application of SN P systems. The element of St(k)

corresponding to the neuron is set to 0, hence closing the neuron.

If the delay of the rule is 0 (case 4), we set the corresponding Iv
(k)
j to 1 and

open the neuron. Also, the corresponding Status vector element St
(k)
j is set to 1.

For case 3, we set Tvj to 1 and open the neuron again by setting St
(k)
j to 1. We

obtain the Gain Vector GV (k) by multiplying the Transistion Vectors Tv (the rules
that released their spikes, i.e. rules where case 3 and 4 applies) to Iv(k). We obtain
the Net Gain vector NG(k) using element-wise multiplication of GV (k) and St(k),
then adding Lv(k).

The Status Vector acts as a selector where a neuron receives spikes based on
its status, after consumed spikes are removed. Finally, we compute for C(k+1) by
adding C(k) to NG(k). We reduce each d′ for 0 ≤ i ≤ n which signifies the count
down. On selecting the Spiking Vector S(k), Algorithm 2 is used.

1: procedure Compute S(k) (C(k), R(k))
2: array n tmp(0 : m) . Initialize an array of size m
3: for ri ∈ R do
4: if St

(k)
j == 0 then

5: S
(k)
i ← 0 . Neuron that owns the rule is closed

6: else if n tmpj == 1 then

7: S
(k)
i ← 0 . Neuron that already has a rule that applied

8: else
9: if L(Ei) matches C

(k)
j then

10: S
(k)
i ← 1 . E of rule matches with C(k)

11: n tmpj ← 1
12: else
13: S

(k)
i ← 0 . E does not match with C(k)

14: end if
15: end if
16: end for
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17: end procedure

Algorithm 2: Computation of Spiking Vector S(k).

Note that Algorithm 2 only computes for one valid spiking vector of the system,
since we only simulate deterministic systems.

6 Results

Algorithms 1 and 2 were implemented in both sequential and parallel code. C++
was used for the sequential implementation while CUDA C for the parallel imple-
mentation. The regular expression E in the rules are represented as integers: ak is
stored as k and a∗ is stored as −1. We are currently at work in order to include
simulations of more general regular expressions, e.g. ai(aj)∗, i, j ≥ 0. Software for
this work is available at [2]. The sequential and parallel implementations simulate
deterministic SN P systems with delays.

For the CUDA implementation, computations in Algorithms 1 and 2 are per-
formed in the GPU, until simulation halts. The recommended technique or work-
flow for GPU computing is to initialize inputs at the host (i.e. the CPU), copy
inputs to the device (i.e. the GPU), finish all computations in the device, and fi-
nally copy results back to the host. This workflow for GPU computing is necessary
in order to prevent the overhead (time delays incurred) of data transfer from host
to device.

SN P systems implementing generalized sorting networks (provided in [8]) were
used as inputs. The input sizes for the sorting networks are of the form 2n for
n = 1, 2, . . . , 9, i.e. from 2 up to 512. The values to be sorted are natural numbers
between 0 and 99, randomly generated. For the case of input sizes greater than
100, there will be repetitions of several numbers to be sorted.

The machine set-up for the experiments performed in this work runs an Ubuntu
15.04 64-bit operating system, with an Intel Core i7-4790 CPU with maximum
frequency of 4 GHz, and 16 GBytes of memory. The GPU of the set-up is an
NVIDIA GeForce GTX 750 with 512 CUDA cores (Kepler microarchitecture) with
maximum frequency of 1084 MHz and 2047 MBytes of memory.

The SN P systems used as inputs for both sequential and parallel simulators
are the systems implementing generalized sorting networks in [8]. In particular, a
sorting network has n input neurons in order to sort n natural numbers. A sorting
network of input size n has input neurons σ1, . . . , σn containing r1, . . . , rn spikes
initially, where the values r1, . . . , rn are the numbers to be sorted (delays are not
used in this case).

Figures 2 and 3 illustrate the running time (vertical axis) versus input size
(horizontal axis) of both the sequential (i.e. C++SNP) and parallel (i.e. CuSNP)
simulators. The 9 inputs, from 2 up to 512, were separated into two charts (given
by Figures 2 and 3) since the running time of C++SNP for a 512-input sorting
network is much greater (approximately 10 minutes) than the remaining smaller
input sizes (under 2 minutes).
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Fig. 2: Runtime Comparison of C++SNP (Sequential) vs CuSNP (Parallel) imple-
mentations, simulating SN P systems as generalized sorting networks with input
sizes 2 up to 128 (continued in Figure 3). Vertical axis is time, given in seconds.

Fig. 3: Runtime Comparison of C++SNP (Sequential) vs CuSNP (Parallel) imple-
mentations, simulating SN P systems as generalized sorting networks with input
sizes 64 up to 512 (continued from Figure 2. Vertical axis is time, given in seconds.
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In Figure 4 we see a chart indicating the speedup, in this case the ratio between
the running time of C++SNP over CuSNP, for each input size of the sorting
network. Following the GPU computing workflow mentioned above, the larger
inputs benefit from being parallelized using CUDA GPUs. It must be noted that
for input size 64 and lower, the sequential simulator C++SNP runs faster than
CuSNP (see Figure 2, due to the overhead mentioned above. However, for input
size 128 and larger, CuSNP overtakes C++SNP in terms of running time as more
parallelism is introduced given larger input. This overtaking is also seen in the
speedup in Figure 4, where the speedup for input size 64 and lower is less than
1, while speedup for input size 128 and above is greater than 1. In particular, the
maximum speedup we obtained is approximately 51 for input size of 512.

Fig. 4: Runtime speedup of C++SNP (sequential) vs CuSNP (parallel) implemen-
tations.

7 Final remarks

In this work we presented our ongoing efforts to simulate SN P systems in NVIDIA
CUDA GPUs. In particular, the software available in [2] includes parallel and se-
quential simulators which simulate SN P systems with delays. We modified the
matrix representation in [18] in order to simulate SN P systems with delays. Our
experiments were performed using systems implementing generalized sorting net-
works form [8], and we achieved speedup values of up to 51 times for a 512-size
input, i.e. for a 512-size sorting network, CuSNP (parallel simulator) is 51 times
faster than C++SNP (sequential simulator). This speedup was obtained, largely
in part due to improved memory access pattern between the host (CPU) and the
device (GPU).
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Much work remains to be done, and we are currently extending the regular ex-
pressions available for both simulators to include more general regular expressions
(using implementations of finite automata). Also, we are currently optimizing the
data types and structures of CuSNP, among other improvements. In a succeeding
work, we will also provide detailed profiles of kernel functions (using tools provided
by NVIDIA) in CuSNP in order to identify further possibilities for optimizations
of simulator performance.
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