109 research outputs found

    Security of Electrical, Optical and Wireless On-Chip Interconnects: A Survey

    Full text link
    The advancement of manufacturing technologies has enabled the integration of more intellectual property (IP) cores on the same system-on-chip (SoC). Scalable and high throughput on-chip communication architecture has become a vital component in today's SoCs. Diverse technologies such as electrical, wireless, optical, and hybrid are available for on-chip communication with different architectures supporting them. Security of the on-chip communication is crucial because exploiting any vulnerability would be a goldmine for an attacker. In this survey, we provide a comprehensive review of threat models, attacks, and countermeasures over diverse on-chip communication technologies as well as sophisticated architectures.Comment: 41 pages, 24 figures, 4 table

    DistB-Condo: Distributed Blockchain-based IoT-SDN Model for Smart Condominium

    Full text link
    Condominium network refers to intra-organization networks, where smart buildings or apartments are connected and share resources over the network. Secured communication platform or channel has been highlighted as a key requirement for a reliable condominium which can be ensured by the utilization of the advanced techniques and platforms like Software-Defined Network (SDN), Network Function Virtualization (NFV) and Blockchain (BC). These technologies provide a robust, and secured platform to meet all kinds of challenges, such as safety, confidentiality, flexibility, efficiency, and availability. This work suggests a distributed, scalable IoT-SDN with Blockchain-based NFV framework for a smart condominium (DistB-Condo) that can act as an efficient secured platform for a small community. Moreover, the Blockchain-based IoT-SDN with NFV framework provides the combined benefits of leading technologies. It also presents an optimized Cluster Head Selection (CHS) algorithm for selecting a Cluster Head (CH) among the clusters that efficiently saves energy. Besides, a decentralized and secured Blockchain approach has been introduced that allows more prominent security and privacy to the desired condominium network. Our proposed approach has also the ability to detect attacks in an IoT environment. Eventually, this article evaluates the performance of the proposed architecture using different parameters (e.g., throughput, packet arrival rate, and response time). The proposed approach outperforms the existing OF-Based SDN. DistB-Condo has better throughput on average, and the bandwidth (Mbps) much higher than the OF-Based SDN approach in the presence of attacks. Also, the proposed model has an average response time of 5% less than the core model

    State of the art in privacy preservation in video data

    Full text link
    Active and Assisted Living (AAL) technologies and services are a possible solution to address the crucial challenges regarding health and social care resulting from demographic changes and current economic conditions. AAL systems aim to improve quality of life and support independent and healthy living of older and frail people. AAL monitoring systems are composed of networks of sensors (worn by the users or embedded in their environment) processing elements and actuators that analyse the environment and its occupants to extract knowledge and to detect events, such as anomalous behaviours, launch alarms to tele-care centres, or support activities of daily living, among others. Therefore, innovation in AAL can address healthcare and social demands while generating economic opportunities. Recently, there has been far-reaching advancements in the development of video-based devices with improved processing capabilities, heightened quality, wireless data transfer, and increased interoperability with Internet of Things (IoT) devices. Computer vision gives the possibility to monitor an environment and report on visual information, which is commonly the most straightforward and human-like way of describing an event, a person, an object, interactions and actions. Therefore, cameras can offer more intelligent solutions for AAL but they may be considered intrusive by some end users. The General Data Protection Regulation (GDPR) establishes the obligation for technologies to meet the principles of data protection by design and by default. More specifically, Article 25 of the GDPR requires that organizations must "implement appropriate technical and organizational measures [...] which are designed to implement data protection principles [...] , in an effective manner and to integrate the necessary safeguards into [data] processing.” Thus, AAL solutions must consider privacy-by-design methodologies in order to protect the fundamental rights of those being monitored. Different methods have been proposed in the latest years to preserve visual privacy for identity protection. However, in many AAL applications, where mostly only one person would be present (e.g. an older person living alone), user identification might not be an issue; concerns are more related to the disclosure of appearance (e.g. if the person is dressed/naked) and behaviour, what we called bodily privacy. Visual obfuscation techniques, such as image filters, facial de-identification, body abstraction, and gait anonymization, can be employed to protect privacy and agreed upon by the users ensuring they feel comfortable. Moreover, it is difficult to ensure a high level of security and privacy during the transmission of video data. If data is transmitted over several network domains using different transmission technologies and protocols, and finally processed at a remote location and stored on a server in a data center, it becomes demanding to implement and guarantee the highest level of protection over the entire transmission and storage system and for the whole lifetime of the data. The development of video technologies, increase in data rates and processing speeds, wide use of the Internet and cloud computing as well as highly efficient video compression methods have made video encryption even more challenging. Consequently, efficient and robust encryption of multimedia data together with using efficient compression methods are important prerequisites in achieving secure and efficient video transmission and storage.This publication is based upon work from COST Action GoodBrother - Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living (CA19121), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. www.cost.e

    Architectural support for enhancing security in clusters

    Get PDF
    Cluster computing has emerged as a common approach for providing more comput- ing and data resources in industry as well as in academia. However, since cluster computer developers have paid more attention to performance and cost e±ciency than to security, numerous security loopholes in cluster servers come to the forefront. Clusters usually rely on ¯rewalls for their security, but the ¯rewalls cannot prevent all security attacks; therefore, cluster systems should be designed to be robust to security attacks intrinsically. In this research, we propose architectural supports for enhancing security of clus- ter systems with marginal performance overhead. This research proceeds in a bottom- up fashion starting from enforcing each cluster component's security to building an integrated secure cluster. First, we propose secure cluster interconnects providing con- ¯dentiality, authentication, and availability. Second, a security accelerating network interface card architecture is proposed to enable low performance overhead encryption and authentication. Third, to enhance security in an individual cluster node, we pro- pose a secure design for shared-memory multiprocessors (SMP) architecture, which is deployed in many clusters. The secure SMP architecture will provide con¯dential communication between processors. This will remove the vulnerability of eavesdrop- ping attacks in a cluster node. Finally, to put all proposed schemes together, we propose a security/performance trade-o® model which can precisely predict performance of an integrated secure cluster

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    On secure communication in integrated internet and heterogeneous multi-hop wireless networks.

    Get PDF
    Integration of the Internet with a Cellular Network, WMAN, WLAN, and MANET presents an exceptional promise by having co-existence of conventional WWANs/WMANs/WLANs with wireless ad hoc networks to provide ubiquitous communication. We call such integrated networks providing internet accessibility for mobile users as heterogeneous multi-hop wireless networks where the Internet and wireless infrastructure such as WLAN access points (APs) and base stations (BSs) constitute the backbone for various emerging wireless networks (e.g., multi-hop WLAN and ad hoc networks. Earlier approaches for the Internet connectivity either provide only unidirectional connectivity for ad hoc hosts or cause high overhead as well as delay for providing full bi-directional connections. In this dissertation, a new protocol is proposed for integrated Internet and ad hoc networks for supporting bi-directional global connectivity for ad hoc hosts. In order to provide efficient mobility management for mobile users in an integrated network, a mobility management protocol called multi-hop cellular IP (MCIP) has been proposed to provide a micro-mobility management framework for heterogeneous multi-hop network. The micro-mobility is achieved by differentiating the local domain from the global domain. At the same time, the MCIP protocol extends Mobile IP protocol for providing macro-mobility support between local domains either for single hop MSs or multi-hop MSs. In the MCIP protocol, new location and mobility management approaches are developed for tracking mobile stations, paging, and handoff management. This dissertation also provides a security protocol for integrated Internet and MANET to establish distributed trust relationships amongst mobile infrastructures. This protocol protects communication between two mobile stations against the attacks either from the Internet side or from wireless side. Moreover, a secure macro/micro-mobility protocol (SM3P) have been introduced and evaluated for preventing mobility-related attacks either for single-hop MSs or multi-hop MSs. In the proposed SM3P, mobile IP security has been extended for supporting macro-mobility across local domains through the process of multi-hop registration and authentication. In a local domain, a certificate-based authentication achieves the effective routing and micro-mobility protection from a range of potential security threats

    TOWARDS A HOLISTIC EFFICIENT STACKING ENSEMBLE INTRUSION DETECTION SYSTEM USING NEWLY GENERATED HETEROGENEOUS DATASETS

    Get PDF
    With the exponential growth of network-based applications globally, there has been a transformation in organizations\u27 business models. Furthermore, cost reduction of both computational devices and the internet have led people to become more technology dependent. Consequently, due to inordinate use of computer networks, new risks have emerged. Therefore, the process of improving the speed and accuracy of security mechanisms has become crucial.Although abundant new security tools have been developed, the rapid-growth of malicious activities continues to be a pressing issue, as their ever-evolving attacks continue to create severe threats to network security. Classical security techniquesfor instance, firewallsare used as a first line of defense against security problems but remain unable to detect internal intrusions or adequately provide security countermeasures. Thus, network administrators tend to rely predominantly on Intrusion Detection Systems to detect such network intrusive activities. Machine Learning is one of the practical approaches to intrusion detection that learns from data to differentiate between normal and malicious traffic. Although Machine Learning approaches are used frequently, an in-depth analysis of Machine Learning algorithms in the context of intrusion detection has received less attention in the literature.Moreover, adequate datasets are necessary to train and evaluate anomaly-based network intrusion detection systems. There exist a number of such datasetsas DARPA, KDDCUP, and NSL-KDDthat have been widely adopted by researchers to train and evaluate the performance of their proposed intrusion detection approaches. Based on several studies, many such datasets are outworn and unreliable to use. Furthermore, some of these datasets suffer from a lack of traffic diversity and volumes, do not cover the variety of attacks, have anonymized packet information and payload that cannot reflect the current trends, or lack feature set and metadata.This thesis provides a comprehensive analysis of some of the existing Machine Learning approaches for identifying network intrusions. Specifically, it analyzes the algorithms along various dimensionsnamely, feature selection, sensitivity to the hyper-parameter selection, and class imbalance problemsthat are inherent to intrusion detection. It also produces a new reliable dataset labeled Game Theory and Cyber Security (GTCS) that matches real-world criteria, contains normal and different classes of attacks, and reflects the current network traffic trends. The GTCS dataset is used to evaluate the performance of the different approaches, and a detailed experimental evaluation to summarize the effectiveness of each approach is presented. Finally, the thesis proposes an ensemble classifier model composed of multiple classifiers with different learning paradigms to address the issue of detection accuracy and false alarm rate in intrusion detection systems

    Security Enhancements in Voice Over Ip Networks

    Get PDF
    Voice delivery over IP networks including VoIP (Voice over IP) and VoLTE (Voice over LTE) are emerging as the alternatives to the conventional public telephony networks. With the growing number of subscribers and the global integration of 4/5G by operations, VoIP/VoLTE as the only option for voice delivery becomes an attractive target to be abused and exploited by malicious attackers. This dissertation aims to address some of the security challenges in VoIP/VoLTE. When we examine the past events to identify trends and changes in attacking strategies, we find that spam calls, caller-ID spoofing, and DoS attacks are the most imminent threats to VoIP deployments. Compared to email spam, voice spam will be much more obnoxious and time consuming nuisance for human subscribers to filter out. Since the threat of voice spam could become as serious as email spam, we first focus on spam detection and propose a content-based approach to protect telephone subscribers\u27 voice mailboxes from voice spam. Caller-ID has long been used to enable the callee parties know who is calling, verify his identity for authentication and his physical location for emergency services. VoIP and other packet switched networks such as all-IP Long Term Evolution (LTE) network provide flexibility that helps subscribers to use arbitrary caller-ID. Moreover, interconnecting between IP telephony and other Circuit-Switched (CS) legacy telephone networks has also weakened the security of caller-ID systems. We observe that the determination of true identity of a calling device helps us in preventing many VoIP attacks, such as caller-ID spoofing, spamming and call flooding attacks. This motivates us to take a very different approach to the VoIP problems and attempt to answer a fundamental question: is it possible to know the type of a device a subscriber uses to originate a call? By exploiting the impreciseness of the codec sampling rate in the caller\u27s RTP streams, we propose a fuzzy rule-based system to remotely identify calling devices. Finally, we propose a caller-ID based public key infrastructure for VoIP and VoLTE that provides signature generation at the calling party side as well as signature verification at the callee party side. The proposed signature can be used as caller-ID trust to prevent caller-ID spoofing and unsolicited calls. Our approach is based on the identity-based cryptography, and it also leverages the Domain Name System (DNS) and proxy servers in the VoIP architecture, as well as the Home Subscriber Server (HSS) and Call Session Control Function (CSCF) in the IP Multimedia Subsystem (IMS) architecture. Using OPNET, we then develop a comprehensive simulation testbed for the evaluation of our proposed infrastructure. Our simulation results show that the average call setup delays induced by our infrastructure are hardly noticeable by telephony subscribers and the extra signaling overhead is negligible. Therefore, our proposed infrastructure can be adopted to widely verify caller-ID in telephony networks
    corecore