575 research outputs found

    Modeling Brain Circuitry over a Wide Range of Scales

    Get PDF
    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation

    The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism

    Full text link
    We present scalable hybrid-parallel algorithms for training large-scale 3D convolutional neural networks. Deep learning-based emerging scientific workflows often require model training with large, high-dimensional samples, which can make training much more costly and even infeasible due to excessive memory usage. We solve these challenges by extensively applying hybrid parallelism throughout the end-to-end training pipeline, including both computations and I/O. Our hybrid-parallel algorithm extends the standard data parallelism with spatial parallelism, which partitions a single sample in the spatial domain, realizing strong scaling beyond the mini-batch dimension with a larger aggregated memory capacity. We evaluate our proposed training algorithms with two challenging 3D CNNs, CosmoFlow and 3D U-Net. Our comprehensive performance studies show that good weak and strong scaling can be achieved for both networks using up 2K GPUs. More importantly, we enable training of CosmoFlow with much larger samples than previously possible, realizing an order-of-magnitude improvement in prediction accuracy.Comment: 12 pages, 10 figure

    Autotuning for Automatic Parallelization on Heterogeneous Systems

    Get PDF

    Fine-grained parallelization of fitness functions in bioinformatics optimization problems: gene selection for cancer classification and biclustering of gene expression data

    Get PDF
    ANTECEDENTES: las metaheurísticas se utilizan ampliamente para resolver grandes problemas de optimización combinatoria en bioinformática debido al enorme conjunto de posibles soluciones. Dos problemas representativos son la selección de genes para la clasificación del cáncer y el agrupamiento de los datos de expresión génica. En la mayoría de los casos, estas metaheurísticas, así como otras técnicas no lineales, aplican una función de adecuación a cada solución posible con una población de tamaño limitado, y ese paso involucra latencias más altas que otras partes de los algoritmos, lo cual es la razón por la cual el tiempo de ejecución de las aplicaciones dependerá principalmente del tiempo de ejecución de la función de aptitud. Además, es habitual encontrar formulaciones aritméticas de punto flotante para las funciones de fitness. De esta manera, una paralelización cuidadosa de estas funciones utilizando la tecnología de hardware reconfigurable acelerará el cálculo, especialmente si se aplican en paralelo a varias soluciones de la población. RESULTADOS: una paralelización de grano fino de dos funciones de aptitud de punto flotante de diferentes complejidades y características involucradas en el biclustering de los datos de expresión génica y la selección de genes para la clasificación del cáncer permitió obtener mayores aceleraciones y cómputos de potencia reducida con respecto a los microprocesadores habituales. CONCLUSIONES: Los resultados muestran mejores rendimientos utilizando tecnología de hardware reconfigurable en lugar de los microprocesadores habituales, en términos de tiempo de consumo y consumo de energía, no solo debido a la paralelización de las operaciones aritméticas, sino también gracias a la evaluación de aptitud concurrente para varios individuos de la población en La metaheurística. Esta es una buena base para crear soluciones aceleradas y de bajo consumo de energía para escenarios informáticos intensivos.BACKGROUND: Metaheuristics are widely used to solve large combinatorial optimization problems in bioinformatics because of the huge set of possible solutions. Two representative problems are gene selection for cancer classification and biclustering of gene expression data. In most cases, these metaheuristics, as well as other non-linear techniques, apply a fitness function to each possible solution with a size-limited population, and that step involves higher latencies than other parts of the algorithms, which is the reason why the execution time of the applications will mainly depend on the execution time of the fitness function. In addition, it is usual to find floating-point arithmetic formulations for the fitness functions. This way, a careful parallelization of these functions using the reconfigurable hardware technology will accelerate the computation, specially if they are applied in parallel to several solutions of the population. RESULTS: A fine-grained parallelization of two floating-point fitness functions of different complexities and features involved in biclustering of gene expression data and gene selection for cancer classification allowed for obtaining higher speedups and power-reduced computation with regard to usual microprocessors. CONCLUSIONS: The results show better performances using reconfigurable hardware technology instead of usual microprocessors, in computing time and power consumption terms, not only because of the parallelization of the arithmetic operations, but also thanks to the concurrent fitness evaluation for several individuals of the population in the metaheuristic. This is a good basis for building accelerated and low-energy solutions for intensive computing scenarios.• Ministerio de Economía y Competitividad y Fondos FEDER. Contrato TIN2012-30685 (I+D+i) • Gobierno de Extremadura. Ayuda GR15011 para grupos TIC015 • CONICYT/FONDECYT/REGULAR/1160455. Beca para Ricardo Soto Guzmán • CONICYT/FONDECYT/REGULAR/1140897. Beca para Broderick CrawfordpeerReviewe

    Parallelizing support vector machines for scalable image annotation

    Get PDF
    Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. However, SVM training is notably a computationally intensive process especially when the training dataset is large. In this thesis distributed computing paradigms have been investigated to speed up SVM training, by partitioning a large training dataset into small data chunks and process each chunk in parallel utilizing the resources of a cluster of computers. A resource aware parallel SVM algorithm is introduced for large scale image annotation in parallel using a cluster of computers. A genetic algorithm based load balancing scheme is designed to optimize the performance of the algorithm in heterogeneous computing environments. SVM was initially designed for binary classifications. However, most classification problems arising in domains such as image annotation usually involve more than two classes. A resource aware parallel multiclass SVM algorithm for large scale image annotation in parallel using a cluster of computers is introduced. The combination of classifiers leads to substantial reduction of classification error in a wide range of applications. Among them SVM ensembles with bagging is shown to outperform a single SVM in terms of classification accuracy. However, SVM ensembles training are notably a computationally intensive process especially when the number replicated samples based on bootstrapping is large. A distributed SVM ensemble algorithm for image annotation is introduced which re-samples the training data based on bootstrapping and training SVM on each sample in parallel using a cluster of computers. The above algorithms are evaluated in both experimental and simulation environments showing that the distributed SVM algorithm, distributed multiclass SVM algorithm, and distributed SVM ensemble algorithm, reduces the training time significantly while maintaining a high level of accuracy in classifications.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore