380,043 research outputs found

    Models and algorithms for multi-agent search problems

    Full text link
    The problem of searching for objects of interest occurs in important applications ranging from rescue, security, transportation, to medicine. With the increasing use of autonomous vehicles as search platforms, there is a need for fast algorithms that can generate search plans for multiple agents in response to new information. In this dissertation, we develop new techniques for automated generation of search plans for different classes of search problems. First, we study the problem of searching for a stationary object in a discrete search space with multiple agents where each agent can access only a subset of the search space. In these problems, agents can fail to detect an object when inspecting a location. We show that when the probabilities of detection only depend on the locations, this problem can be reformulated as a minimum cost network optimization problem, and develop a fast specialized algorithm for the solution. We prove that our algorithm finds the optimal solution in finite time, and has worst-case computation performance that is faster than general minimum cost flow algorithms. We then generalize it to the case where the probabilities of detection depend on the agents and the locations, and propose a greedy algorithm that is 1/2-approximate. Second, we study the problem of searching for a moving object in a discrete search space with multiple agents where each agent can access only a subset of a discrete search space at any time and agents can fail to detect objects when searching a location at a given time. We provide necessary conditions for an optimal search plan, extending prior results in search theory. For the case where the probabilities of detection depend on the locations and the time periods, we develop a forward-backward iterative algorithm based on coordinate descent techniques to obtain solutions. To avoid local optimum, we derive a convex relaxation of the dynamic search problem and show this can be solved optimally using coordinate descent techniques. The solutions of the relaxed problem are used to provide random starting conditions for the iterative algorithm. We also address the problem where the probabilities of detection depend on the agents as well as the locations and the time periods, and show that a greedy-style algorithm is 1/2-approximate. Third, we study problems when multiple objects of interest being searched are physically scattered among locations on a graph and the agents are subject to motion constraints captured by the graph edges as well as budget constraints. We model such problem as an orienteering problem, when searching with a single agent, or a team orienteering problem, when searching with multiple agents. We develop novel real-time efficient algorithms for both problems. Fourth, we investigate classes of continuous-region multi-agent adaptive search problems as stochastic control problems with imperfect information. We allow the agent measurement errors to be either correlated or independent across agents. The structure of these problems, with objectives related to information entropy, allows for a complete characterization of the optimal strategies and the optimal cost. We derive a lower bound on the performance of the minimum mean-square error estimator, and provide upper bounds on the estimation error for special cases. For agents with independent errors, we show that the optimal sensing strategies can be obtained in terms of the solution of decoupled scalar convex optimization problems, followed by a joint region selection procedure. We further consider search of multiple objects and provide an explicit construction for adaptively determining the sensing actions

    Continuum Equilibria and Global Optimization for Routing in Dense Static Ad Hoc Networks

    Full text link
    We consider massively dense ad hoc networks and study their continuum limits as the node density increases and as the graph providing the available routes becomes a continuous area with location and congestion dependent costs. We study both the global optimal solution as well as the non-cooperative routing problem among a large population of users where each user seeks a path from its origin to its destination so as to minimize its individual cost. Finally, we seek for a (continuum version of the) Wardrop equilibrium. We first show how to derive meaningful cost models as a function of the scaling properties of the capacity of the network and of the density of nodes. We present various solution methodologies for the problem: (1) the viscosity solution of the Hamilton-Jacobi-Bellman equation, for the global optimization problem, (2) a method based on Green's Theorem for the least cost problem of an individual, and (3) a solution of the Wardrop equilibrium problem using a transformation into an equivalent global optimization problem

    The continuous p-centre problem: An investigation into variable neighbourhood search with memory

    Get PDF
    A VNS-based heuristic using both a facility as well as a customer type neighbourhood structure is proposed to solve the p-centre problem in the continuous space. Simple but effective enhancements to the original Elzinga-Hearn algorithm as well as a powerful ‘locate-allocate’ local search used within VNS are proposed. In addition, efficient implementations in both neighbourhood structures are presented. A learning scheme is also embedded into the search to produce a new variant of VNS that uses memory. The effect of incorporating strong intensification within the local search via a VND type structure is also explored with interesting results. Empirical results, based on several existing data set (TSP-Lib) with various values of p, show that the proposed VNS implementations outperform both a multi-start heuristic and the discrete-based optimal approach that use the same local search
    corecore