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ABSTRACT 

 

In Kohonen’s Self-Organising Maps (SOM) learning, preserving the map 

topology to simulate the actual input features appears to be a significant process. 

Misinterpretation of the training samples can lead to failure in identifying the 

important features that may affect the outcomes generated by the SOM model. 

Nonetheless, it is a challenging task as most of the real problems are composed of 

complex and insufficient data. Spiking Neural Network (SNN) is the third generation 

of Artificial Neural Network (ANN), in which information can be transferred from one 

neuron to another using spike, processed, and trigger response as output. This study, 

hence, embedded spiking neurons for SOM learning in order to enhance the learning 

process. The proposed method was divided into five main phases. Phase 1 investigated 

issues related to SOM learning algorithm, while in Phase 2; datasets were collected for 

analyses carried out in Phase 3, wherein neural coding scheme for data representation 

process was implemented in the classification task. Next, in Phase 4, the spiking SOM 

model was designed, developed, and evaluated using classification accuracy rate and 

quantisation error. The outcomes showed that the proposed model had successfully 

attained exceptional classification accuracy rate with low quantisation error to preserve 

the quality of the generated map based on original input data. Lastly, in the final phase, 

a Spiking 3D Growing SOM is proposed to address the surface reconstruction issue by 

enhancing the spiking SOM using 3D map structure in SOM algorithm with a growing 

grid mechanism. The application of spiking neurons to enhance the performance of 

SOM is relevant in this study due to its ability to spike and to send a reaction when 

special features are identified based on its learning of the presented datasets. The study 

outcomes contribute to the enhancement of SOM in learning the patterns of the 

datasets, as well as in proposing a better tool for data analysis. 
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ABSTRAK 

 

Dalam pembelajaran swa-organisasi Kohohen (SOM), proses memelihara 

topologi peta untuk mewakilkan ciri-ciri data yang sebenar adalah penting. Perwakilan 

yang salah akan menyebabkan kegagalan dalam mengenalpasti ciri-ciri penting hingga 

memberi kesan kepada keluaran yang dihasilkan oleh model SOM. Namun, ianya 

adalah tugas yang mencabar kerana kebanyakan masalah sebenar terdiri daripada data-

data yang rumit dan tidak lengkap. Rangkaian Saraf Pakuan (RSP) adalah generasi 

ketiga rangkaian saraf buatan (RSB) dengan maklumat disalurkan dari satu neuron ke 

neuron lain melalui pepaku, kemudian diproses untuk menghasilkan tindakbalas 

sebagai output. Kajian ini menggabungkan saraf pakuan untuk memperkasakan proses 

pembelajaran SOM. Kaedah yang dicadangkan terbahagi kepada lima fasa utama. Fasa 

pertama mengkaji isu-isu berkaitan algoritma pembelajaran SOM. Dalam fasa kedua, 

dataset dikumpul untuk dilatih di fasa ketiga, di mana skema pengkodan saraf 

diimplementasi bagi proses pengelasan. Seterusnya, dalam fasa keempat, model SOM 

pakuan direkabentuk, dibangunkan dan dinilai melalui kadar ketepatan pengelasan dan 

ralat pengkuantuman. Hasil ujikaji menunjukkan model cadangan berjaya 

menghasilkan keputusan yang baik dengan ralat pengkuantuman yang rendah, untuk 

memelihara kualiti pemetaan berdasarkan kepada data kemasukan sebenar. Pada fasa 

terakhir, model swa-organisasi pertumbuhan pakuan tiga dimensi dicadangkan untuk 

masalah penjanaan semula permukaan dengan meningkatkan pakuan SOM 

menggunakan struktur peta 3D dalam algoritma SOM bersama mekanisme 

pertumbuhan grid. Aplikasi saraf pakuan untuk meningkatkan prestasi SOM adalah 

relevan dalam kajian ini kerana keupayaannya untuk melonjak dan menghantar tindak 

balas apabila ciri khas dikenalpasti berdasarkan pembelajaran terhadap dataset. Hasil 

kajian menyumbang kepada peningkatan SOM dalam mempelajari corak dataset, di 

samping mencadangkan alat yang lebih baik untuk analisis data. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 

The self-organising map (SOM) refers to a data visualisation technique 

initiated by Professor Teuvo Kohonen (Kohonen, 1995). This technique minimises 

the dimensions of data through the use of self-organising neural networks. SOM has 

often been used in the exploratory stage of data analysis, in addition to applications 

in numerous fields (Corchado, & Baruque, 2012; Shieh, & Liao, 2012; Chaudhary et 

al., 2015; Ahmad, & Kim, 2015; Natita et al., 2016; Haimoudi et al., 2016; Kuo, & 

Chen, 2016). 

 

The conventional SOM network is composed of two phases; training and 

testing. SOM learning occurs during the training phase, while the process of 

identifying the output occurs during the testing phase. The training samples are 

generated by transforming the input data into normalised values. Next, the Best 

Matching Unit (BMU) is identified as the neuron that holds the minimum distance 

value to the normalised input features. All neurons within the neighbourhood of the 

BMU are updated so that their values are reflected in the input features. This is the 

process of SOM learning, wherein the mapping topology is preserved to train the 

weights to simulate the actual features of the datasets. 

 

Several major issues in the SOM learning algorithm may eventually lead to 

the failure of identifying of BMU (Mariette, & Villa-Vialaneix, 2016). The first issue 

refers to the pre-processing of input data for training. Missing important knowledge 

during data pre-processing can affect the performance of the SOM model. Next, the
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 second issue is misrepresenting the datasets that could unable the 

identification of potential BMU, and therefore, produce poor mapping topology. 

Since SOM incorporates an iterative process, the learning process is lengthened and 

may generate irrelevant outputs (Haimoudi et al., 2016). Thus, in order to ensure the 

correct interpretation of data, quality measurement is required for the map topology. 

According to Hamel (2016), quality measurement should cover two aspects: 1) 

mapping in the input data, and 2) the topological quality of the map. So far, most 

studies have only covered one aspect; either the input data or the topological 

structure of the map. This seems to reduce the accuracy of the SOM output. 

 

In order to address these issues, enhancement to the SOM learning algorithm 

has been proposed in many prior studies. Many researchers have improved the SOM 

model by modifying the SOM map structures, such as lattice and map dimensions, to 

preserve the input data in the map topology (Yusob, 2009; Hasan, & Shamsuddin, 

2011; Kim, & Ahmad, 2015). Apart from that, improvements were made in SOM 

learning parameters itself, including initialisation of weight values, learning rate, and 

neighbourhood function (Fidae et al., 2015; Natita et al., 2016). Some studies have 

integrated other techniques, such as statistical and intelligent approaches as solutions 

to deal with issues linked with SOM, for example, Particle Swarm Optimisation 

(Hasan, & Shamsuddin, 2011), Principle Component Analysis (Haimoudi et al., 

2016), neural gas (Moazzen, & Tasdemir, 2016; Vergara et al., 2016), and Support 

Vector Machine (Mudali et al., 2016). 

 

These techniques have successfully enhanced the learning capabilities of 

SOM in vast domain problems. Nevertheless, its operation is time consuming, 

especially in identifying BMU and map training to generate weight values that 

represent the real input data. For this reason, a new approach has to be devised by 

incorporating the advancement in artificial neural network (ANN). Mass (1997) 

divided ANN into three generations. The first generation is perception, which is used 

for digital computation. Next, the second generation is based on continuous 

activation function, for instance, backpropagation and SOM. Lastly, the third 

generation is spiking neural network (SNN), which is biologically similar to neurons 

and incorporates spatial information in communication and computation, the actual 

neuron alike (Ferster, 1995). It also applies pulse coding (spike), wherein neurons 
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receive and send individual pulses (Gerstner, et al., 1999) as the communication 

method. Due to these characteristics, SNN can be considered as a potential tool for 

data analysis models (Ponulak, & Kasinski, 2011), apart from being adapted in 

existing tools (e.g. SOM) to achieve better performance with less intricacy (Sen et 

al., 2017). The following section describes the application of SNN as a potential 

solution to address the issues discussed above.  

 

1.2 Problem Background 

 

Only a handful studies have implemented spiking neurons with other neural 

network models (Bohte et al., 2003; Bohte, 2011; Long, 2011; Ming et al., 2011; 

Handrich, 2011; Qu et al., 2015; Tavanaei, & Maida, 2015; Gardner, & Gruning, 

2016). As such, it is a challenge to extend the spike-based coding to computations 

due to the lengthy time-scale (Bohte, 2011). At present, SNN is still unclear and the 

related studies pertaining to natural temporal abilities are insufficient (Li et al., 

2017). Most of the prior studies focused on proving SNN as an alternative to 

conventional models without showing them practically, but instead theoretically via 

mathematical approach that is not only complicated, but also difficult to interpret (Qu 

et al., 2015). Besides, no study has evaluated the performance of integration methods 

in terms of neural coding schemes. In order to investigate the application of spiking 

neurons in neural network learning, a prior review is presented in the following, 

particularly concerning the integration of spiking neurons in one of the most popular 

neural network data analyses; Kohonen’s SOMs. 

 

Ruf and Schmitt (1997) displayed how networks of spiking neurons could be 

used to implement a variation of SOMs in temporal coding. They implemented a 

variation of Kohonen’s learning rule for SOMs within the context of SNNs, in which 

extremely promising outputs were attained. The typical self-organisation of 

topology-preserving behaviour was observed for a wide range of parameters. The 

proposed model was capable of rapidly determining the winner among the locally 

competing neurons by using lateral excitation and inhibition. 
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Ruf and Schmitt (1998) proposed a mechanism for unsupervised learning in 

networks of spiking neurons, which was based on the timing of single firing events. 

This approach offers the basis for fast implementations in pulse very large-scale 

integration (VLSI). 

 

Pham et al., (2007) proposed a self-organising delay adaptation SNN model 

to cluster control chart patterns. Similar to Kohonen, they employed the SOM, except 

that the output layer neurons detected the spiking neurons with temporal coding SNN 

and Hebbian-based rule. The trained network obtained an average clustering 

accuracy of 96.1% for previously unseen data, which seemed better than that of the 

original Kohonen. 

 

Ming et al., (2011) suggested a hybrid model of SOM with modified adaptive 

coordinates (SOM-AC) and SNN for multivariate spatial and temporal data 

visualisation and classification. They used the Izhikevich model and the one-

dimensional (1D) encoding, which was used by Belatreche et al., (2006) for neural 

coding method. Empirical studies of the proposed model using synthetic and 

benchmarking datasets yielded promising classification accuracy and intuitive rich 

visualisation, which can be used not only for spatial data, but also for temporal data. 

 

1.3 Problem Statement 

 

Pre-processing of the input data from datasets for training and BMU 

identification are important features in SOM learning. Nonetheless, they appear to be 

challenging for researchers as most real problems are comprised of complex and 

insufficient data (Haimoudi et al., 2016). Misinterpretation of training samples could 

hinder BMU identification, which may affect the outcomes generated by the SOM 

model. In SNN, the neural coding scheme is typically used to encode information 

from real data into spike times, which are present in more reliable forms in neuron 

simulation. Some recent studies have suggested SNN as a potential alternative 

solution to enhance learning due to its superiority in capturing the internal 
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relationship of the neurons. However, they have yet to be practically proven against 

real world problems (Qu et al., 2015). 

 

As such, this study focused on embedding spiking neurons in SOM learning 

for data exploration and analyses, so as to identify patterns and correlations between 

input data. Hence, the primary research question for this study is as follows: 

 

Can spiking SOM optimise the SOM learning process for better 

representation of the data in mapping and topology of the input neurons? 

 

This leads to the following secondary research questions: 

 

i) How can the spiking neurons be integrated with SOM learning parameters to 

enhance its performance? 

ii) How can the BMU of the spiking SOM model be optimised in the topology 

map? 

iii) How effective is the proposed Spiking SOM in comparison to other spiking 

models? 

 

1.4 Aim of the Research 

 

This research proposes a spiking neural model to optimise the BMU of SOM 

learning by preserving the map topology for better data representation. 

 

1.5 Objectives of the Research 

 

In order to achieve the aim of the study, the following objectives have been 

outlined: 

 

i) To propose integrated spiking neurons in Kohonen’s SOM learning 

algorithm. 
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ii) To optimise the spiking SOM model based on the BMU. 

 

iii) To investigate the effectiveness of the proposed spiking SOM in 

comparison to other spiking models. 

 

iv) To develop and to integrate the proposed spiking SOM in surface 

reconstruction. 

 

1.6 Scope of the Research 

 

i) The proposed algorithm was tested on several standard datasets (UCI 

datasets). 

 

ii) Two neural coding schemes were used in preparing the input features 

for the spiking SOM: 

 

a) Gaussian Receptive Fields, and 

b) 1D Coding. 

 

iii) Evaluation of the proposed method was based on the performance 

comparison with other spiking models and conventional SOM models. 

 

1.7 Significance of the Research 

 

This study proposes the integration of spiking neurons in SOM learning 

algorithm for the data analysis process. The application of SNNs to enhance the 

performance of SOM in analysing and identifying special features in the datasets 

appear to be relevant in this study due to its ability to spike and to send reaction 

special features identified based on its learning of the presented datasets. The study 
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outcomes contribute to the enhancement of SOM in learning the patterns of the 

datasets, as well as to propose an improvised tool for data analysis. 

 

1.8 Research Methodology 

 

Table 1.1 presents the summary of the elaborated approach in formulating the 

research methodology. Initially, the research issues were identified and a solution for 

each issue was proposed. The solutions were driven by the objectives specified in 

Section 1.5 of this chapter. 

 

 Table 1.1: The outline of research issues and the research objectives 

Issues Objective Solution in 

Chapter 

Pre-processing of 
input data for SOM 
training (Haimoudi 
et al., 2016) 

To propose an integration of spiking 
neurons in Kohonen’s SOM learning 
algorithm. 
 

4 

Identification of 
BMU (Mariette, & 
Villa-Vialaneix, 
2016) 

To optimise the spiking SOM model based 
on the BMU. 
 

4 

Quality 
Measurement of 
Map Preservation 
(Hamel, 2016) 

To investigate the effectiveness of the 
proposed spiking SOM with other spiking 
models. 
 

4 

Unorganised point 
cloud data (Forkan, 
2009) 

To develop and to integrate the proposed 
spiking SOM in surface reconstruction. 
 

5 

 

This study was conducted in phases, as described in Chapter 3. The phases 

are as follows: 

 

i) Phase 1: Problem identification that focused on identifying the 

research problems by investigating issues related to Kohonen’s SOM 

learning algorithm.  
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ii) Phase 2: Data collection process and preparation of the data for the 

experiment in order to evaluate the performance of the proposed 

solution. 

 

iii) Phase 3: Neural coding scheme for data representation process was 

implemented in the SOM model to prepare the datasets for the 

classification task. In this phase, the spiking SOM model was 

designed and developed. 

 

iv) Phase 4: The proposed solution was designed and developed for 

surface reconstruction problem by enhancing the spiking SOM using 

3D map structure in the SOM algorithm with the growing grid 

mechanism. Concurrently, a few SOM models were proposed. 

 

v) Models designing and development were divided into three sub-

phases. Every sub-phase consisted of model formulation, 

development, and evaluation. In model formulation, the design and the 

requirement for each model were defined. The model development 

refers to the process of constructing the models. In model evaluation 

and validation process, the models were trained and tested through 

experiments using selected datasets for surface reconstruction. 

 

vi) Phase 5: The experimental outcomes were analysed and are reported. 

 

1.9 Organisation of the Thesis 

 

This thesis is divided into 6 chapters. Chapter 1 introduces the overview of 

the study, the problem background, and the problem statement. Additionally, the aim 

and the objectives of the study are introduced based on the research questions. 

Finally, the process of conducting the study and its significances for the research are 

presented. 
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Chapter 2 presents the literature review of SOM learning algorithm, an 

overview of SNN, and several issues concerning the learning process for both neural 

networks. The chapter ends with a case study of surface reconstruction problems and 

the existing methods in dealing with the issues portrayed in the case study. 

 

Chapter 3 includes the research methodology, the framework of the proposed 

study, and the details of each phase conducted in the study. 

 

Chapter 4 explains in detail the data representation process using neural 

coding schemes and BMU identification adapted from SNN.  

 

Chapter 5 describes the proposed model for the case study, i.e. spiking 

neurons in 3D-growing SOMs. The experimental results are also discussed in this 

chapter, including several reports from the analyses carried out. Finally, the 

conclusion and possible future works are described in Chapter 6.  
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