62 research outputs found

    A strategy for building and using a human reference pangenome

    Get PDF
    In March 2019, 45 scientists and software engineers from around the world converged at the University of California, Santa Cruz for the first pangenomics codeathon. The purpose of the meeting was to propose technical specifications and standards for a usable human pangenome as well as to build relevant tools for genome graph infrastructures. During the meeting, the group held several intense and productive discussions covering a diverse set of topics, including advantages of graph genomes over a linear reference representation, design of new methods that can leverage graph-based data structures, and novel visualization and annotation approaches for pangenomes. Additionally, the participants self-organized themselves into teams that worked intensely over a three-day period to build a set of pipelines and tools for specific pangenomic applications. A summary of the questions raised and the tools developed are reported in this manuscript

    Biobank-scale ancestral recombination graphs: inference and applications to the analysis of complex traits

    Get PDF
    Across living species, DNA is transmitted from generation to generation via the processes of inheritance, mutation, and recombination. The history of these processes can be recorded using genome-wide gene genealogies. Accurate inference of gene genealogies from genetic data has the potential to facilitate a wide range of analyses, but is computationally challenging. In this thesis, we introduce a scalable method, called ARG-Needle, that uses genotype hashing and a coalescent hidden Markov model to infer genome-wide genealogies from sequencing or genotyping array data in modern biobanks. We develop strategies that utilise the inferred genome-wide genealogies within linear mixed models to perform association and other analyses of biomedical traits. We validate the accuracy and scalability of ARG-Needle through extensive coalescent simulations, and use ARG-Needle to build genome-wide genealogies from genotypes of 337,464 UK Biobank individuals. We perform genealogy-based association analysis of 7 complex traits, detecting more rare and ultra-rare signals (N = 133, frequency range 0.0004% − 0.1%) than genotype imputation from ∌65,000 sequenced haplotypes (N = 65). We validate these signals using exome sequencing data from 138,039 individuals. ARG-Needle associations strongly tag (average r = 0.72) underlying sequencing variants that are enriched for missense (2.3×) and loss-of-function (4.5×) variation. Compared to imputation, inferred genealogies also capture additional signals for higher frequency variants. These results demonstrate that biobank-scale inference of gene genealogies may be leveraged in the analysis of complex traits, complementing approaches that require the availability of large, population-specific sequencing panels

    Computational solutions for addressing heterogeneity in DNA methylation data

    Get PDF
    DNA methylation, a reversible epigenetic modification, has been implicated with various bi- ological processes including gene regulation. Due to the multitude of datasets available, it is a premier candidate for computational tool development, especially for investigating hetero- geneity within and across samples. We differentiate between three levels of heterogeneity in DNA methylation data: between-group, between-sample, and within-sample heterogeneity. Here, we separately address these three levels and present new computational approaches to quantify and systematically investigate heterogeneity. Epigenome-wide association studies relate a DNA methylation aberration to a phenotype and therefore address between-group heterogeneity. To facilitate such studies, which necessar- ily include data processing, exploratory data analysis, and differential analysis of DNA methy- lation, we extended the R-package RnBeads. We implemented novel methods for calculating the epigenetic age of individuals, novel imputation methods, and differential variability analysis. A use-case of the new features is presented using samples from Ewing sarcoma patients. As an important driver of epigenetic differences between phenotypes, we systematically investigated associations between donor genotypes and DNA methylation states in methylation quantitative trait loci (methQTL). To that end, we developed a novel computational framework –MAGAR– for determining statistically significant associations between genetic and epigenetic variations. We applied the new pipeline to samples obtained from sorted blood cells and complex bowel tissues of healthy individuals and found that tissue-specific and common methQTLs have dis- tinct genomic locations and biological properties. To investigate cell-type-specific DNA methylation profiles, which are the main drivers of within-group heterogeneity, computational deconvolution methods can be used to dissect DNA methylation patterns into latent methylation components. Deconvolution methods require pro- files of high technical quality and the identified components need to be biologically interpreted. We developed a computational pipeline to perform deconvolution of complex DNA methyla- tion data, which implements crucial data processing steps and facilitates result interpretation. We applied the protocol to lung adenocarcinoma samples and found indications of tumor in- filtration by immune cells and associations of the detected components with patient survival. Within-sample heterogeneity (WSH), i.e., heterogeneous DNA methylation patterns at a ge- nomic locus within a biological sample, is often neglected in epigenomic studies. We present the first systematic benchmark of scores quantifying WSH genome-wide using simulated and experimental data. Additionally, we created two novel scores that quantify DNA methyla- tion heterogeneity at single CpG resolution with improved robustness toward technical biases. WSH scores describe different types of WSH in simulated data, quantify differential hetero- geneity, and serve as a reliable estimator of tumor purity. Due to the broad availability of DNA methylation data, the levels of heterogeneity in DNA methylation data can be comprehensively investigated. We contribute novel computational frameworks for analyzing DNA methylation data with respect to different levels of hetero- geneity. We envision that this toolbox will be indispensible for understanding the functional implications of DNA methylation patterns in health and disease.DNA Methylierung ist eine reversible, epigenetische Modifikation, die mit verschiedenen biologischen Prozessen wie beispielsweise der Genregulation in Verbindung steht. Eine Vielzahl von DNA MethylierungsdatensĂ€tzen bildet die perfekte Grundlage zur Entwicklung von Softwareanwendungen, insbesondere um HeterogenitĂ€t innerhalb und zwischen Proben zu beschreiben. Wir unterscheiden drei Ebenen von HeterogenitĂ€t in DNA Methylierungsdaten: zwischen Gruppen, zwischen Proben und innerhalb einer Probe. Hier betrachten wir die drei Ebenen von HeterogenitĂ€t in DNA Methylierungsdaten unabhĂ€ngig voneinander und prĂ€sentieren neue AnsĂ€tze um die HeterogenitĂ€t zu beschreiben und zu quantifizieren. Epigenomweite Assoziationsstudien verknĂŒpfen eine DNA MethylierungsverĂ€nderung mit einem PhĂ€notypen und beschreiben HeterogenitĂ€t zwischen Gruppen. Um solche Studien, welche Datenprozessierung, sowie exploratorische und differentielle Datenanalyse beinhalten, zu vereinfachen haben wir die R-basierte Softwareanwendung RnBeads erweitert. Die Erweiterungen beinhalten neue Methoden, um das epigenetische Alter vorherzusagen, neue SchĂ€tzungsmethoden fĂŒr fehlende Datenpunkte und eine differentielle VariabilitĂ€tsanalyse. Die Analyse von Ewing-Sarkom Patientendaten wurde als Anwendungsbeispiel fĂŒr die neu entwickelten Methoden gewĂ€hlt. Wir untersuchten Assoziationen zwischen Genotypen und DNA Methylierung von einzelnen CpGs, um sogenannte methylation quantitative trait loci (methQTL) zu definieren. Diese stellen einen wichtiger Faktor dar, der epigenetische Unterschiede zwischen Gruppen induziert. Hierzu entwickelten wir ein neues Softwarepaket (MAGAR), um statistisch signifikante Assoziationen zwischen genetischer und epigenetischer Variation zu identifizieren. Wir wendeten diese Pipeline auf Blutzelltypen und komplexe Biopsien von gesunden Individuen an und konnten gemeinsame und gewebespezifische methQTLs in verschiedenen Bereichen des Genoms lokalisieren, die mit unterschiedlichen biologischen Eigenschaften verknĂŒpft sind. Die Hauptursache fĂŒr HeterogenitĂ€t innerhalb einer Gruppe sind zelltypspezifische DNA Methylierungsmuster. Um diese genauer zu untersuchen kann Dekonvolutionssoftware die DNA Methylierungsmatrix in unabhĂ€ngige Variationskomponenten zerlegen. Dekonvolutionsmethoden auf Basis von DNA Methylierung benötigen technisch hochwertige Profile und die identifizierten Komponenten mĂŒssen biologisch interpretiert werden. In dieser Arbeit entwickelten wir eine computerbasierte Pipeline zur DurchfĂŒhrung von Dekonvolutionsexperimenten, welche die Datenprozessierung und Interpretation der Resultate beinhaltet. Wir wendeten das entwickelte Protokoll auf Lungenadenokarzinome an und fanden Anzeichen fĂŒr eine Tumorinfiltration durch Immunzellen, sowie Verbindungen zum Überleben der Patienten. HeterogenitĂ€t innerhalb einer Probe (within-sample heterogeneity, WSH), d.h. heterogene Methylierungsmuster innerhalb einer Probe an einer genomischen Position, wird in epigenomischen Studien meist vernachlĂ€ssigt. Wir prĂ€sentieren den ersten Vergleich verschiedener, genomweiter WSH Maße auf simulierten und experimentellen Daten. ZusĂ€tzlich entwickelten wir zwei neue Maße um WSH fĂŒr einzelne CpGs zu berechnen, welche eine verbesserte Robustheit gegenĂŒber technischen Faktoren aufweisen. WSH Maße beschreiben verschiedene Arten von WSH, quantifizieren differentielle HeterogenitĂ€t und sagen Tumorreinheit vorher. Aufgrund der breiten VerfĂŒgbarkeit von DNA Methylierungsdaten können die Ebenen der HeterogenitĂ€t ganzheitlich beschrieben werden. In dieser Arbeit prĂ€sentieren wir neue Softwarelösungen zur Analyse von DNA Methylierungsdaten in Bezug auf die verschiedenen Ebenen der HeterogenitĂ€t. Wir sind davon ĂŒberzeugt, dass die vorgestellten Softwarewerkzeuge unverzichtbar fĂŒr das VerstĂ€ndnis von DNA Methylierung im kranken und gesunden Stadium sein werden

    Functional analysis of low grade glioma genetic variants using statistics and physics-inspired deep learning methods

    Get PDF
    Large-scale genome-wide association studies (GWAS) have implicated thousands of germline variants in modulating individual's risk of diseases, including cancer. For low grade gliomas (LGGs), at least 25 risk loci have been identified, whose molecular functions, however, remain largely unknown. Understanding how the risk loci function in tumorigenesis poses a major challenge in the field, owing to potential confounding factors and the lack of relevant types of experimental data in the brain. Based on statistical methods and physics-inspired deep learning methods, this work presents a comprehensive computational framework for performing functional analysis of LGG GWAS loci. We hypothesized that GWAS loci contain causal single nucleotide polymorphisms (SNPs) which reside in accessible open chromatin regions and modulate the expression of target genes by perturbing the binding affinity of transcription factors (TFs). We performed an integrative analysis using genomic, epigenomic and transcriptomic data from public repositories and identified the candidate (causal SNP, target gene, TF) triplets that might contribute to oncogenesis. We assessed a candidate causal SNP's potential regulatory role via convolutional neural network (CNN) and simulated-annealing-based interpretation methods. Finally, we applied tensor train decomposition (TT-decomposition) to neural network parameter reduction and demonstrated that the reduced convolutional neural network performed well. This work helps understand the molecular mechanisms underlying genetic risk factors of low grade glioma. The CNN and TT-decomposition-based deep learning approach may benefit future functional genomic studies, where TF chromatin immunoprecipitation followed by sequencing (ChIP-seq) data are not readily available in the brain

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field
    • 

    corecore