447 research outputs found

    A comparative study of evolutionary approaches to the bi-objective dynamic Travelling Thief Problem

    Get PDF
    Dynamic evolutionary multi-objective optimization is a thriving research area. Recent contributions span the development of specialized algorithms and the construction of challenging benchmark problems. Here, we continue these research directions through the development and analysis of a new bi-objective problem, the dynamic Travelling Thief Problem (TTP), including three modes of dynamic change: city locations, item profit values, and item availability. The interconnected problem components embedded in the dynamic problem dictate that the effective tracking of good trade-off solutions that satisfy both objectives throughout dynamic events is non-trivial. Consequently, we examine the relative contribution to the non-dominated set from a variety of population seeding strategies, including exact solvers and greedy algorithms for the knapsack and tour components, and random techniques. We introduce this responsive seeding extension within an evolutionary algorithm framework. The efficacy of alternative seeding mechanisms is evaluated across a range of exemplary problem instances using ranking-based and quantitative statistical comparisons, which combines performance measurements taken throughout the optimization. Our detailed experiments show that the different dynamic TTP instances present varying difficulty to the seeding methods tested. We posit the dynamic TTP as a suitable benchmark capable of generating problem instances with different controllable characteristics aligning with many real-world problems

    Dynamic multi-objective optimization using evolutionary algorithms

    Get PDF
    Dynamic Multi-objective Optimization Problems (DMOPs) offer an opportunity to examine and solve challenging real world scenarios where trade-off solutions between conflicting objectives change over time. Definition of benchmark problems allows modelling of industry scenarios across transport, power and communications networks, manufacturing and logistics. Recently, significant progress has been made in the variety and complexity of DMOP benchmarks and the incorporation of realistic dynamic characteristics. However, significant gaps still exist in standardised methodology for DMOPs, specific problem domain examples and in the understanding of the impacts and explanations of dynamic characteristics. This thesis provides major contributions on these three topics within evolutionary dynamic multi-objective optimization. Firstly, experimental protocols for DMOPs are varied. This limits the applicability and relevance of results produced and conclusions made in the field. A major source of the inconsistency lies in the parameters used to define specific problem instances being examined. The uninformed selection of these has historically held back understanding of their impacts and standardisation in experimental approach to these parameters in the multi-objective problem domain. Using the frequency and severity (or magnitude) of change events, a more informed approach to DMOP experimentation is conceptualized, implemented and evaluated. Establishment of a baseline performance expectation across a comprehensive range of dynamic instances for well-studied DMOP benchmarks is analyzed. To maximize relevance, these profiles are composed from the performance of evolutionary algorithms commonly used for baseline comparisons and those with simple dynamic responses. Comparison and contrast with the coverage of parameter combinations in the sampled literature highlights the importance of these contributions. Secondly, the provision of useful and realistic DMOPs in the combinatorial domain is limited in previous literature. A novel dynamic benchmark problem is presented by the extension of the Travelling Thief Problem (TTP) to include a variety of realistic and contextually justified dynamic changes. Investigation of problem information exploitation and it's potential application as a dynamic response is a key output of these results and context is provided through comparison to results obtained by adapting existing TTP heuristics. Observation driven iterative development prompted the investigation of multi-population island model strategies, together with improvements in the approaches to accurately describe and compare the performance of algorithm models for DMOPs, a contribution which is applicable beyond the dynamic TTP. Thirdly, the purpose of DMOPs is to reconstruct realistic scenarios, or features from them, to allow for experimentation and development of better optimization algorithms. However, numerous important characteristics from real systems still require implementation and will drive research and development of algorithms and mechanisms to handle these industrially relevant problem classes. The novel challenges associated with these implementations are significant and diverse, even for a simple development such as consideration of DMOPs with multiple time dependencies. Real world systems with dynamics are likely to contain multiple temporally changing aspects, particularly in energy and transport domains. Problems with more than one dynamic problem component allow for asynchronous changes and a differing severity between components that leads to an explosion in the size of the possible dynamic instance space. Both continuous and combinatorial problem domains require structured investigation into the best practices for experimental design, algorithm application and performance measurement, comparison and visualization. Highlighting the challenges, the key requirements for effective progress and recommendations on experimentation are explored here

    Automated Design of Metaheuristic Algorithms: A Survey

    Full text link
    Metaheuristics have gained great success in academia and practice because their search logic can be applied to any problem with available solution representation, solution quality evaluation, and certain notions of locality. Manually designing metaheuristic algorithms for solving a target problem is criticized for being laborious, error-prone, and requiring intensive specialized knowledge. This gives rise to increasing interest in automated design of metaheuristic algorithms. With computing power to fully explore potential design choices, the automated design could reach and even surpass human-level design and could make high-performance algorithms accessible to a much wider range of researchers and practitioners. This paper presents a broad picture of automated design of metaheuristic algorithms, by conducting a survey on the common grounds and representative techniques in terms of design space, design strategies, performance evaluation strategies, and target problems in this field

    Towards a more realistic, cost effective and greener ground movement through active routing: a multi-objective shortest path approach

    Get PDF
    Based on the multi-objective optimal speed profile generation framework for unimpeded taxiing aircraft presented in the precursor paper, this paper deals with how to seamlessly integrate such optimal speed profiles into a holistic decision making framework. The availability of a set of non-dominated unimpeded speed profiles for each taxiway segment with respect to conflicting objectives can significantly change the current airport ground movement research. More specifically, the routing and scheduling function that was previously based on distance, emphasizing time efficiency, could now be based on richer information embedded within speed profiles, such as the taxiing times along segments, the corresponding fuel consumption, and the associated economic implications. The economic implications are exploited over a day of operation to take into account cost differences between busier and quieter times of the airport. Therefore, the most cost-effective and tailored decision can be made, respecting the environmental impact. Preliminary results based on the proposed approach are promising and show a 9%–50% reduction in time and fuel respectively for two international airports, viz. Zurich and Manchester Airports. The study also suggests that, if the average power setting during the acceleration phase could be lifted from the level suggested by the International Civil Aviation Organization (ICAO), ground operations may achieve the best of both worlds, simultaneously improving both time and fuel efficiency. Now might be the time to move away from the conventional distance based routing and scheduling to a more comprehensive framework, capturing the multi-facetted needs of all stakeholders involved in airport ground operations

    Review, challenges, design, and development

    Get PDF
    Peres, F., & Castelli, M. (2021). Combinatorial optimization problems and metaheuristics: Review, challenges, design, and development. Applied Sciences (Switzerland), 11(14), 1-39. [6449]. https://doi.org/10.3390/app11146449In the past few decades, metaheuristics have demonstrated their suitability in addressing complex problems over different domains. This success drives the scientific community towards the definition of new and better-performing heuristics and results in an increased interest in this research field. Nevertheless, new studies have been focused on developing new algorithms without providing consolidation of the existing knowledge. Furthermore, the absence of rigor and formalism to classify, design, and develop combinatorial optimization problems and metaheuristics represents a challenge to the field’s progress. This study discusses the main concepts and challenges in this area and proposes a formalism to classify, design, and code combinatorial optimization problems and metaheuristics. We believe these contributions may support the progress of the field and increase the maturity of metaheuristics as problem solvers analogous to other machine learning algorithms.publishersversionpublishe

    Automatic summarization of narrative video

    Get PDF
    The amount of digital video content available to users is rapidly increasing. Developments in computer, digital network, and storage technologies all contribute to broaden the offer of digital video. Only users’ attention and time remain scarce resources. Users face the problem of choosing the right content to watch among hundreds of potentially interesting offers. Video and audio have a dynamic nature: they cannot be properly perceived without considering their temporal dimension. This property makes it difficult to get a good idea of what a video item is about without watching it. Video previews aim at solving this issue by providing compact representations of video items that can help users making choices in massive content collections. This thesis is concerned with solving the problem of automatic creation of video previews. To allow fast and convenient content selection, a video preview should take into consideration more than thirty requirements that we have collected by analyzing related literature on video summarization and film production. The list has been completed with additional requirements elicited by interviewing end-users, experts and practitioners in the field of video editing and multimedia. This list represents our collection of user needs with respect to video previews. The requirements, presented from the point of view of the end-users, can be divided into seven categories: duration, continuity, priority, uniqueness, exclusion, structural, and temporal order. Duration requirements deal with the durations of the preview and its subparts. Continuity requirements request video previews to be as continuous as possible. Priority requirements indicate which content should be included in the preview to convey as much information as possible in the shortest time. Uniqueness requirements aim at maximizing the efficiency of the preview by minimizing redundancy. Exclusion requirements indicate which content should not be included in the preview. Structural requirements are concerned with the structural properties of video, while temporal order requirements set the order of the sequences included in the preview. Based on these requirements, we have introduced a formal model of video summarization specialized for the generation of video previews. The basic idea is to translate the requirements into score functions. Each score function is defined to have a non-positive value if a requirement is not met, and to increase depending on the degree of fulfillment of the requirement. A global objective function is then defined that combines all the score functions and the problem of generating a preview is translated into the problem of finding the parts of the initial content that maximize the objective function. Our solution approach is based on two main steps: preparation and selection. In the preparation step, the raw audiovisual data is analyzed and segmented into basic elements that are suitable for being included in a preview. The segmentation of the raw data is based on a shot-cut detection algorithm. In the selection step various content analysis algorithms are used to perform scene segmentation, advertisements detection and to extract numerical descriptors of the content that, introduced in the objective function, allow to estimate the quality of a video preview. The core part of the selection step is the optimization step that consists in searching the set of segments that maximizes the objective function in the space of all possible previews. Instead of solving the optimization problem exactly, an approximate solution is found by means of a local search algorithm using simulated annealing. We have performed a numerical evaluation of the quality of the solutions generated by our algorithm with respect to previews generated randomly or by selecting segments uniformly in time. The results on thirty content items have shown that the local search approach outperforms the other methods. However, based on this evaluation, we cannot conclude that the degree of fulfillment of the requirements achieved by our method satisfies the end-user needs completely. To validate our approach and assess end-user satisfaction, we conducted a user evaluation study in which we compared six aspects of previews generated using our algorithm to human-made previews and to previews generated by subsampling. The results have shown that previews generated using our optimization-based approach are not as good as manually made previews, but have higher quality than previews created using subsample. The differences between the previews are statistically significant

    Ramon Llull's Ars Magna

    Get PDF

    (Re)Knowing Polycystic Ovary Syndrome: from Lived Experience to Mediatory Practice

    Get PDF
    Polycystic ovary syndrome is the most widely experienced hormonal condition in women, with effects and co-morbidities apparent in bodily processes such as reproduction, metabolism and physical appearance. The syndrome is also present in social life in dimensions of perception and self-perception, emotional responses, interactions with other people, and exchanges with medical systems. In this thesis I look at the areas of everyday life, health practices and bodily being that PCOS presents in through women’s subjective accounts of experience. I interviewed a diverse group of women who were in the same stage of life in that they were university students in their twenties. Each woman had different physical PCOS symptoms, varying their bodily experiences. The syndrome was present in an individual habitus for each woman, consisting of different cultural contexts, experiences with different medical systems, and personalized health practices to mediate with the condition. I trace various knowledge networks surrounding PCOS in everyday life at an individual level by using phenomenological understandings of experience. These knowledge networks contextualize how this chronic health condition is perceived and managed by women. The individual habitus of perceiving and managing PCOS is thus produced and lived through a synthesis of different knowledges generated by different modes of experiencing PCOS. The way the threads of different ways of knowing PCOS weave a habitus together are highly subjective, with women using bodily experience, knowledge, and preferences to make health choices in daily life. These health choices in practice revolve around medication, food choices, and adjusting or maintaining physical appearance. I make the case for agency, subjectivity, and individual narratives to be represented in how chronic illness and health management is studied and understood, especially in the case of a condition like PCOS that varies between individuals, is ill-understood, and affects a significant section of the female population
    • …
    corecore