
Robotics and Autonomous Systems 131 (2020) 103566

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

A spiking network classifies human sEMG signals and triggers finger
reflexes on a robotic hand✩

J. Camilo Vasquez Tieck a,∗, Sandro Weber b, Terrence C. Stewart c, Jacques Kaiser a,
Arne Roennau a, Rüdiger Dillmann d

a FZI Research Center for Information Technology, Karlsruhe 76131, Germany
b TUM Technical University of Munich, 80333 München, Germany
c Centre for Theoretical Neuroscience, University of Waterloo, Canada N2L 3G1
d Karlsruhe Institute of Technology (KIT), Germany

a r t i c l e i n f o

Article history:
Received 10 April 2019
Received in revised form 18November 2019
Accepted 15 May 2020
Available online 21 May 2020

Keywords:
Neurorobotics
Human–robot-interaction
Neural control system
Humanoid robot
Motion representation
sEMG classification
Spiking neural networks
Anthropomorphic robot hand

a b s t r a c t

The interaction between robots and humans is of great relevance for the field of neurorobotics as
it can provide insights on how humans perform motor control and sensor processing and on how
it can be applied to robotics. We propose a spiking neural network (SNN) to trigger finger motion
reflexes on a robotic hand based on human surface Electromyography (sEMG) data. The first part of
the network takes sEMG signals to measure muscle activity, then classify the data to detect which
finger is being flexed in the human hand. The second part triggers single finger reflexes on the robot
using the classification output. The finger reflexes are modeled with motion primitives activated with
an oscillator and mapped to the robot kinematic. We evaluated the SNN by having users wear a non-
invasive sEMG sensor, record a training dataset, and then flex different fingers, one at a time. The
muscle activity was recorded using a Myo sensor with eight different channels. The sEMG signals
were successfully encoded into spikes as input for the SNN. The classification could detect the active
finger and trigger the motion generation of finger reflexes. The SNN was able to control a real Schunk
SVH 5-finger robotic hand online. Being able to map myo-electric activity to functions of motor control
for a task, can provide an interesting interface for robotic applications, and a platform to study brain
functioning. SNN provide a challenging but interesting framework to interact with human data. In
future work the approach will be extended to control also a robot arm at the same time.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The interaction of humans and robots is relevant for the field
of neurorobotics as it can provide insights on motor control and
sensor processing mechanisms in humans that can be applied in
robots.

Electromyography (EMG) is a common tool in medicine and
biomechanics to monitor and study the electrical activity of the
muscles. There are different methods to record EMG signals, and
they can be either invasive or non-invasive. Research is being
made on processing and classification of surface EMG (sEMG)
signals for clinical diagnoses [1,2] or prosthetic applications [3].
For finger motion, [4] analyzed interference in the EMG signals for
classification of finger flexion motions using maximum likelihood

✩ This work is an extension of Tieck et al. (2018).
∗ Corresponding author.

E-mail addresses: tieck@fzi.de (J.C.V. Tieck), webers@in.tum.de (S. Weber),
tcstewar@uwaterloo.ca (T.C. Stewart), jkaiser@fzi.de (J. Kaiser), roennau@fzi.de
(A. Roennau), ruediger.dillmann@kit.edu (R. Dillmann).

estimation, and [5] performed a time domain feature extraction to
enhance the classification and use it to control a prosthetic hand.

There are methods using a spiking neural network (SNN) [6,7]
as a drop-in state representation layer in combination with an
artificial neural network (ANN). In [8], a SNN is combined with
an ANN for control of musculo-skeletal kinematic structures, and
in a similar way, [9] uses an SNN as feature extraction layer to
feed an ANN to classify hand gestures based on sEMG. There are
also SNN implementations in neuromorphic hardware to process
sEMG signals. In [10], a recurrent SNN was used to process sEMG
signals from a rock–paper–scissors gesture dataset, and in [11]
the performance of a feed-forward SNN to classify the gestures in
the same dataset was analyzed. Nevertheless, there are different
hypothesis explaining how does the human motor system work.
A wide accepted theory states that the central nervous system
uses different base motor components in a hierarchy [12] to
generate the full repertoire of motions that we can perform [13].
These base components are formed by specific combination of
muscle synergies [14] that are active during a motion, and they
are commonly called motor primitives [15]. An approach using

https://doi.org/10.1016/j.robot.2020.103566
0921-8890/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.robot.2020.103566
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2020.103566&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tieck@fzi.de
mailto:webers@in.tum.de
mailto:tcstewar@uwaterloo.ca
mailto:jkaiser@fzi.de
mailto:roennau@fzi.de
mailto:ruediger.dillmann@kit.edu
https://doi.org/10.1016/j.robot.2020.103566
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 J.C.V. Tieck, S. Weber, T.C. Stewart et al. / Robotics and Autonomous Systems 131 (2020) 103566

Fig. 1. Concept architecture with main components. Classification of sEMG
signals to detect active finger is used to trigger motion on the robot hand.
Source: Adapted from [19].

these concepts to control a robotic hand was proposed in [16].
Motor primitives can be activated in different modalities [17], for
example as a reflex. A reflex is an involuntary response to sensor
stimulation and can be either a complete execution or inhibition
of a motion. An overview of different spinal reflexes is provided
by [18].

In this work, we propose a SNN to control a robot hand with
muscle signals from a human recorded with a non-invasive sEMG
sensor. In Fig. 1, we present an overview of the main components
showing how they interact with each other. Human muscle ac-
tivity is recorded with a non-invasive sEMG sensor. The sEMG
signals are encoded to spikes. The first part of the SNN performs
a classification to detect which finger was active and generates
an activation signal. This sub network is first trained offline with
labeled data from the user, and then used online to classify. The
second part of the SNN generates motion and maps it to motor
commands according the robot kinematics.

We focus on the activation of single finger motions in response
to sensor stimuli as the reflex mechanism presented in [17,19].
A SNN was implemented to classify sEMG data and then trigger
the generation of motion as a reflex. An sEMG sensor with eight
channels was used to record human muscle activity while moving
different fingers. First, sEMG data was encoded to spikes and the
signals were classified to identify the active finger. After that, the
activation signal was used to trigger a reflex to generate motion
using a motor primitive. Then, the primitive output is mapped
to the robot kinematics. Finally, the spikes are decoded to motor
commands for the robot.

One highly novel aspect of this paper is the fact that the
classification and the generation of the motor primitive is imple-
mented using a spiking neural network. There are two reasons for
doing this. First, the real biological system must do something
similar to this using spiking neurons. Certainly, in real biology,
the classification would not be based on sEMG sensor, but would
rather be based on neural activity somewhere in the brain, but the
classification and generation of movement over time would still
need to occur. This means that we can see our system as an initial
model of that biological process. Second, there is a pragmatic
or engineering reason to implement this system using spiking
neurons. Prosthetic applications benefit from low-power hard-
ware implementations, and there is a variety of neuron-inspired
low-power computing hardware being developed. For example,
the SpiNNaker system [20], Intel’s new Loihi chip [21] and IBM’s
TrueNorth chip [22] all provide extremely energy-efficient spik-
ing neuron hardware. If the algorithms can be mapped onto
this hardware, then they may be able to be deployed using
significantly less power than traditional implementations.

This work is an extension of the previous conference pa-
per [19]. We extend the modeling of motions with motor prim-
itives and explain in more detail how to map the primitives to
different robots with references. We explore related work on
other sEMG techniques with machine learning for finger motion

classification as well as other SNN approaches for sEMG pro-
cessing. We present details on the sEMG sensor and the signal
characteristics and we add an experiment on another user with
the left arm to the evaluation. There are new figures and all
captions have been edited, we add extended explanations and
discussion on the implications and limitations. We elaborate on
how to get the amount of flexion, the advantages of SNN to
use neuromorphic hardware, and add a discussion on the EMG
dataset.

2. Methods

The main motivation of this work is to control a robotic hand
with human muscle signals using a spiking neural network (SNN).
As requirement, the sEMG sensor is non-invasive, the finger mo-
tions are represented with motor primitives triggered at once
to resemble reflexes, and the robot hand has to be controllable
with a ROS interface. We divide the problem in two parts that
translate to different parts of the same SNN. The first part takes
care of the sEMG data interface and classification and the second
part takes care of the motion generation and robot control. The
first part of the SNN classifies the sEMG signals to detect which
finger was active. Human sEMG data is captured in a non-invasive
way. For the classification, the sub network is trained offline
with labeled data from the user. After that, it is used to classify
online the sEMG signals and generate an activation signal that
is passed on to the second part of the SNN to trigger single
finger reflexes on the real robot. A finger reflex is modeled with
an oscillator that activates a motor primitive that is mapped to
motor commands according to the robot kinematics. In Fig. 1, we
present an overview of the main components showing how they
interact with each other. A detailed architecture of the SNN is
presented in Fig. 2. Notice that the primitives for the thumb, ring
and pinky are mapped to one actuated joint, whereas the index
and middle finger primitives are mapped to two actuated joints.

To generate the SNN models, we used the Neural Engineer-
ing Framework [23] and the software package Nengo [24]. This
software allows for the creation of large-scale spiking neural
networks by breaking the networks down into smaller parts.
The connection weights for each sub-part are optimized sepa-
rately, and then they are combined together into one large neural
network. Performing this optimization (i.e. finding connection
weights) locally means we can generate large systems without
using the traditional neural network approach of optimizing over
huge amounts of training data. However, the trade-off is that we
must make explicit claims about what each sub-part of the model
is doing.

In particular, in order to define a spiking neuron model using
Nengo and the neural engineering framework (NEF) [25], we must
break our algorithm down into vectors, functions, and differential
equations. The activity of each group of spiking neurons is con-
sidered to be a distributed representation of a vector (i.e. we may
have 100 spiking neurons representing a 2-dimensional vector).
Connections between groups of neurons compute functions on
those vectors. That is, the connection weights ensure that if the
first group of neurons represents x, then the second group of neu-
rons will represent y = f(x). By changing the connection weights,
we change the function being computed. Finally, recurrent con-
nections can be used to implement differential equations. We
make use of this here to implement basic movement primitives.

2.1. Human sEMG data interface and training data

To record sEMG data a single Myo [26] gesture control arm-
band is used. It is made up of eight equally spaced out blocks
with non-invasive sEMG sensors that provide a sampling rate of

J.C.V. Tieck, S. Weber, T.C. Stewart et al. / Robotics and Autonomous Systems 131 (2020) 103566 3

Fig. 2. Detailed architecture with sEMG classification and motion sub networks. Each circle represents a population of spiking neurons. The dotted lines divide the
conceptual components, named on the bottom according to Fig. 1.
Source: Adapted from [19].

Fig. 3. The Myo armband sensor placed on the forearm and the activity of the
eight channels.
Source: Adapted from [19].

200 Hz. The armband is used around the middle of the forearm
as shown in Fig. 3. When a finger is moved the muscle electric

activity is recorded with eight different sensors. The sensor has
an indicator so that it can be placed always in a similar way.
In order to record consistent data with the sensor, the segment
with the LED light has to be placed approximately at the same
position. We use a marker to mark the position on the underarm
skin. Slight variations after re-wearing the myo on and off did
not have enough influence on the recordings to make the trained
network unusable. Retrieving the raw sEMG signals is done with
the help of a Python API provided by [27]. Each channel encodes
the individual measurement as int8 values.

For each user a training dataset is required with multiple
samples. A sample consists of a continuous sequence of finger
activation in one hand. Each finger has to be flexed down for a
short period of time and then extended again. This procedure is
repeated starting from the thumb to the pinky. The training data
has to be recorded as a time continuous sEMG stream of all eight
channels with appropriate binary labels for the time windows
during which a finger was pressed. A sample from the dataset
is provided in Fig. 4, and the signals of the eight channels are
plotted with different colors in the upper part. The individual
channels of the sEMG sensor have similar activation for different
fingers, and thus are not enough to identify the motion of a finger.
Therefore, the classification network uses a combination of all

Fig. 4. A sample from the dataset for training with a run of all 5 fingers. From left to right the peaks show sEMG activation of the fingers starting with the thumb
to the pinky. Each finger is flexed and then extended.
Source: Adapted from [19].

4 J.C.V. Tieck, S. Weber, T.C. Stewart et al. / Robotics and Autonomous Systems 131 (2020) 103566

Fig. 5. Detailed architectures for the (a) sEMG classification and (b) motion
representation.
Source: Both adapted from [19].

eight channels, which provides a unique representation for each
finger.

The Myo uses proprietary EMG sensors and the values in Fig. 4
are the raw output of the eight channels in the armband. We do
not really know what each of these raw EMG signal represent,
but it is proportional to the muscle contraction intensity. Around
0 you have a relaxed muscle. We cannot say it is the direct
muscle contraction measured in millivolts, because the signal is
internally processed and converted to 8-bit data.

2.2. Sub network for sEMG classification

After recording training data, the first part of the SNN is
trained for classification offline and then used for online clas-
sification. The detailed architecture for sEMG classification is
presented in Fig. 5(a). Each circle represents a population of
spiking neurons. Raw sEMG data is recorded from the user and
is encoded into spikes. A population of neurons encodes the
signal stream of sEMG input to spikes using stochastic population
encoding. The encoded sEMG signals are classified to determine
which finger was activated. Then, a second population of neurons
is trained offline with a whole training dataset for a user as
described above.

The learning rule for offline training the classification popu-
lation is Prescribed Error Sensitivity (PES) using the labels from
the training data serving as error signals E. PES is implemented
in [28], and was first presented in [29]. This learning rule is
independent of the data to learn, it optimizes the network weight
to minimize the error. The weight updates that PES makes to min-
imize an error signal during learning can be related to Skipped
Back-propagation. For the weights wij from pre-synaptic popula-
tion i to post-synaptic population j, the update rule is defined as

∆wij = καjej · Eai, (1)

with κ a scalar learning rate, α the gain or scaling factor, e the
encoder for the neuron, E the error to minimize, and a the desired
activation.

After training, the classification by the second population, the
overall signals are low in amplitude and consequently rather
close to each other. Therefore, a population is used to refine
the classification by amplifying the signals and generating the
hand activation signal. An arbitrary defined function scales up
activations above a manually set threshold and is used to train
this population. The resulting activation signal is passed over to
the motion generation part. Examples for classification of all the
fingers of the complete procedure are provided in Fig. 11 in the
results section. Neurons in consecutive populations are connected
all to all.

2.3. Sub network for motion representation of reflexes

A population takes the hand activation signal from the pre-
vious classification to trigger the appropriate finger reflex. We
model a reflex as the execution of a motor primitive based on
a specific stimuli. Accordingly, the motion part of our SNN is
divided into reflex activation and motor primitive layers. The
whole architecture for the representation of reflexes is presented
in Fig. 5(b). Each circle represents a population of spiking neurons.
The hand activation signal is processed by the hand abstraction
population to extract individual finger activations. Reflexes are
modeled as oscillators that oscillate only once. The neural activity
is decoded to generate motor commands to the respective robot
finger.

The reflex activation for each finger is modeled as an oscillator

h(ω) = a · sin(bω
π

2
), (2)

with ω a recurrent connection and a and b the parameters for the
amplitude and frequency. The oscillator generates a continuous
signal for a finite period that represents the duration of a motion
with a start and an end point. By indexing the neurons in the
oscillator population, the activity can be mapped to a grid in a 2D
plane. The total spike activity of the neurons in the population can
then be represented with the components x and y. We calculate
a continuous and normalized signal u ∈ [−1, 1] as:

u = sin(arctan(
y
x
)), (3)

where arctan(yx) represents the angle of a vector with compo-
nents x and y. To bound and smooth the signal sin() is applied.

The motor primitive is modeled as a mapping of u to a se-
quence of joint activations during the period of oscillation, and it
can be mapped to one or multiple joints. In Fig. 5(b), the distal and
proximal joints of the index finger are mapped. First, we define
an activation function

f (u) =
sin(u · π −

π
2)

2
+

1
2
, (4)

as a sinusoidal function to have smooth initial an final phases.
This characteristic is important when executing the motion in
a real robot to prevent unnecessary wear in the motors and
mechanical parts. The resulting generic activation function for
one joint is depicted in Fig. 6(a). In general terms, there is no
difference between voluntary and reflex motions on the muscular
activities (synergies), the difference is the activation [17]. For
voluntary motions the activation is discrete, and for reflexes it
is a complete one time execution.

2.4. Mapping to robot motor commands

Finally, in order to actually be able to control the robot, the
primitives have to be mapped to the robot kinematics. Which
means, scaling to the motion interval (θmax − θmin) and offset θmin
that the joint θ has. For this purpose, we define g : [0, 1] → Rn

as a function for each joint as

g(f (u)) = f (u) · (θmax − θmin) + θmin, (5)

to generate appropriate motor commands. A schema for the map-
ping g for a robotic hand is illustrated in Fig. 6(b) and is defined in
the table in Fig. 6(c). A joint is defined with a name, the associated
primitive, and the interval of the joint θmin and θmax. A primitive
can be mapped to one or more joints. This parametric repre-
sentation of motions allows us to further combine and change
parameters of the motor primitives.

With this representation of the robot kinematics we also have
a flexible and extensible approach that can be adapted to different

J.C.V. Tieck, S. Weber, T.C. Stewart et al. / Robotics and Autonomous Systems 131 (2020) 103566 5

Fig. 6. Motor primitive representation. The control parameter u is used to
evaluate (a) the activation function f (u) and then (b) the mapping g(f (u)) to
the robot kinematics. (c) Mapping description table.
Source: Adapted from [19].

Fig. 7. Experiment setup: user, sEMG sensor, robot hand, and the SNN
simulation in Nengo.
Source: Adapted from [19].

robots. To use a different robot a new mapping has to be defined
as in Fig. 10(c). The primitive modeling remains the same and
the activation functions too. In other approaches we show how
to map the primitives to a robotic arm in simulation [30], a
humanoid robot [31], and a simulated six-legged robot [32].

3. Results

The experiment setup is depicted in Fig. 7. The user wears
the sEMG sensor (Myo armband) in the forearm, and the signals
are sent via bluetooth to the computer. The computer receives
the sEMG data and inputs it to the SNN simulation running in
Nengo [24]. The computer communicates at the same time with
the robot hand (Schunk SVH) via ROS [33]. To control the robot
hand the official Schunk ROS driver is used [34].

3.1. Classification performance

In order to evaluate the accuracy of the classification, we
selected two random users and one of them using the sensor on
the right and the other on the left arm. This experiment is by
no means a complete evaluation, nevertheless it provides an idea
of how the classification works with different users. The SNN is
trained offline from scratch for each arm (see Section 2.2), so one
trained model only learns to classify the signals of one particular
arm, which would be the use case in prosthetic applications.
Each user was asked to perform a sample of 50 trials with each
finger (see Section 2.1). The sEMG data was feed to the trained

Fig. 8. Correlation matrix of classification for two random users – one using the
sensor on the right and one on the left arm. Each row represents the results for
each finger.

network and we counted the classification output for each trial.
We counted which finger class – Thumb, Index, Middle, Ring,
Pinky, None – was detected and calculated the ratio of accuracy
for each finger Accuracy =

value
N_trials . The results are summarized in

Fig. 8, where each row is the classification of one finger.
For user A using the right arm see Fig. 8(a). Notice that only

the ‘‘pinky’’ and ‘‘none’’ were always classified correctly. This does
not mean that it will be always perfect, only that during this
50 samples the classification was correct. For the other fingers
there are either false detections or ‘‘none’’ classifications. The
middle finger was the hardest to classify, and the network often
misclassified it as ‘‘none’’.

For user B using the left arm see Fig. 8(b). Notice that there
was misclassification between the ring and pinky fingers. During
the test, it was evident that for most people it is hard to move the
fingers independently. Also notice that the middle finger was also
problematic. For the other fingers there are either false detections
or ‘‘none’’ classifications.

In order to improve performance, especially on the problem-
atic fingers, an approach with a time-windowed history of sEMG
data and subsequent feature pre-processing could help. In [35] a
combination of absolute mean amplitude and cumulative length
of the sEMG signal within the analysis window showed the best
results. Alternatively, recurrent connections on the group-answer
population (see Fig. 9) might also help in processing the time-
continuous sEMG data. The main focus going further is to figure
out a way to not only detect the active finger being flexed, but to
estimate the amount of flexion in that finger.

3.2. SNN implementation

The SNN was implemented in Python with the Nengo sim-
ulator using leaky integrate and fire (LIF) neurons. To get an
overview of the implementation Fig. 9 presents a view of the
whole network running. The structure can be easily mapped to
that in Fig. 2. The eight channels human sEMG signals are encoded
by a population as stochastic spike rates based on their values.
After performing offline training with different datasets from the
same user, the sEMG classification takes place. The classification
signal is then passed over to trigger motion generation. The
reflexes are implemented as oscillators that activate motor prim-
itives. The motor primitives are mapped to the robot kinematics
as defined in the methods section. In the following sections the
relevant details of each components are described.

3.3. Interface to the robot hand

For this work we used a Schunk SVH 5-finger robot hand
(see Fig. 10(a)). The hand has 9 actuated joints and other joints

6 J.C.V. Tieck, S. Weber, T.C. Stewart et al. / Robotics and Autonomous Systems 131 (2020) 103566

Fig. 9. The SNN pipeline in Nengo. The main components are: human sEMG data capture and encoding, sEMG classification, motion generation, and finally the
mapping to the robot. The structure can be mapped to that in Fig. 2.
Source: Adapted from [19].

Fig. 10. (a) We used a Schunk SVH 5-finger robot hand with (b) kinematic
structure (adapted from [34]). (c) Table. Joint mapping schema for the real
robot. (d) Frame sequence of the index finger motion generated by the SNN
corresponding to the activation shown in Fig. 12 (adapted from [19]).

mirror the activity with a fixed factor (see Fig. 10(b)). Our net-
work controlled 7 of the joints. We describe here the mapping
schema that was used with the robot hand. The table in Fig. 10(c)
summarizes the data. The ‘‘Joint name’’ column corresponds to
the ROS topics described in [34] for the different actuated joints.
A different primitive is used for each finger, and the indexing is in
column ‘‘Primitive’’. Note all joints of the index and middle finger
are mapped to the same primitives respectively. The ‘‘min’’ and
‘‘max’’ values for the joint angle interval for each joint complete

the table. The active joints in the robot hand ‘‘Thumb_Opposition’’
and ‘‘Finger_Spread’’ remained constant all the time.

3.4. Training data

For each user a set of training data is required to train offline
the SNN as described in Section 2.2. Training data for the classifi-
cation network was recorded in one session lasting 60 s. During
that time individual fingers were periodically pressed against the
palm of the hand and subsequently returned to a resting pose. The
fingers presses occurred in sequence from thumb to index finger
with each press lasting between 300 ms and 500 ms. Together
with the resting time one cycle took around 7.5 s and a total
of 8 cycles were performed. A sample run of the training data
with all 5 fingers is presented in Fig. 4. In order to label sEMG
data, with every finger press simultaneously a keyboard button
was pressed indicating the respective finger. The data is labeled
in time for each finger, and all eight sEMG channels are active.
Important note, if the sensor is used in a different position or in
a different arm, a new dataset is required and the network needs
to be trained again.

3.5. Processing of sEMG data and classification

The first group of 800 neurons (sEMG input in Fig. 5(a)) was
activated with the raw sEMG data as int8 to convert it to spikes.
The second group of 500 neurons (Classification in Fig. 5(a))
was trained with the prerecorded training data at start to give
responses of the classified fingers. Then, a third group of 500
neurons (Classification refined in Fig. 5(a)) was used to sepa-
rate and amplify signals further. A final group of 500 neurons
(Hand activation signal, Fig. 5(a)) was trained to give out one
single signal for a specific finger and was connected to 5 groups
representing the different fingers for the robot hand.

In Fig. 11, we present samples of the SNN classifying the
activation of the different fingers. As it can be seen, the eight
channels of sEMG have different data for each finger. The signals
are processed with the SNN, and the activation of the different
populations can also be observed. The output of the classification
is a dominant activation of one of the populations representing
each finger.

J.C.V. Tieck, S. Weber, T.C. Stewart et al. / Robotics and Autonomous Systems 131 (2020) 103566 7

Fig. 11. sEMG activation and classification for different fingers. The first graph from the left shows the encoded sEMG signals to spikes. The second plot shows the
classification output. The other plots show the refined classification signal and the hand activation signal respectively with one finger active. From top to bottom
thumb, index, middle, ring and pinky are shown. Notice the different activations in the eight channels.
Source: Adapted from [19].

8 J.C.V. Tieck, S. Weber, T.C. Stewart et al. / Robotics and Autonomous Systems 131 (2020) 103566

Fig. 12. Motion generation from the SNN for a reflex in the index finger. The frames A to E correspond to the fingers from the thumb to the pinky respectively.
From left to right the plots represent: (left) Finger activation signal coming form the sEMG classification. (middle left, group of three plots) Show the activity in the
oscillator with a spike train plot, the decoded activity of the population in a plane XY , and a raster plot color coded by the neuron’s activity. (middle right, group of
three plots) Show the decoding to u, and the mapping g(f (u)) to the robot kinematics. Note that the mapping goes to two different joints. (right) A continuous plot
of the current motor commands being sent to the robot.
Source: Adapted from [19].

3.6. Motion generation

After receiving the classification signal the reflex is activated
and fully executed once. The resulting motion of the robot is
presented as a frame sequence in Fig. 10(d). The data presented
corresponds to a reflex motion of the index finger. The corre-
sponding activity of the SNN is presented in Fig. 12 with sufficient
information to illustrate the functioning of the SNN. The signal
that triggers motion generation comes from the classification
part. An oscillator is activated for each finger. Observe the circular
activation of the oscillator population when decoded in a plane
XY in Fig. 12. From this circular activation u is decoded and

mapped to one or more joints in the robot hand. Observe that
the mapping in Fig. 12 is performed to two joints of the index
finger. Finally the neural activity is decoded and send over ROS
to the robot hand.

4. Discussion

We presented a SNN that activates motion reflexes on a
robotic hand based on human sEMG data online. After training,
the network classifies the sEMG signals to detect finger activation.
Based on it, single finger reflexes are triggered. The finger reflexes
are modeled with motion primitives and mapped to the robot
kinematics.

J.C.V. Tieck, S. Weber, T.C. Stewart et al. / Robotics and Autonomous Systems 131 (2020) 103566 9

Modeling robot motion with motor primitives is a promising
approach as it provides a clear framework in combination with
a model free representation of the kinematics. Motions can be
learned for different tasks and the approach has been successfully
extended to model different activation modalities [17] target
reaching [30] and locomotion [32]. A notable capability of our
approach is that it works with no modifications with a left or a
right arm.

As can be seen in Figs. 4 and 11, the index finger showed
in the raw sEMG data a signal that is not clear and the output
is sometimes ambiguous. As a consequence, the classification
step delivers a weak and low activation signal that is propagated
throughout the following populations and leads to false classi-
fication of other fingers. We noticed that for most people it is
hard to move the fingers independently in a consistent way. One
important note, the EMG dataset is of no use if the sensor is later
used in a different position or in a different user or arm. In other
words a trained SNN cannot be evaluated if you do not have the
same user and a similar sensor placement. In that case a new
dataset is required to train the network again.

The focus of this work was on single finger movements, so data
with multiple fingers was not considered, only movements in
quick succession of single fingers. We observed that the amount
of flexion during the motion of one finger is proportional to the
sEMG signal (see Section 2.1), but the signal is not stable if there
is no motion or if it is too slow. The sEMG signals were used only
to trigger the execution of the reflexes, and for the classification
a time sequence of the whole motion was used. We currently
work on modeling to the whole hand by representing grasping
affordances as a higher coordination layer to the finger primitives.
In order to detect the affordances based on event-based visual
information we use a spiking variant of back-propagation to train
a SNN and trigger the respective grasping motion [36]. A method
similar to [37] could be incorporated togheter with microsac-
cades [38] to get depth information from the event-based visual
information to adapt the motion to the position of the objects.

Brain-inspired technologies are attracting interest from the in-
dustry, especially neuromorphic hardware and event-based com-
putation. New paradigms are required to program SNN to effi-
ciently. By implementing our methods with SNN we are bridging
the gap between neuromorphic technologies and robotics. Addi-
tionally, other recent methods using reservoir computing to learn
muscle control [8] or to learn how to classify sEMG signals [11]
in neuromorphic hardware, could provide the foundation to learn
more complex muscle control using SNN. We want to explore
a mechanism to use the sEMG signals from the Myo armband
to detect the amount of flexion of one finger in the human and
perform discrete control of the position with the robot finger. For
this we need to figure out a representation that characterizes a
position with the sEMG signals in a unique way. Using a second
sEMG sensor could provide additional input from different muscle
areas of the arm and improve classification results. Ideally the
second sEMG sensor would be located close to the wrist [39]
closer to the fingers and the hand.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research received funding from the European Union’s
Horizon 2020 Framework Programme for Research and Innova-
tion under the Specific Grant Agreement No. 785907 (Human
Brain Project SGA2).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.robot.2020.103566.

References

[1] R.H. Chowdhury, M.B. Reaz, M.A.B.M. Ali, A.A. Bakar, K. Chellappan,
T.G. Chang, Surface electromyography signal processing and classification
techniques, Sensors (2013).

[2] M. Simão, N. Mendes, O. Gibaru, P. Neto, A review on electromyography
decoding and pattern recognition for human-machine interaction, IEEE
Access (2019).

[3] M.S. Johannes, J.D. Bigelow, J.M. Burck, S.D. Harshbarger, M.V. Kozlowski,
T. Van Doren, An overview of the developmental process for the modular
prosthetic limb, Johns Hopkins APL Tech. Dig. (2011).

[4] K.-J. You, K.-W. Rhee, H.-C. Shin, Finger motion decoding using EMG signals
corresponding various arm postures, Exp. Neurobiol. (2010).

[5] A.H. Al-Timemy, G. Bugmann, J. Escudero, N. Outram, Classification of
finger movements for the dexterous hand prosthesis control with surface
electromyography, IEEE J. Biomed. Health Inform. (2013).

[6] W. Maass, Networks of spiking neurons: The third generation of neural
network models, Neural Netw. (1997).

[7] A. Grüning, S.M. Bohte, Spiking neural networks: Principles and challenges,
in: ESANN, 2014.

[8] J.C.V. Tieck, M.V. Pogančić, J. Kaiser, A. Roennau, M.-O. Gewaltig, R.
Dillmann, Learning continuous muscle control for a multi-joint arm by
extending proximal policy optimization with a liquid state machine, in:
Conf. on Artificial Neural Networks ICANN, 2018.

[9] S. Lobov, V. Mironov, I. Kastalskiy, V. Kazantsev, A spiking neural network
in sEMG feature extraction, Sensors (2015).

[10] E. Donati, M. Payvand, N. Risi, R. Krause, K. Burelo, G. Indiveri, T. Dalgaty,
E. Vianello, B. Circuits, Processing EMG signals using reservoir computing
on an event-based neuromorphic system, in: IEEE Biomedical Circuits and
Systems Conf., BioCAS, 2018.

[11] E. Donati, M. Payvand, N. Risi, R.B. Krause, G. Indiveri, Discrimination of
EMG signals using a neuromorphic implementation of a spiking neural
network, IEEE Trans. on Biomed. Circuits Syst. (2019).

[12] E. Bizzi, V. Cheung, A. d’Avella, P. Saltiel, M. Tresch, Combining modules
for movement, Brain Res. Rev. (2008).

[13] N. Bernstein, The co-ordination and regulation of movements, Pergamon-
Press, 1967.

[14] A. d’Avella, P. Saltiel, E. Bizzi, Combinations of muscle synergies in the
construction of a natural motor behavior, Nat. Seurosci. (2003).

[15] E. Chinellato, A. Pobil, The Visual Neuroscience of Robotic Grasping:
achieving Sensorimotor Skills Through Dorsal-Ventral Stream Integration,
in: Cognitive Systems Monographs, Springer, 2016.

[16] J.C.V. Tieck, H. Donat, J. Kaiser, I. Peric, S. Ulbrich, A. Roennau, M.
Zöllner, R. Dillmann, Towards grasping with spiking neural networks for
anthropomorphic robot hands, in: Conf. on Artificial Neural Networks,
ICANN, 2017.

[17] J.C.V. Tieck, L. Steffen, J. Kaiser, R. Arne, R. Dillmann, Multi-modal mo-
tion activation for robot control using spiking neurons, in: IEEE Conf.
Biomedical Robotics and Biomechatronics, BioRob, 2018.

[18] J. Knierim, Spinal reflexes and descending motor pathways, Neuroscience
(2019) Online (Accessed 9 April 2019).

[19] J.C.V. Tieck, S. Weber, T.C. Stewart, A. Roennau, R.R. Dillmann, Triggering
robot hand reflexes with human EMG data using spiking neurons, in: Conf.
Intelligent Autonomous Systems IAS-15, Springer, Cham, 2018.

[20] S. Furber, S. Temple, A. Brown, High-performance computing for systems
of spiking neurons, in: AISB’06 Workshop. GC5: Archit. Brain Mind, 2006.

[21] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain, Loihi: A neuromorphic manycore processor with
on-chip learning, IEEE Micro (2018).

[22] P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F.
Akopyan, B.L. Jackson, N. Imam, C. Guo, Y. Nakamura, A million spiking-
neuron integrated circuit with a scalable communication network and
interface, Science (2014).

[23] C. Eliasmith, C.H. Anderson, Neural Engineering: Computation, Rep-
resentation, and Dynamics in Neurobiological Systems, MIT Press,
2003.

[24] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T.C. Stewart, D. Ras-
mussen, X. Choo, A. Voelker, C. Eliasmith, Nengo: a Python tool for building
large-scale functional brain models, Front. Neuroinform. (2014).

[25] C. Eliasmith, C.H. Anderson, Neural Engineering: Computation, Rep-
resentation, and Dynamics in Neurobiological Systems, MIT Press,
2003.

[26] ThalmicLabs, Myo diagnostics, 2019, http://diagnostics.myo.com/. Online
(Accessed 9 April 2019).

https://doi.org/10.1016/j.robot.2020.103566
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb1
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb1
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb1
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb1
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb1
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb2
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb2
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb2
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb2
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb2
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb3
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb3
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb3
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb3
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb3
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb4
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb4
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb4
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb5
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb5
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb5
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb5
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb5
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb6
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb6
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb6
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb9
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb9
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb9
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb11
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb11
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb11
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb11
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb11
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb12
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb12
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb12
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb13
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb13
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb13
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb14
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb14
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb14
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb15
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb15
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb15
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb15
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb15
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb18
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb18
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb18
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb19
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb19
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb19
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb19
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb19
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb21
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb21
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb21
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb21
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb21
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb22
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb22
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb22
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb22
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb22
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb22
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb22
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb23
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb23
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb23
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb23
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb23
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb24
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb24
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb24
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb24
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb24
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb25
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb25
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb25
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb25
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb25
http://diagnostics.myo.com/

10 J.C.V. Tieck, S. Weber, T.C. Stewart et al. / Robotics and Autonomous Systems 131 (2020) 103566

[27] dzhu, Myo Python API, 2019, https://github.com/dzhu/myo-raw/. Online
(Accessed 9 April 2019).

[28] T. Bekolay, C. Kolbeck, C. Eliasmith, Simultaneous unsupervised and su-
pervised learning of cognitive functions in biologically plausible spiking
neural networks, Cogn. Sci. (2013).

[29] D. MacNeil, C. Eliasmith, Fine-tuning and the stability of recurrent neural
networks, PLoS One (2011).

[30] J.C.V. Tieck, L. Steffen, J. Kaiser, D. Reichard, A. Roennau, R. Dillmann,
Combining motor primitives for perception driven target reaching with
spiking neurons, in: Cognitive Informatics and Natural Intelligence, Vol.
13, IJCINI, IGI Global, 2019.

[31] J.C.V. Tieck, T. Schnell, J. Kaiser, F. Mauch, A. Roennau, Generating pointing
motions for a humanoid robot by combining motor primitives, Front.
Neurorobot. (2019).

[32] J.C.V. Tieck, J. Rutschke, J. Kaiser, M. Schulze, T. Buettner, D. Reichard,
A. Roennau, Combining spiking motor primitives with a behavior-based
architecture to model locomotion for six-legged robots, in: IEEE Conf.
Intelligent Robots and Systems, IROS, 2019.

[33] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y.
Ng, ROS: an open-source robot operating system, in: IEEE Conf. Robotics
and Automation, ICRA, 2009.

[34] G. Heppner, Schunk_svh_driver, 2019, http://wiki.ros.org/
schunk{_}svh{_}driver. Online (Accessed 9 April 2019).

[35] L. Peng, Z.-G. Hou, N. Kasabov, G.-B. Bian, L. Vladareanu, H. Yu, Feasibility of
neucube spiking neural network architecture for EMG pattern recognition,
in: Conf. Advanced Mechatronic Systems, ICAMechS, 2015.

[36] J. Kaiser, A. Friedrich, J.C.V. Tieck, D. Reichard, A. Roennau, E. Neftci,
R. Dillmann, Embodied neuromorphic vision with event-driven random
backpropagation, 2019, arXiv preprint arXiv:1904.04805.

[37] G. Haessig, X. Berthelon, S.-H. Ieng, R. Benosman, A spiking neural network
model of depth from defocus for event-based neuromorphic vision, Sci.
Rep. 9 (1) (2019).

[38] J. Kaiser, J. Weinland, P. Keller, L. Steffen, J.C.V. Tieck, D. Reichard, A.
Roennau, J. Conradt, R. Dillmann, Microsaccades for neuromorphic stereo
vision, in: Biomedical Robotics and Biomechatronics (BioRob), 2018 IEEE
International Conference On, Springer, 2018, pp. 244–252.

[39] F. Tenore, A. Ramos, A. Fahmy, S. Acharya, R. Etienne-Cummings, N.V.
Thakor, Towards the control of individual fingers of a prosthetic hand using
surface EMG signals, in: EMBC, 2007.

Juan Camilo Vasquez Tieck is a research scientist at
FZI Research Center for Computer Science and a Ph.D.
student on the field of neurorobotics at (KIT) with Prof.
Rüdiger Dillmann in Karlsruhe, Germany. He works on
motion representation for manipulation and grasping
with spiking neural networks and works in the SP10
Neurorobotics of the Human Brain Project. He gradu-
ated as Mechanical Engineer and Computer Scientist at
the EAFIT University in Medellin. He worked designing,
developing and building robots for protein christaliza-
tion at Formulatrix Inc. in Boston. After that, he worked

as solution developer in the fields of biomechanics and telecommunications at
Ilimitada S.A in Medellin. And later, he worked in research on interactive digital
television at Artica in Medellin. He finished his MSc degree in Informatics with
focus on cognitive systems and humanoid robots at the Karlsruhe Institute of
technology (KIT).

Sandro Weber is a Ph.D. student at the chair for
Augmented Reality at TUM. Key interests are HCI
with a focus on ubiquitous adaptive interaction sys-
tems in multi-device environments and virtual re-
ality re-embodiment. Working for the HBP on the
Neurorobotics Platform. Developing virtual reality re-
embodiment systems with the goal to integrate users
as human-like avatars in a physical simulation.

Terrence C. Stewart is a post-doctoral research asso-
ciate working with Chris Eliasmith at the Centre for
Theoretical Neuroscience at the Universit of Water-
loo. My initial training was as an engineer (B.A.Sc.
in Systems Design Engineering, University of Water-
loo, 1999), my masters involved applying experimental
psychology on simulated robots (M.Phil. in Computer
Science and Artificial Intelligence, University of Sus-
sex, 2000), and my Ph.D. was on cognitive modeling
(Ph.D. in Cognitive Science, Carleton University, 2007).
He is also a co-founder of Applied Brain Research,

a research-based start-up company based around using low-power hardware
(neuromorphic computer chips) and adaptive neural algorithms.

Jacques Kaiser graduated with an international Mas-
ter degree in computer graphics, vision and robotics,
Jacques Kaiser is now working as a robotics engineer
in FZI and simultaneously pursuing a Ph.D. within the
Human Brain Project. His research focuses on embody-
ing synaptic plasticity rules in real world neurorobotic
setups. He is particularly interested in visuomotor tasks
and learning from event-based vision.

Arne Roennau is the department manager of the Inter-
active Diagnosis and Service Systems department and
head of the FZI Living Lab Service Robotics. He studied
Electrical Engineering and Information Technology at
the Karlsruhe Institute of Technology, specialized in
the fields of feedback control, automation and robotics.
Since 2011, he is department manager and head of
the FZI Living Lab Service Robotics. In this role, he
is leading more than more than 10 national and 4
European research projects. His main fields of research
are robot motion control, human robot collaboration

(HRC), and the design of innovative service robots.

Rüdiger Dillmann received his Ph.D. from University of
Karlsruhe in 1980. Since 1987 he has been Professor of
the Department of Computer Science and is Director of
the Research Lab. Humanoids and Intelligence Systems
at KIT. 2002 he became director of an innovation lab. at
the Research Center for Information Science (FZI), Karl-
sruhe. Since 2009 he is spokesman of the Institute of
Anthropomatics and Robotics at the Karlsruhe Institute
of Technology. His research interest is in the areas of
service robotics with special emphasis on intelligent,
autonomous and interactive robot behavior based on

machine learning methods and programming by demonstration (PbD). Other
research interests include machine vision for mobile systems, manmachine
interaction, computer supported intervention in surgery and related simulation
techniques. He is author/co-author of more than 950 scientific publications,
conference papers, several books and book contributions. He is Editor of the
journal’’Robotics and Autonomous Systems’’, Elsevier, and Editor in Chief of the
book series COSMOS, Springer. He is IEEE Fellow.

https://github.com/dzhu/myo-raw/
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb28
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb28
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb28
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb28
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb28
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb29
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb29
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb29
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb30
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb30
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb30
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb30
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb30
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb30
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb30
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb31
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb31
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb31
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb31
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb31
http://wiki.ros.org/schunk{_}svh{_}driver
http://wiki.ros.org/schunk{_}svh{_}driver
http://wiki.ros.org/schunk{_}svh{_}driver
http://arxiv.org/abs/1904.04805
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb37
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb37
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb37
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb37
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb37
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb38
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb38
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb38
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb38
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb38
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb38
http://refhub.elsevier.com/S0921-8890(20)30406-1/sb38

	A spiking network classifies human sEMG signals and triggers finger reflexes on a robotic hand
	Introduction
	Methods
	Human sEMG data interface and training data
	Sub network for sEMG classification
	Sub network for motion representation of reflexes
	Mapping to robot motor commands

	Results
	Classification performance
	SNN implementation
	Interface to the robot hand
	Training data
	Processing of sEMG data and classification
	Motion generation

	Discussion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

