6 research outputs found

    SEMG-based human in-hand motion recognition using nonlinear time series analysis and random forest

    Get PDF

    A spiking network classifies human sEMG signals and triggers finger reflexes on a robotic hand

    Get PDF
    The interaction between robots and humans is of great relevance for the field of neurorobotics as it can provide insights on how humans perform motor control and sensor processing and on how it can be applied to robotics. We propose a spiking neural network (SNN) to trigger finger motion reflexes on a robotic hand based on human surface Electromyography (sEMG) data. The first part of the network takes sEMG signals to measure muscle activity, then classify the data to detect which finger is being flexed in the human hand. The second part triggers single finger reflexes on the robot using the classification output. The finger reflexes are modeled with motion primitives activated with an oscillator and mapped to the robot kinematic. We evaluated the SNN by having users wear a non-invasive sEMG sensor, record a training dataset, and then flex different fingers, one at a time. The muscle activity was recorded using a Myo sensor with eight different channels. The sEMG signals were successfully encoded into spikes as input for the SNN. The classification could detect the active finger and trigger the motion generation of finger reflexes. The SNN was able to control a real Schunk SVH 5-finger robotic hand online. Being able to map myo-electric activity to functions of motor control for a task, can provide an interesting interface for robotic applications, and a platform to study brain functioning. SNN provide a challenging but interesting framework to interact with human data. In future work the approach will be extended to control also a robot arm at the same time

    Latent Factors Limiting the Performance of sEMG-Interfaces

    Get PDF
    Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG) have fostered the use of sEMG human–machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. Here, we systematically study the latent factors determining the performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic tests. Our data suggest that these factors can only be adjusted by long-term training, which promotes fine-tuning of low-level neural circuits driving the muscles. Short-term training has no effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a higher decision-making level, not relevant for synthetic gestures. We propose a procedure that enables quantification of the gestures’ fidelity in a dynamic gaming environment. For each individual subject, the approach allows identifying “problematic” gestures that decrease gaming performance. This information can be used for optimizing the training strategy and for adapting the signal processing algorithms to individual users, which could be a way for a qualitative leap in the development of future sEMG-interfaces

    Spiking neurons in 3D growing self-organising maps

    Get PDF
    In Kohonen’s Self-Organising Maps (SOM) learning, preserving the map topology to simulate the actual input features appears to be a significant process. Misinterpretation of the training samples can lead to failure in identifying the important features that may affect the outcomes generated by the SOM model. Nonetheless, it is a challenging task as most of the real problems are composed of complex and insufficient data. Spiking Neural Network (SNN) is the third generation of Artificial Neural Network (ANN), in which information can be transferred from one neuron to another using spike, processed, and trigger response as output. This study, hence, embedded spiking neurons for SOM learning in order to enhance the learning process. The proposed method was divided into five main phases. Phase 1 investigated issues related to SOM learning algorithm, while in Phase 2; datasets were collected for analyses carried out in Phase 3, wherein neural coding scheme for data representation process was implemented in the classification task. Next, in Phase 4, the spiking SOM model was designed, developed, and evaluated using classification accuracy rate and quantisation error. The outcomes showed that the proposed model had successfully attained exceptional classification accuracy rate with low quantisation error to preserve the quality of the generated map based on original input data. Lastly, in the final phase, a Spiking 3D Growing SOM is proposed to address the surface reconstruction issue by enhancing the spiking SOM using 3D map structure in SOM algorithm with a growing grid mechanism. The application of spiking neurons to enhance the performance of SOM is relevant in this study due to its ability to spike and to send a reaction when special features are identified based on its learning of the presented datasets. The study outcomes contribute to the enhancement of SOM in learning the patterns of the datasets, as well as in proposing a better tool for data analysis

    A Spiking Neural Network in sEMG Feature Extraction

    No full text
    We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog
    corecore