107 research outputs found

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    Sub-aperture SAR Imaging with Uncertainty Quantification

    Full text link
    In the problem of spotlight mode airborne synthetic aperture radar (SAR) image formation, it is well-known that data collected over a wide azimuthal angle violate the isotropic scattering property typically assumed. Many techniques have been proposed to account for this issue, including both full-aperture and sub-aperture methods based on filtering, regularized least squares, and Bayesian methods. A full-aperture method that uses a hierarchical Bayesian prior to incorporate appropriate speckle modeling and reduction was recently introduced to produce samples of the posterior density rather than a single image estimate. This uncertainty quantification information is more robust as it can generate a variety of statistics for the scene. As proposed, the method was not well-suited for large problems, however, as the sampling was inefficient. Moreover, the method was not explicitly designed to mitigate the effects of the faulty isotropic scattering assumption. In this work we therefore propose a new sub-aperture SAR imaging method that uses a sparse Bayesian learning-type algorithm to more efficiently produce approximate posterior densities for each sub-aperture window. These estimates may be useful in and of themselves, or when of interest, the statistics from these distributions can be combined to form a composite image. Furthermore, unlike the often-employed lp-regularized least squares methods, no user-defined parameters are required. Application-specific adjustments are made to reduce the typically burdensome runtime and storage requirements so that appropriately large images can be generated. Finally, this paper focuses on incorporating these techniques into SAR image formation process. That is, for the problem starting with SAR phase history data, so that no additional processing errors are incurred

    Fast Radar Forward-looking Super-resolution Imaging for Abnormal Echo Data

    Get PDF
    Forward-looking imaging of airborne scanning radar is widely used in situation awareness, autonomous navigation and terrain following. When the radar is influenced by unintentional temporally sporadic electromagnetic interference or abnormal equipment performance, the echo signal contains outliers. Existing super-resolution methods can suppress outliers and improve azimuth resolution, but the real-time computing problem is not considered. In this study, we propose an airborne scanning radar super-resolution method to achieve fast forward-looking imaging when echo data are abnormal. First, we propose using the Student-t distribution to model noise. Then, the expectation-maximization method is used to estimate the parameters. Inspired by the truncated singular value decomposition method, we introduce the truncated unitary matrix into the estimation formula of the target scattering coefficient. Finally, the size of inverse matrix is reduced and the computational complexity of parameter estimation is reduced through matrix transformation. The simulation results show that the proposed method can improve the azimuth resolution of forward-looking imaging in a shorter time, and suppress outliers in echo data

    Photon-efficient super-resolution laser radar

    Get PDF
    The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame- work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin biomedical imaging applications.Samsung Scholarship FoundationNational Science Foundation (U.S.) (Grant 1161413)National Science Foundation (U.S.) (Grant 1422034

    Bayesian super-resolution with application to radar target recognition

    Get PDF
    This thesis is concerned with methods to facilitate automatic target recognition using images generated from a group of associated radar systems. Target recognition algorithms require access to a database of previously recorded or synthesized radar images for the targets of interest, or a database of features based on those images. However, the resolution of a new image acquired under non-ideal conditions may not be as good as that of the images used to generate the database. Therefore it is proposed to use super-resolution techniques to match the resolution of new images with the resolution of database images. A comprehensive review of the literature is given for super-resolution when used either on its own, or in conjunction with target recognition. A new superresolution algorithm is developed that is based on numerical Markov chain Monte Carlo Bayesian statistics. This algorithm allows uncertainty in the superresolved image to be taken into account in the target recognition process. It is shown that the Bayesian approach improves the probability of correct target classification over standard super-resolution techniques. The new super-resolution algorithm is demonstrated using a simple synthetically generated data set and is compared to other similar algorithms. A variety of effects that degrade super-resolution performance, such as defocus, are analyzed and techniques to compensate for these are presented. Performance of the super-resolution algorithm is then tested as part of a Bayesian target recognition framework using measured radar data

    Novel Methods in Computational Imaging with Applications in Remote Sensing

    Get PDF
    This dissertation is devoted to novel computational imaging methods with applications in remote sensing. Computational imaging methods are applied to three distinct applications including imaging and detection of buried explosive hazards utilizing array radar, high resolution imaging of satellites in geosynchronous orbit utilizing optical hypertelescope arrays, and characterization of atmospheric turbulence through multi-frame blind deconvolution utilizing conventional optical digital sensors. The first application considered utilizes a radar array employed as a forward looking ground penetrating radar system with applications in explosive hazard detection. A penalized least squares technique with sparsity-inducing regularization is applied to produce imagery, which is consistent with the expectation that objects are sparsely populated but extended with respect to the pixel grid. Additionally, a series of pre-processing steps is demonstrated which result in a greatly reduced data size and computational cost. Demonstrations of the approach are provided using experimental data and results are given in terms of signal to background ratio, image resolution, and relative computation time. The second application involves a sparse-aperture telescope array configured as a hypertelescope with applications in long range imaging. The penalized least squares technique with sparsity-inducing regularization is adapted and applied to this very different imaging modality. A comprehensive study of the algorithm tuning parameters is performed and performance is characterized using the Structure Similarity Metric (SSIM) to maximize image quality. Simulated measurements are used to show that imaging performance achieved using the pro- posed algorithm compares favorably in comparison to conventional Richardson-Lucy deconvolution. The third application involves a multi-frame collection from a conventional digital sensor with the primary objective of characterizing the atmospheric turbulence in the medium of propagation. In this application a joint estimate of the image is obtained along with the Zernike coefficients associated with the atmospheric PSF at each frame, and the Fried parameter r0 of the atmosphere. A pair of constraints are applied to a penalized least squares objective function to enforce the theoretical statistics of the set of PSF estimates as a function of r0. Results of the approach are shown with both simulated and experimental data and demonstrate excellent agreement between the estimated r0 values and the known or measured r0 values respectively

    Recent advances in transient imaging: A computer graphics and vision perspective

    Get PDF
    Transient imaging has recently made a huge impact in the computer graphics and computer vision fields. By capturing, reconstructing, or simulating light transport at extreme temporal resolutions, researchers have proposed novel techniques to show movies of light in motion, see around corners, detect objects in highly-scattering media, or infer material properties from a distance, to name a few. The key idea is to leverage the wealth of information in the temporal domain at the pico or nanosecond resolution, information usually lost during the capture-time temporal integration. This paper presents recent advances in this field of transient imaging from a graphics and vision perspective, including capture techniques, analysis, applications and simulation
    • …
    corecore