
ARCHITECTURAL SUPPORT FOR ENHANCING SECURITY IN CLUSTERS

A Dissertation

by

MAN HEE LEE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2008

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4277025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ARCHITECTURAL SUPPORT FOR ENHANCING SECURITY IN CLUSTERS

A Dissertation

by

MAN HEE LEE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Eun Jung Kim
Committee Members, Valerie E. Taylor

Riccardo Bettati
A. L. Narasimha Reddy

Head of Department, Valerie E. Taylor

August 2008

Major Subject: Computer Engineering

iii

ABSTRACT

Architectural Support for Enhancing Security in Clusters. (August 2008)

Man Hee Lee, B.E., Kyungpook National University;

M.E., Kyungpook National University

Chair of Advisory Committee: Dr. Eun Jung Kim

Cluster computing has emerged as a common approach for providing more comput-

ing and data resources in industry as well as in academia. However, since cluster

computer developers have paid more attention to performance and cost efficiency

than to security, numerous security loopholes in cluster servers come to the forefront.

Clusters usually rely on firewalls for their security, but the firewalls cannot prevent

all security attacks; therefore, cluster systems should be designed to be robust to

security attacks intrinsically.

In this research, we propose architectural supports for enhancing security of clus-

ter systems with marginal performance overhead. This research proceeds in a bottom-

up fashion starting from enforcing each cluster component’s security to building an

integrated secure cluster. First, we propose secure cluster interconnects providing con-

fidentiality, authentication, and availability. Second, a security accelerating network

interface card architecture is proposed to enable low performance overhead encryption

and authentication. Third, to enhance security in an individual cluster node, we pro-

pose a secure design for shared-memory multiprocessors (SMP) architecture, which

is deployed in many clusters. The secure SMP architecture will provide confidential

communication between processors. This will remove the vulnerability of eavesdrop-

ping attacks in a cluster node. Finally, to put all proposed schemes together, we

propose a security/performance trade-off model which can precisely predict perfor-

iv

mance of an integrated secure cluster.

v

To my wife, Eunyoung, and my daughters, Grace and Hannah, and my mother

vi

ACKNOWLEDGMENTS

I would like to earnestly thank my advisor, Dr. Eun Jung Kim, for her guidance,

encourgement, patience, and her willingness to discuss almost everything during my

graduate studies. Especially in a series of rejections from various conferences, she

kept encouraging me by saying that she trusts me. Additionally, I highly appreciate

her sincere effort to have a close friendship with her students; the numerous coffee

breaks and lunches that she provided invigorated me to resume my research at full

throttle. I also wish to thank Dr. Valerie E. Taylor, Dr. Riccardo Bettati, and Dr.

A. L. Narasimha Reddy for their continual support and constructive comments in

the preliminary and final examinations. I am also grateful to Dr. Ki Hwan Yum,

assistant professor in the Department of Computer Science at the University of Texas

at San Antonio and Dr. Kim’s husband, for carefully reading and commenting on so

many revisions of all submissions to conferences and journals.

I would like to thank all of the members in Dr. Kim’s High Performance Comput-

ing Laboratory including Hogil Kim, Yuho Jin, Heungki Lee, Inchoon Yeo, Lei Wang,

Chih-chun Liu, and Sungho Park for their friendship and for useful discussions and

questions in our office and lab meetings. Especially, I am extremely grateful for the

critical assistance and help I received from Minseon Ahn and Baiksong An while I

worked on the second and third research topic, respectively.

I am also very grateful for a close friendship with Dr. George C. Davis while

he was a professor in the Department of Agricultural Economics at Texas A&M

University. He volunteered to be a conversation partner helping international students

improve their verbal skills in English, and his church, Grace Bible Church, assigned

him to me by His Grace. The four-year long conversation meetings with him helped

me significantly in English; he often corrected my pronunciation word by word. More

vii

importantly, he soon became a great mentor to me who gave me precious advice on

diverse dimensions of my life as Ph.D. student, as a husband, as a Christian, and as

a professor hopefully in the future.

Acknowledgements are also extended to all my fellow Christians in Korean Church

of A&M. With their support and prayer, I lived a fulfilling life and found His purpose

of my life. Furthermore, I am so blessed to have close fellowship with Pastor Sunyeop

Lee, Soolyeon Cho, Gieseung Lee, Kwanghyun Song, Jongmin Oh, and Byunghak

Kim. They touched my heart so deeply that they changed my life and thought

greatly. Especially, my cousin, Heejin Lim, and her husband, Sangeun Kim, showed

me a great example of a sincere Christian and faithful deacon in a church. With their

precious four children, they were a pure God’s gift to my family.

I would like to thank my family. First of all, none of this would have been possible

without the love, patience, encouragement, and support of my wife, Eunyoung Park.

Quitting her job, raising two kids in a foreign country, and spending countless lonely

nights must be a great challenge for her, but she sacrificed herself a lot, understood

my situation, and raised two daughters gracefully as well as managed her time wisely

to go to a college for a degree. I deeply appreciate all her works done for our family.

I would like to thank my two lovely daughters, Grace and Hannah. Even though

they cannot realize how critical they are to my study, they are a real source of true

happiness and strength to me. Even when I was completely exhausted, the two

girls’ smile and sweet kisses recharged me with full energy like magic. I honestly feel

privileged to be a father of such adorable daughters, God’s pure blessing. My thanks

also go to my mother, Leeja Ahn, who showed me true love and sacrifice as well as to

my late father, Dongyoung Lee, who loved us so much with his humble mind. I am

also grateful to my sisters and brother, Sunhee, Kyunghee, and Moohee, who always

took care of and backed me in many ways from when I was born as the last child.

viii

I give special thanks to Eunyoung’s parents, Daeyong Park and Eunsook Jung, who

allowed me to marry their wonderful daughter and keep praying for us everyday.

Lastly and most importantly, I give all my thanks to God. He saved me through

Jesus Christ and gave me a vision to study abroad. In addition to making it possible,

He was so careful in seeing us that He provided wisdom, ideas, people, and money

necessary at every corner of this journey, so nothing fell short. He miraculously

turned all my triumphant and sad moments into good things in the end, fulfilling

“In all things God works for the good of those who love him, who have been called

according to his purpose.” (the Apostle Paul’s letter to the Romans, chapter 8, verse

28, New International Version of the Bible). I thank and praise God again because

He will love, take care of, and keep an eye on us in the rest of my life as always.

My study was partially funded by the Ministry of Information and Communi-

cation, Republic of Korea, through IT Student Scholarship from 2003 and 2004, the

Department of Computer Science, Texas A&M University, through graduate teaching,

non-teaching, and research assistantship from 2005, and through industrial affiliates

program (IAP) scholarships in 2003 and 2007.

ix

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II SECURITY BACKGROUND 5

A. Confidentiality . 5
B. Authentication . 7
C. Availability . 8

III SECURE INFINIBAND CLUSTER 9

A. Introduction . 9
B. Related Work . 13
C. InfiniBand Architecture . 13
D. Security Threat in IBA . 15

1. Basic Assumptions . 15
2. Vulnerabilities and Threats 15

a. Confidentiality 15
b. Authentication 16
c. Availability . 16

3. A Simulation of a DoS Attack 16
E. Security Enhancement in IBA 17

1. Secret Key Management in IBA 18
a. Partition-Level Key Management 18
b. Queue Pair-Level Key Management 19
c. Initial Key Distribution 20
d. Partition-Level Key Distribution 21
e. Queue Pair-Level Key Distribution 22

2. Message Encryption and Authentication in IBA 24
3. Stateful Ingress Filtering 26
4. Source Identification Scheme in IBA 30

a. Marking Field in IBA 31
b. Deterministic Packet Marking 32
c. Deterministic Distance Packet Marking 34

F. Security Analysis . 37
G. Performance Analysis . 40

1. Simulation Testbed 40
2. Performance Slowdown by Encryption & Authentication 40

x

CHAPTER Page

3. Stateful Ingress Filter Simulation 42
H. Conclusion . 44

IV A SESSION KEY CACHING AND PREFETCHING SCHEME
FOR SECURE COMMUNICATION IN CLUSTER SYSTEMS . 46

A. Introduction . 46
B. High Performance Cluster Security 50

1. Threat Model . 50
2. Solutions to Secure User-Level Communications 51

C. Architectural Support for Secure Cluster Communication . 53
1. Session Key Cache Architecture 53
2. Size of the SKC . 55
3. Coscheduling-Aware Prefetching Scheme 59

D. Performance Evaluation 61
1. Simulation Platform 61
2. Effectiveness of SKC 64
3. Effectiveness of Prefetching 68
4. SKC Size . 71

E. Related Work . 72
F. Conclusions . 73

V DESIGN OF SECURE SHARED MULTIPROCESSOR SYSTEM 75

A. Introduction . 75
B. Secure Computing Models 78

1. Threat Model . 78
2. Uniprocessor Secure Model 80
3. Multiprocessor Secure Model 81

C. Architectural Design of I2SEMS 82
1. Design Considerations for I2SEMS 82
2. Design Overview of I2SEMS 84
3. GCC and Keystream Queue 87
4. Architecture of Keystream Pool and Keystream Cache 89

D. Secure Communications of I2SEMS 91
1. Protection on Data Messages 91
2. Protection on Control Messages 97
3. Protection on Counter Messages 98

E. Performance Analysis . 99
1. Simulation Framework 99
2. Overall Performance Slowdown 101
3. Keystream Pool Size 103
4. Cache Coherence Protocol 103

xi

CHAPTER Page

5. Prediction Depth . 105
6. Scalability of Global Counter Controller 106

F. Conclusions . 108

VI CONCLUSIONS . 111

REFERENCES . 113

VITA . 129

xii

LIST OF TABLES

TABLE Page

I Partition enforcement overhead . 28

II Scalability of Deterministic Packet Marking scheme 34

III Scalability of Deterministic Distance Packet Marking scheme 37

IV Original and simulated execution time of NAS benchmarks 63

V Processor model parameters . 100

xiii

LIST OF FIGURES

FIGURE Page

1 Average end-to-end latency under DoS attacks. We simulate DoS
attacks on our IBA testbed to estimate their effect on the overall
network performance. The latencies of real-time and best-effort
traffic are increased by 6 and 18 times, respectively. This shows
that the number of attackers increases, the average network la-
tencies will increase significantly. 17

2 IBA packet format with Message Authentication Code. ICRC
covers all invariant fields from LRH to I Data to detect errors on
the data communication. Since ICRC does not change end-to-end,
we propose to use this field as the MAC location that will carry
MAC in the security enhanced IBA (LRH: Local Route Header,
GRH: Gobal Route Header, BTH: Base Transport Header, ETH:
Extended Transport Header, ICRC: Invariant CRC, VCRC: Vari-
ant CRC). 25

3 GCM architecture using AES. In the sender side, an original
data, M , is divided into multiple 128 bits long messages, M [1],
M [2],..,M [m]. This substring is encrypted by XORing the result
of encryption of PSN+i. The first input of MultH is the header
of the packet and subsequent inputs are encrypted substrings,
E[i]. Note that due to the pipelining capability of recent AES and
MultH hardware, adjacent substrings are encrypted and authen-
ticated in parallel with a small pipelining delay. Receiver’s archi-
tecture is almost similar except that E[i] and M [i] are switched.
4X GCM utilizes four AES hardware to keep up with 4X Infini-
Band speed. Since there is no dependence between AES blocks,
it can get nearly linear speed-up. 27

4 GRH address format. GRH can be in use both within a subnet
and between subnets by using link-local prefix, 1111111010, and
site-local prefix, 1111111011, respecively. 64 bits are used for
addressing inside a subnet and an additional subnet address (16
bits) is necessary for addressing between subnets. The commonly
unused 38 bits of two formats can be used as MF. 31

xiv

FIGURE Page

5 Deterministic packet marking on 3-level fat tree. As a packet
goes up, each switch marks an incoming port’s number in the
packet’s MF. Marking completes when a packet reaches the top
level switch. This marking scheme works for a fat tree built by a
large number of minimal basic switches since this scheme marks
only port numbers not switch indexes. 33

6 An exmaple of deterministic distance packet marking. When a
packet traverses through switches, each switch calculates the dif-
ference between its own coordinate and a neighboring switch pass-
ing the packet. The difference is added up to the current distance
vector to update the MF. The receiving node easily identifies the
source node by subtracting (or XORing) the distance vector from
the receiving node’s position. Note that this marking algorithm
is robust to any adaptive routing algorithms which allow looping
as shown in (a). 36

7 Performance slowdown due to security operations. (a) Security
configuration where both encryption and authentication are en-
abled incurs relatively small overhead ranging from 0.7% to 12.4%,
compared to No Security configuration. (b) As IBA network speed
increases, the performance overhead of Security configuration also
increases proportionally. However, since the additional overhead
is still nanoseconds scale, Security configuration will be practical. . . 41

8 Effect of SIF. (a) DT, IF, and SIF block DoS attacks successfully
and show little difference in terms of total latency except at the
input load 70% where SIF shows the best performance. Note that
since SIF is enabled only when there are active DoS attacks, SIF
will show the best performance in normal situation. (b) and (c)
shows the distribution of end-to-end latency. Since IF blocks all
DoS traffic from coming into IBA network, there is no difference
in end-to-end latency as shown in (b). However, SIF allows DoS
traffic for short time. Due to this, there are high spikes of end-to-
end latency in (c). All static methods, DPT and IF, have to incur
constant overhead regardless of the occurrence of DoS attacks. . . . 43

9 SKC, prefetch buffer, and security unit in a CIC. 54

10 Markov chain for traffic aggregation of n processes. 56

xv

FIGURE Page

11 Cache capacities of SKC for NAS benchmarks for target hit rate
0.9. 58

12 Coscheduled cluster communication simulation platform. 61

13 Performance comparisons of network latency of single application
execution. 65

14 Worldcup 98 Web traffic simulation. 67

15 Performance gain from prefetch buffer on various coschedulers. . . . 68

16 Performance comparison on varying size of SKC and prefetch
buffer. 69

17 Cache hit rate of NAS benchmarks on a 16-KByte SKC. 71

18 I2SEMS security model. 85

19 Architecture of keystream queue, keystream cache, and keystream
pool. 88

20 Galois/counter mode . 92

21 Data messages transfer . 94

22 Overall performance. 102

23 Hit rate vs. keystream pool size and associativity. 104

24 Keystream origination. 105

25 Hit rate vs. prediction depth. 106

26 Scalability of Global Counter Controller. 107

1

CHAPTER I

INTRODUCTION

Widespread use of cluster systems in a diverse set of applications has spurred sig-

nificant interest in designing such servers, considering performance, scalability, and

Quality-of-Service. However, cluster computer developers have paid more attention to

performance and cost efficiency than to security. As a result, numerous security loop-

holes in cluster servers come to the forefront and consequently the design of secure

clusters has recently surfaced as a critical issue. Generally, any computer security

needs to offer three basic services: confidentiality, authentication, and availability.

Confidentiality refers to restricting access to data sent by a sender only to a des-

ignated receiver. Authentication allows the receiver to make sure that the received

message is authentic, not modified or forged. Availability refers to providing the

timely and reliable accesses to data and information services for authorized users [1].

Clusters usually rely on firewalls to defend against security attacks from the outside,

not providing any security measures within clusters. However, such protecting sys-

tems themselves are vulnerable to security attacks [2, 3] and, more realistically, weak

legitimate user passwords can be an open door to cluster systems at any time [4].

Therefore, it is desirable to design secure clusters which are robust to security attacks

intrinsically.

The easiest way to block hackers is to isolate clusters physically as some gov-

ernment and military agencies do but this cannot be a general solution. Enforcing

functionalities of firewalls can be a common method but it is out of scope of this

research. Security of cluster systems can be enhanced in many other ways. For exam-

The journal model is IEEE Transactions on Automatic Control.

2

ple, using secure OS like SELinux, removing buffer overflows of server applications, or

partitioning cluster nodes into several groups logically with different root privileges

can improve cluster security. Among many possible approaches, we mainly focus

on encrypting and/or authenticating communicating data. This approach is helpful

especially when cluster interconnects which are previously used to connect enclosed

cluster nodes are extended to connect external systems located outside a cluster as

demontrated in Supercomputing Conference 2005 where multiple clusters and storage

systems were connected through a cluster interconnect [5]. In this environment, the

cluster nodes are liable to security attacks through the extended cluster interconnects.

Encryption and authentication will prevent eavesdropping of data and passwords and

block unauthorized access to cluster nodes which are exposed to outside of a cluster.

Its major challenge is to minimize performance degradation while providing se-

curity transparency at the same time. Software or OS based security enhancements

cannot accomplish this goal because such schemes will deteriorate the overall cluster

performance by taking up a great amount of host processors’ computing resources.

Furthermore, if OS or a user application has to be involved in security provisioning

deeply, significant code modification should be made, especially causing great dif-

ficulties to legacy applications. Therefore, our main focus lies in designing secure

cluster communication to be as transparent to applications as possible by integrat-

ing additional hardware and by amending cluster interconnect protocols. The more

transparent security will help our schemes to be adopted to clusters more seamlessly.

In addition, hardware-supported security measures can incur less performance over-

head since most security operations will be done in hardware, not consuming host

processors’ computing power.

Major components we will consider are cluster interconnect protocols, cluster

interconnects cards (CICs), and computing nodes with multiple processors. This

3

proposed research proceeds in a top-down fashion starting from proposing a secure

cluster design to enforcing each component’s security.

First, for secure cluster protocols, a handful of research groups have tried to

enhance cluster security in [6, 7, 8, 9, 10, 11]. However, a comprehensive approach

covering all three security services was not proposed. Especially, to the best of our

knowledge, there has been no previous studies investigating a comprehensive frame-

work for security enhancement in InfiniBand Architecture (IBA), a promising I/O

communication standard positioned for building clusters and System Area Networks

(SANs) [12]. In this research, we will point out security vulnerabilities of IBA and its

potential threats. Then we will present an authentication and encryption method to

remove those vulnerabilities with marginal performance degradation. Furthermore,

we will propose a mechanism to block denial of service (DoS) attacks in IBA.

Second, in order to provide high speed security services, it is necessary to imple-

ment security functionalities in CIC. Moreover, recent clusters are capable of user-level

communication (ULC), allowing user applications to bypass OS for communications,

so most cluster communications are already being processed by CIC. This makes it

almost impossible for host processor(s) to encrypt/decrypt or authenticate all cluster

communications without substantial performance degradation. To solve this problem,

we propose a CIC architecture enabling high performance secure clusters by means

of security hardware in CIC.

Third, as shared memory multiprocessor (SMP) systems are expected to be more

common in cluster systems, the communication between processors also needs to be

secure for a cluster node’s high-level security. A small body of literature already

investigated secure multiprocessor designs [13, 14] focusing on bus-based SMP sys-

tems; however, there has been no encompassing study taking into account other types

of SMPs with different network topologies. Our research proposes an Interconnect-

4

Independent Security Enhanced Shared Memory Multiprocessor Systems (I2SEMS)

for inter-processor communication security. By integrating an additional cache in each

processor and a system-wide encryption/decryption controller, I2SEMS will keep all

data outside processors encrypted. Since we decouple the design of I2SEMS from

processor interconnecting topology, I2SEMS can be applied to any types of SMP

systems.

5

CHAPTER II

SECURITY BACKGROUND

Since we will address classical security services, in this section we briefly introduce

the security services and common approaches related to our ideas.

A. Confidentiality

Confidentiality refers to restricting access to the data sent by a sender only to the des-

ignated receiver. Encryption and decryption will be needed to enforce confidentiality.

Encryption scrambles the original plaintext into ciphertext using an encryption key;

while decryption recovers the original plaintext from the ciphertext using a decryption

key. If the two keys are identical, this is called a symmetric or secret key mechanism.

Otherwise, it is called an asymmetric or public key mechanism, where anyone can

encrypt a message using a public key, but only the person with the private key can

decrypt it [15].

Block ciphers and stream ciphers are two basic symmetric encryption schemes.

Among them we chose to use the block cipher because block ciphers usually operate

on large blocks of data while stream ciphers do it on individual plaintext digits with

time-varying transformation.

In our research, we use Advanced Encryption Standard (AES) as a basic block

cipher due to its security strength and recent research on fast hardware implemen-

tation [16]. Block ciphers can operate in several modes. The most basic mode is

Electronic Code Book (ECB). In ECB, a plaintext is split into several blocks and

each block is encrypted separately. With a fixed key and n-bit block cipher, this

mode is a sort of code book to map an n-bit string to another n-bit string. ECB

mode using AES is decribed in the following equation when AES and AES−1 are

6

encryption and decryption functions, respectively.

ciphertext = AES(plaintext,Key)

plaintext = AES−1(ciphertext,Key)

Since it does not need any initial vector, it has no initialization overhead. In addition,

it is parallelizable in that each encryption solely depends on the input plaintext and

the key. However, ECB is a little vulnerable because it does not hide traffic patterns.

Even though encrypted data is still secure, the patterns may be further exploited

by a hacker. To solve this problem, feedback or chaining modes like Cipher Block

Chaining (CBC), Output Feed-Back (OFB), and Cipher Feed-Back (CFB) are used.

The result of the previous block is fed-back or chained into the next block. While it

has the initialization overhead and the parallelization restriction, it can successfully

hide patterns in the original plaintexts.

Note that a main limitation of the above methods especially like ECB is that the

whole AES function is in the critical path because the function can start only after

the plaintext or the ciphertext is available.

Counter (CTR) mode can solve the problem since the input of encryption func-

tions is not a plaintext nor a ciphertext, but just a counter. An encryption function

encrypts this counter to generate an encrypted counter, often called a keystream∗.

This keystream is XORed with a plaintext to make a ciphertext. Decryption should

use the same counter to generate the same keystream. This keystream is XORed with

the ciphertext to recover the original plaintext. Since CTR mode does not have any

dependence, parallelism or pipelining can improve cipher operation throughput. Its

∗Also known as one-time-pad (OTP) in previous literature.

7

operation is decribed in the following equation.

chipertext = plaintext ⊕ AES(counter,Key)

plaintext = chipertext ⊕ AES(counter,Key)

The counter does not need to be secret because, even though an attacker gets

both a ciphertext and its counter, it is practically impossible to recover its original

plaintext without the secret key. The biggest benefit of this scheme is that AES

latency can be out of the critical path because it is possible to precompute keystreams

even when plaintexts or ciphertexts are not available. However, it is imperative to use

distinct counters for different plaintexts to prevent security vulnerabilities. Suppose

E1 and E2 are two different ciphertexts using the same counter C. If a hacker gets

these two ciphertexts and XOR them, he will get partial information of two original

plaintexts by clearing out the keystream, as described in the following.

E1 = D1 ⊕ AES(C,Key)

E2 = D2 ⊕ AES(C,Key)

E1 ⊕ E2 = D1 ⊕ D2

B. Authentication

Authentication allows two parties to agree that a received message is authentic, not

modified or forged. Message Authentication Code (MAC) is commonly used. Since

MAC is created and verified with the same secret key, communication parties should

share the key beforehand. Among several MAC schemes, keyed hash functions and

8

block cipher-based MACs are widely used. In the keyed hash MAC, a hash function

maps a variable size message into a fixed length of digest. By digesting the message

along with a secret key, the hash function makes an authentication tag. If the receiver

has the same secret key, the receiver can make the same authentication tag. In the

block cipher-based MAC, the authentication tag is the output of the last cipher block

after encrypting the whole message. Well-known keyed hash MACs are HMAC-MD5

and HMAC-SHA1 [17, 18]. CBC-MAC and PMAC are examples of block cipher-based

MAC [19, 20, 21, 22].

GCM is a block cipher mode of operation that encrypts and authenticates mes-

sages at the same time, and also called authenticated encryption [23]. Detailed ap-

plication of GCM in our research are in Chapter V.

C. Availability

Availability refers to the ”timely and reliable access to data and information services

for authorized users” [1]. Availability has become more important in the Internet

because of the increase in DoS attacks. Early DoS attacks dumped huge numbers

of packets on a specific target system greatly slowing down the system and its net-

work [24]. While recent DoS attacks staged by worms or viruses often do not target

a specific system, they are still tying up infected or attacked systems and network

resources [25, 26, 27]. The defense against DoS attacks is processed as follows: First a

monitoring function detects a DoS attack; Second, when source addresses are spoofed,

a source identification function, if available, tracebacks true attacking systems; Third,

an access control is then applied to block the DoS attacks. In our research, we will

propose an efficient blocking scheme to block a type of DoS attacks in IBA.

9

CHAPTER III

SECURE INFINIBAND CLUSTER∗

A. Introduction

Computer clustering is a popular trend in academia as well as in the industry for high

performance and high availability computing. Widespread use of cluster systems in

a diverse set of applications has spurred significant interest in designing such servers,

considering performance, scalability, and Quality-of-Service. However, cluster com-

puter developers have paid more attention to performance and cost efficiency than

to security. As a result, numerous security loopholes of cluster servers have been

revealed and consequently the design of secure clusters has recently surfaced as a

critical issue.

The easiest way to protect clusters is to isolate them physically, like some gov-

ernment and military agencies do, but this cannot be a general solution. Instead,

reinforcing firewalls can be a common method, but it is well known that firewalls

cannot prevent all possible threats. First of all, firewalls are useless to prevent inside

attacks [28]. Also, firewalls scan only certain layers; therefore, there always exist

potential attacks using upper layers. In addition, firewalls themselves have security

vulnerabilities or can be mis-configured to operate improperly. The followings are

such examples. Geer reported that several products of well-known security com-

panies such as Check Point Software Technologies, Symantec, and Zone Labs had

potentially dangerous flaws that could allow hackers to gain control of systems, dis-

∗Reprinted with permission from “A Comprehensive Framework for Enhancing
Security in InfiniBand Architecture” by Manhee Lee and Eun Jung Kim, 2007. IEEE
Transactions on Parallel and Distributed Systems (TPDS), Vol. 18, No. 10, pp.
1393-1406, Copyright 2007 IEEE.

10

able computers, or cause other problems [2]. Wool quantified configuration errors of

firewalls installed on several sites. He found that many sites had serious configura-

tion errors and, for example, almost 80 percent of firewalls allowed any service and

insecure access to firewalls, which are not desirable for high security [3].

Besides improving the strength of firewalls, security of cluster systems can be

enhanced in many other ways. For example, using secure operating systems (OS)

like SELinux, preventing buffer overflows of server applications, or partitioning clus-

ter nodes into several logical groups with different root privileges can improve clus-

ter security. Among many possible approaches, we focus on secure communication

by encrypting/authenticating communication data. Protecting communication data

prevents potential eavesdropping on data and passwords and unauthorized accesses

to cluster nodes. This approach will help to build secure cluster systems especially

when cluster interconnects, which are previously used to connect enclosed cluster

nodes, are being extended to connect external systems located outside the cluster,

as demonstrated in Supercomputing Conference 2005 where multiple clusters and

storage systems were connected through a cluster interconnect [5]. In this environ-

ment the cluster nodes are liable to security attacks through the extended cluster

interconnects.

We can provide secure communication in two ways: software-based or hardware-

based. However, software-based security enhancements cannot be proper solutions in

cluster systems where high performance is a primary goal because such schemes will

deteriorate the overall cluster performance by taking up a great amount of computing

resources of host processors. Furthermore, if the OS or a user application needs to be

deeply involved in the security, significant code modifications are necessary, especially

posing great difficulties to legacy applications. However, hardware-supported security

measures imposes little performance overhead since most security operations will be

11

done in hardware, not consuming host processors’ computing power. In addition, the

secure cluster communication provided in the cluster interconnect protocol level will

be transparent to applications, resulting in seamless adoption of secure communica-

tion. Therefore, our challenge is to minimize performance degradation and maximize

security transparency while providing secure communication in cluster.

There are several widely used cluster interconnects. Myrinet, proposed in 1995,

is a switching network with low latency cut-through switches [29]. As of November

2006, 15.8% of the Top 500 supercomputers use Myrinet. Quadrics has been the

interconnect of choice for high-end supercomputers. As of November 2006, 2.8% of

supercomputers are using products from Quadrics. Following the success of Eth-

ernet as a local area network, Gigabit Ethernet is making another success in high

performance computing area; currently, 42.6% of supercomputers are using Gigabit

Ethernet. InfiniBand Trade Association, an industry consortium, is leading the spec-

ification of IBA [12]. IBA is a promising I/O communication standard positioned

for building system area networks that are used in clusters, multiprocessor systems,

and storage area networks. User-level communication mechanisms in IBA improve

overall system performance significantly by reducing the communication overhead of

the operating system in message transfer. Among these cluster interconnects, we

investigate security of IBA since it has potential security vulnerabilities due to lack

of security considerations in the current specifications. In addition, an increasing

number of sites are constructing IBA cluster systems. As highlighted in the recent

Top 500 supercomputer list, the number of IBA cluster has been doubled from 36 to

78 in six months. This trend is expected to continue for IBA to overtake Myrinet.

The main contribution of this study is to investigate the following security issues

for providing a comprehensive framework for security enhancement in IBA clusters.

First, we point out security vulnerabilities of IBA and its potential threats. By sim-

12

ulating a DoS attack inside an IBA cluster, we show that DoS attacks can degrade

clusters’ communication performance by up to two orders of magnitude. Second, we

present secret key management schemes which can be tightly coupled with the exist-

ing IBA key management and describe how to distribute the keys in IBA securely.

Third, we introduce the scalable adoption of an authenticated encryption scheme,

Galois/Counter Mode (GCM), into IBA with only minor modifications to the IBA

specifications [23]. Finally, for better availability, we propose a stateful ingress fil-

tering to block one kind of DoS attack with invalid IBA Keys and scalable packet

marking algorithms to identify the location of the attackers. Since our scheme filters

ports related to only active DoS attacks instead of all ports, it incurs no performance

overhead in a normal situation. This dynamic filtering scheme is further enhanced by

making it robust to spoofing attacks with fake source addresses. Our scalable packet

marking algorithms can trace real attackers regardless of routing algorithms in huge

regular networks.

We use a comprehensive cycle accurate simulation testbed for IBA [30]. Simula-

tion results of a 16-node IBA network show that security performance overhead due

to encryption/authentication on network latency is 12.4% for 64 byte long packets.

When the packet length increases, the overhead decreases to as low as 0.7% with 1024

bytes long packets.

The remainder of the chapter is organized as follows: We briefly introduce related

work and IBA in section B and C. In section D, we elaborate on security vulnerabil-

ities of the current IBA after introducing security background. Section E presents a

comprehensive framework to enhance IBA security, and its security and performance

are analyzed in section F and G, followed by the concluding remarks of this study in

section H.

13

B. Related Work

There has been some research to improve security inside clusters. Yurcik et al. in-

troduced a new concept called emergent security properties to identify security char-

acteristics unique to clusters, which can be used to develop a unified monitoring tool

for clusters [6]. Pourzandi et al. proposed a new security model called the distributed

security infrastructure [8]. It supports a fine-grained cluster-wide security enforce-

ment on distributed applications by providing a process-level resource and access

control [7]. Foster et al. proposed a communication library allowing programmers

to communicate securely in geographically distributed computing environments [9],

which suitably provides well-organized security in Grid. Connelly and Chien focused

on incorporating confidentiality in remote procedure calls in tightly coupled applica-

tions. They applied traditional security functions such as transposition, substitution,

and data padding on the marshalling layer [10]. Their performance analysis showed

that encryption can be used in clusters with a minimal performance impact. Dim-

itrov and Gleeson presented security enhancement methods at three levels: network

host interfaces, system area networks, and communication protocols [11]. Their ap-

proach is systematic enough to be considered as a guideline for enhancing security of

Myrinet- or VIA-based clusters, but it is not compatible with the most recent IBA

specification. Overview of various cluster interconnects and their security issues are

well described in [31].

C. InfiniBand Architecture

In this section we introduce some features of InfiniBand architecture relevant to our

security enhancement in IBA. IBA is a high-speed switched interconnect connecting

end nodes such as processor nodes, I/O units, or routers to build clusters and system

14

area networks. An IBA consists of one or more subnets and each subnet is a set of

end nodes, switches, and its common subnet manager (SM). A channel adapter (CA),

similar to a network interface card, connecting a processor node or an I/O node to

the IBA network is called a host channel adapter or a target channel adapter. One

or more ports in a CA can be connected to the IBA fabric through serial links. IBA

links provide various speeds from 2.5 Gbps up to 120 Gbps.

Queue-Pair (QP) is a pair of work queues, a send queue and a receive queue, for a

consumer (or a process). When a consumer wants to send data to another consumer, a

send request is queued up to the send queue and its CA executes the request by getting

data from the user memory and sending them to the other consumer’s receive queue.

According to connection and acknowledgment modes, a QP is categorized as one of

five types: reliable connection, unreliable connection, reliable datagram, unreliable

datagram, and raw datagram. While a connection-oriented QP can communicate

with its connected QP only, a datagram QP can communicate with multiple datagram

QPs. A reliable QP provides the acknowledgment service guaranteeing the in-order

communication without error or duplication. Since the raw datagram is designed to

interact with non-IBA components, it is not our focus.

Among many features of IBA, Management, Partition, and Key are closely re-

lated to our design for security enhancement in IBA. First, an SM manages a subnet

by configuring and managing routers, switches, and CAs in the subnet. Each node

should have a subnet management agent to communicate with the SM. Second, IBA

Keys are used to provide isolation and protection. Currently five types of IBA Keys

are specified as follows: Management Key (M Key), Baseboard Management Key

(B Key), Partition Key (P Key), Queue Key (Q Key), and Memory Key (L Key and

R Key). The usage of each Key is summarized in [32].

A packet carries one or more IBA Keys and the receiving CA compares the

15

delivered Keys with the stored Keys in the CA. If the two are identical, the packet

can access the node’s resource, but if not, the packet is discarded. Third, a partition is

defined as a collection of CA ports that can communicate with each other to provide

the exclusive resource sharing. Partition is managed by a partition manager, but

since the partition manager is usually a function of SM, in this paper we consider

that the SM manages partitioning.

D. Security Threat in IBA

In this section, we describe assumptions of our research and point out IBA security

vulnerabilities and their potential attacks which motivated our research.

1. Basic Assumptions

Before identifying and solving security vulnerabilities of IBA, we assume the following

constraints:

• CA/switch/router can be compromised.

• each of those devices has a tamper-resistant storage, the contents of

which cannot be read or modified from outside the device. The contents

are only accessible by its subnet manager with a legitimate key.

• attacking traffic can have spoofed source addresses.

2. Vulnerabilities and Threats

a. Confidentiality

Since IBA does not provide any encryption and decryption method, eavesdropping

attacks with help from compromised switches and CAs will succeed in acquiring

16

all communicating data. We call this Type I attack. This vulnerability is critical

especially when a cluster processes classified data.

b. Authentication

A resource to be protected has its own Key such as P Key or L Key and R Key. Any

captured packets which carry legitimate Keys will expose these plaintext Keys and

allow a hacker to generate illegal traffic with the Keys, referred to as Type II attack.

If this illegal traffic is using fake source addresses, it will be hard to find which port

the attacker is attached to. We classify this attack as Type III attack.

c. Availability

An attacker who does not even know any legitimate Key can stage a DoS attack by

sending tremendous traffic to a victim node. Although the traffic will be discarded at

the victim nodes because of the illegal Key, the traffic can affect other normal traffic

when it passes through the network. We define this attack as Type IV attack.

3. A Simulation of a DoS Attack

To show the impact of the DoS attack, we simulate a DoS attack on an IBA testbed.

We partition 16 nodes of the IBA network into four partitions and choose attacker

nodes randomly. The attacker nodes randomly select victim nodes and generate

illegal traffic at their full speed (2.5 Gbps, 1X IBA link). Other non-attacker nodes

communicate with each other in the same partition. Our simulation uses two kinds of

traffic: real-time and best-effort. Real-time traffic is injected at a fixed rate and has

a higher priority than best-effort traffic in intermediate switches. By using best-effort

attacking traffic, we can see its effect on real-time traffic and on other best-effort

traffic.

17

�

��

���

���

���

���

���

� � � � �

��������	�
�������

�
��
�
�
�
�
�
�
�
	
�

�

��

���

���

���

���

���

� � � � �

��������	�
�������

�
��
�
�
�
�
�
�
�
	
�

(a) Real-time traffic (b) Best-effort traffic

Fig. 1. Average end-to-end latency under DoS attacks. We simulate DoS attacks on

our IBA testbed to estimate their effect on the overall network performance.

The latencies of real-time and best-effort traffic are increased by 6 and 18 times,

respectively. This shows that the number of attackers increases, the average

network latencies will increase significantly.

Fig. 1(a) shows how real-time traffic is affected by illegal best-effort traffic. With

no attacker, the average end-to-end latency is around 20 µs. The figure clearly shows

that the latency could increase by as much as 50 µs when even one attacker dumps

traffic. As more attackers are added, the average latency increases up to 120 µs.

Fig. 1(b) shows how illegal best-effort traffic degrades other legal best-effort traffic.

Its average latency increases more dramatically than that of real-time traffic. This is

because real-time traffic has a higher priority than best-effort traffic.

E. Security Enhancement in IBA

Security vulnerabilities are inevitable as long as IBA packets continue to carry plain-

text IBA Keys for their access control. To remove such vulnerabilities, we propose

that IBA use traditional cryptographic methods. Our main goal is to integrate en-

cryption and authentication into IBA not only with minor modifications to the IBA

specification but also with only marginal performance overhead. For this, new crypto-

graphic keys in addition to IBA Keys are necessary. Therefore, we first propose new

18

key management schemes to manage and distribute the keys. Based on these key

management schemes, we describe how GCM can be integrated into IBA and then

propose an efficient mechanism to block DoS attacks and a scalable packet marking

scheme to trace back DoS attacks which use fake source addresses.

1. Secret Key Management in IBA

To provide any security service, it is mandatory to have an efficient and secure key

management scheme. Since the existing key management of the current IBA is not

designed for security, we propose two new key management schemes: partition-level

and QP-level key managements. The partition-level key management enforces that all

communications inside a partition use the same secret key. This scheme ensures that

data communications are secure against attacks by a hacker located in a different

partition. This is simple to implement because each CA only has to maintain the

same number of secret keys as partition keys. However, this scheme is vulnerable

to security attacks originating from the same partition. To remove this problem, we

propose to use the QP-level key management for finer-grained security. Since QP

is the smallest communication entities, the QP-level key management will guarantee

confidentiality and integrity for all QP communications. Both management schemes

can be adopted into IBA without significant changes in the specification. We choose

the symmetric key mechanism for better performance.

a. Partition-Level Key Management

In this key management, a secret key will be created and assigned to each partition.

All components in each partition like switches and CAs should have its secret key.

The secret key is used to make an MAC and encrypt every packet transferred within

the partition. Even though P Keys are still available in packets, the exposure of

19

the P Keys does not pose any further threats since the encryption/authentication

relies on its secret key, not on the P Keys. Therefore, even if an attacker captures

IBA packets, he cannot make legitimate packets with the captured P Keys because

the attacker does not know their secret keys. This partition-level key management

removes the aforementioned Type I and II attacks coming from different partitions.

There are several advantages of this scheme. First, every IBA packet should

carry a partition key while other IBA Keys may not be carried, so it is easy to

enforce security throughout the network. Second, since the number of partitions are

often small, the number of secret keys will not be so large, thus requiring a small

amount of space for the key management. Last, this key management makes use of

the well-defined key management mechanisms of IBA by adding one more column into

the existing Key tables. The current IBA key management, therefore, can successfully

manage new secret keys along with its IBA Keys. However, this key management has

a disadvantage in that it cannot block attacks originating from the same partition.

This is because CAs automatically decrypt and authenticate incoming packets as long

as the packets have the same P Key as the CA.

b. Queue Pair-Level Key Management

In order to remove aforementioned threats inside the partition, we alternatively pro-

pose Queue Pair (QP)-level key management scheme; two connection-oriented QPs

share a temporary secret key, referred to as a session key, and a connectionless QP

has its own secret key that can be sent to other connectionless QPs. There are two

benefits by implementing the QP-level key management. One is that even in the same

partition Type I and II attacks are not viable without a legitimate QP secret key. The

other benefit is that it also removes additional threats resulting from the exposure of

other IBA Keys. For example, even if an R Key is exposed to a hacker, he cannot

20

access the corresponding remote memory without the QP’s secret key. Therefore,

QP-level key management provides fine-grained key management enough to secure

all communications in IBA.

c. Initial Key Distribution

To use the aforementioned key management schemes, it is necessary to distribute

secret keys securely. We first define two basic keys, a CA secret key (CA SK) and an

SM secret key (SM SK), on which subsequent key distributions depend. A CA SK

is a unique secret key assigned to each CA by its manufacturer and stored in each

CA’s tamper-resistant storage.† A manufacturer passes this key offline, assumed to

be secure, to an IBA cluster administrator. Therefore, since the administrator has

all secret keys of CAs in the cluster, he can access any CA using the CA’s secret key.

The other basic key, SM SK, is assigned to each subnet by the administrator and

stored in SM’s CA. Then, the SM distributes its secret key to all CAs in its subnet

as follows:

(1) SM sends SM SK to all CAi in the subnet:

ECA SKi
(SM SK)

(2) CAi decrypts SM SK:

SM SK = DCA SKi
(ECA SKi

(SM SK))

Note that MAC is not described for simplicity and EK(T) and DK(T) represent

that a plaintext, T, is encrypted and decrypted by a secret key, K, respectively. Since

the SM SK is encrypted using the receiving CA’s secret key, the distribution is secure.

The decrypted SM SK is stored in each CA. One concern in storing the SM SK in

†All the following secret keys will be stored in this storage, too.

21

CAs is that a non-SM node might use the SM SK inappropriately. Therefore, each

CA needs to be hardwired so as not to decrypt or authenticate normal packets using

the SM SK. If there are multiple subnets in an IBA network, each subnet has its own

SM SK, and SMs should communicate securely with each other. For this purpose,

the administrator defines a shared SM secret key, SSM SK, to be shared by all SMs.

d. Partition-Level Key Distribution

In the partition-level security, a partition secret key, P SK, is created and distributed

as follows:

(1) SM sends P SK to all CAs in the subnet:

ESM SK(P SK)

(2) CAi decrypts P SK:

P SK = DSM SK(ESM SK(P SK))

When a partition is created across several subnets, one SM transfers the P SK to

other SMs to distribute it inside their own subnets.

(1) SM sends P SK to all SMs in other subnets:

ESSM SK(P SK)

(2) SMj decrypts P SK:

P SK = DSSM SK(ESSM SK(P SK))

(3) SMj sends P SK to CAi in the subnet:

ESMj SK(P SK)

(4) CAi decrypts P SK:

P SK = DSMj SK(ESMj SK(P SK))

22

From now on all communications inside the partition can be encrypted and authen-

ticated by P SK.

e. Queue Pair-Level Key Distribution

For QP-level security, there are two secret key setup processes depending on the type

of communication. When a consumer wants a connection-oriented communication,

the source CA creates a session key randomly and then sends a request message

(REQ) containing the session key to a destination CA. If the destination CA accepts

the request, the CA creates a connection-oriented QP and decrypts the session key and

then replies with a reply message (REP) containing the destination QP’s information.

The session key is used to encrypt and authenticate all the following messages between

the two QPs.

To protect the session key distribution, we assume every pair of CAs in a partition

has a unique secret key. Let CA SKij be a secret key for communication between CAi

and CAj and CA SKij = CA SKji. Therefore, an REQ from CAi to CAj is encrypted

using CA SKij. The SM generates all n-to-n keys and distributes the keys to all CAs

beforehand. Based on this secret key, the session key distribution is described as

follows:

(1) CAi sends an REQ message to CAj containing a session key, SKl:

REQ(. . . , ECA SKij
(SKl))

(2) CAj decrypts SKl:

SKl = DCA SKji
(ECA SKij

(SKl))

(3) CAi sends data to CAj: ESKl
(Data)

(3)’ CAj sends data to CAi: ESKl
(Data)

23

After step (2), CAi and CAj can send data using SKl at any time in step (3) and

(3)’.

In contrast to a connection-oriented QP, a datagram QP can communicate with

more than one QP. To control accesses to this QP, each datagram QP carries the

destination QP’s Q Key and an access to this QP is allowed only if the Q Key in the

requesting packet is the same as the one in the receiving QP. Therefore, before two

datagram QPs send data, they need to exchange packets to know each other’s Q Key.

As noted earlier, the Q Key in the packet is also plaintext, so it is vulnerable to the

capturing attack. To prevent this problem, we propose a secret key be assigned to

each Q Key and exchanged. The following explains a reliable datagram QP’s commu-

nication establishment steps. In an unreliable datagram communication, SIDR REQ

and SIDR REP are used instead of REQ and REP.

(1) CAi sends an REQ message to CAj containing a session key, SKl:

REQ(..., Q Keylocal, ECA SKij
(SKl))

(2) CAj decrypts SKl:

SKl = DCA SKji
(ECA SKij

(SKl))

(3) CAj sends an REP message to CAi containing another session key,

SKr:

REP(..., Q Keyremote, ECA SKji
(SKr))

(4) CAi decrypts SKr:

SKr = DCA SKij
(ECA SKji

(SKr))

(5) CAi sends data to CAj:

ESKr
(Data), Q Keyremote

(5)’ CAj sends data to CAi:

24

ESKl
(Data),Q Keylocal

The space to store a 128 bits session key in request and reply packets is available

in the PrivateData field in the packet formats. The space overhead for storing 1-to-n

secret keys, CA SKij, in each CA is 128 bits times the number of CAs in its partition.

If a partition consists of 210 CAs, the total space is 20K bytes including 32 bits MAC

for each secret key. If the tamper-resistant storage cannot hold all secret keys, they

can be stored in normal memory in encrypted form.

The initial overhead for generating and distributing all CA SKs is analyzed as

follows. Those secret keys are random numbers and they can be generated by the AES

function in CTR mode [33]. In a partition with 210 CAs, the total number of SA SKs

is 218. Since a recent hardware implementation of AES can encrypt at 30∼70 Gbps, it

can generate all the secret keys within a second, assuming that the length of a secret

key is 128 bits long. An SM needs to distribute the all secret keys sequentially. If an

IBA cluster has 2.5 Gbps link, assuming a 1024 bytes long packet is carrying a secret

key, it will take also less than one second to send out all the packets. Considering

fairly long operation time of cluster systems, our approach is scalable to even larger

networks since such a small initial overhead will be easily amortized.

2. Message Encryption and Authentication in IBA

Now, we will explain where an MAC is to be located in each packet and show an

example of how an authenticated encryption algorithm, GCM, is integrated into IBA.

Cyclic Redundancy-Check (CRC) codes are widely used for error detection on

data communication. IBA defines three types of CRC: Invariant CRC (ICRC), Vari-

ant CRC (VCRC), and Link Packet CRC (LPCRC) as shown in Fig. 2 (Only ICRC

and VCRC are depicted). ICRC covers all invariant fields from Local Route Header

25

LRH GRH BTH ETH Data Symbols I Data ICRC
/MAC VCRC

Fig. 2. IBA packet format with Message Authentication Code. ICRC covers all in-

variant fields from LRH to I Data to detect errors on the data communication.

Since ICRC does not change end-to-end, we propose to use this field as the

MAC location that will carry MAC in the security enhanced IBA (LRH: Local

Route Header, GRH: Gobal Route Header, BTH: Base Transport Header, ETH:

Extended Transport Header, ICRC: Invariant CRC, VCRC: Variant CRC).

(LRH) to I Data, not covering variant fields that switches or routers can change. In

contrast, VCRC covers the LRH up to the last byte before the VCRC. If some fields

are changed in a switch or a router, the VCRC is calculated again. LPCRC is present

at the end of all Link packets. The only Link packet in the current IBA specification

is the flow control packet, so we do not consider LPCRC.

Our main idea is to use the ICRC field as the MAC location depicted in Fig. 2.

We can gain the following two advantages in using the ICRC field. First, ICRC does

not change from end to end. It only covers static fields, so it can be considered as a

transport-level CRC. Since the authentication is an end-to-end transport feature, the

ICRC field is a nice fit for the MAC location. The second advantage is that we do

not have to change the IBA packet format, which is extremely important. By having

ICRC as a default and MAC as an option, the original drivers that use ICRC do

not have to be changed. Therefore, our idea will become fully compatible with the

current IBA.

To accommodate various authentication algorithms, Reserved field of Base Trans-

port Header (BTH) is used to identify authentication algorithms. BTH is a basic

header that every transport packet carries. If the value is zero, the packet is using

the original ICRC. Non-zero value indicates that an authentication algorithm is in

use and a MAC is stored in the ICRC field. This can be exploited to provide an on-

26

demand authentication service. For instance, suppose in a partition a very important

job is running. The administrator can enable authentication for that partition by

using MAC instead of ICRC. Since the authentication can be disabled and enabled

at any time, our mechanism provides the flexible authentication service.

Although any encryption/authentication algorithm can be used for secure IBA,

it will be very helpful to take one algorithm and show its performance because we can

estimate the performance impact of our approach in real systems. We choose GCM

since it has two main advantages in terms of security and speed. Security strength

of GCM is the same as the strength of its block cipher [34, 23]. Since we use AES

in this research and it is considered to be secure without any serious weakness until

now, the confidentiality of each IBA packet can be improved greatly. With duplicate

hardware, the whole authentication can be done in parallel in several additional cycles

after AES computation [23].

Fig. 3 depicts the architecture of GCM to encrypt and authenticate packets

using AES. Packet Sequence Number (PSN) and its sequential numbers are encrypted

and XORed with plaintexts to generate ciphertexts. The header of a packet and

ciphertexts are multiplied in GF (Galois Filed) to generate an MAC. This architecture

can fully utilize the pipelined AES as shown in Fig. 3(a). The parallelism can be

further exploited by the use of the multiple encryption units depicted in Fig. 3(b).

12X IBA network can be extended in the same way. Note that the only Tag calculation

requires the previous results. The performance overhead coming from this delay will

be analyzed in Section G.

3. Stateful Ingress Filtering

Until now, we described how to provide confidentiality and authentication services in

IBA. In this section we explain how to mitigate the DoS (Type IV) attack problems

27

Receiver

PSN

E[1]

. . .

Tag32

Tag32

=

Authenticated

Yes

Transmission

Sender

EK()

Header

M[1]

PSN+1

EK()

MultH

E[m]

M[m]

PSN+m

EK()

MultH

E[2]

M[2]

PSN+2

EK()

MultH MultH

PSN

M[1]

. . . EK()

Header

E[1]

PSN+1

EK()

MultH

M[m]

E[m]

PSN+m

EK()

MultH

M[2]

E[2]

PSN+2

EK()

MultH MultH

(a) 1X GCM

E[m]

M[m]

PSN+m

EK()

MultH
MultH

E[m-1]

M[m-1]

PSN+m-1

EK()

E[m-2]

M[m-2]

PSN+m-2

EK()

MultH

E[4]

M[4]

PSN+4

EK()

E[3]

M[3]

PSN+3

EK()

E[2]

M[2]

PSN+2

EK()

��������������������

��������������������

��������������������

��������������������

Header

MultH

E[1]

M[1]

PSN+1

EK()

E[m-3]

M[m-3]

PSN+m-3

EK()

MultH

Tag32

EK()

PSN

(b) 4X GCM

Fig. 3. GCM architecture using AES. In the sender side, an original data,M , is divided

into multiple 128 bits long messages, M [1], M [2],..,M [m]. This substring is

encrypted by XORing the result of encryption of PSN+i. The first input

of MultH is the header of the packet and subsequent inputs are encrypted

substrings, E[i]. Note that due to the pipelining capability of recent AES

and MultH hardware, adjacent substrings are encrypted and authenticated in

parallel with a small pipelining delay. Receiver’s architecture is almost similar

except that E[i] and M [i] are switched. 4X GCM utilizes four AES hardware

to keep up with 4X InfiniBand speed. Since there is no dependence between

AES blocks, it can get nearly linear speed-up.

28

Table I. Partition enforcement overhead

DT IF SIF

one switch mem r · p · k n
s
· p · k n

s
·Min(p′, p) · k

all switches mem r · p · s · k n · p · k n ·Min(p′, p) · k

Look-up/pkt h · f(p) f(p) Pr(n) · f(Min(p′, p))

for better availability.

This vulnerability stems from the fact that IBA Key checking is done in desti-

nation nodes. A straightforward remedy is to make all switch ports filter out packets

carrying illegal Keys. We call this method Duplicate Table (DT) scheme. However,

this is very inefficient in terms of memory usage and network performance because

every switch port has to maintain a partition table and all packets should be checked

at every hop. For example, when a network consists of n nodes and s switches with

r ports and all nodes join the same number of p partitions and k is the length of a

partition key in bytes, each switch will need r · p · k bytes to store partition tables,

which means r · p · s · k bytes will be used in total for the whole network as shown

in Table I. Let f(i) be the time that a table look-up function, f , takes to search an

entry from a table having i entries. DT will take f(p) at every hop, thus requiring

h · f(p) to route a packet to a destination with h, an average of hop counts.

To remove high overhead of DT, Ingress Filtering (IF) commonly used on the

Internet can be adopted in IBA. In IF, the packet filtering is applied to ingress ports

that are directly connected to nodes. If all invalid P Key packets are filtered out at

ingress ports, it is not necessary to check at intermediate hops. Therefore, IF can

increase the memory and network efficiency by using less memory and taking shorter

time as shown in Table I where n
s
is the average number of nodes directly connected

29

to per switch.

Still, however, there are redundant operations in IF because it is necessary to look

up P Key tables in all ingress ports regardless of whether a DoS attack is occurring

or not. To remove such redundancy, we propose Stateful Ingress Filtering (SIF) that

filters attacking traffic only when attacks are active. To decide when and where to

enable filtering, we propose to use a trap message. In IBA, when an incoming packet’s

Key does not match the receiver’s Key, the receiver optionally sends a trap message

to its SM. We suggest this trap message convey the invalid Keys and the packet’s

source address. When the SM receives the trap message, it will find the switch port

connected to the attacking node and enables the filtering of the port.

Note that this filtering needs invalid Keys, not valid Keys. Since the current

IBA switches have a table of valid P Keys designed for the partition enforcement, we

introduce a table of invalid P Keys, referred to as Invalid P Key Table. When the

SM receives a trap message, it registers the invalid P Key to its Invalid P Key Table.

To disable this filtering when attacks end, we define Ingress P Key Violation Counter

in switch ports. It counts the number of invalid P Keys sent from the filtered node.

If the Ingress P Key Violation Counter does not increase for some time, the con-

tents of Invalid P Key Table will be flushed and the ingress filtering will be disabled.

Consequently, since SIF will be activated only when a node is injecting packets with

invalid P Keys and only where attacking traffic is coming from, it will eliminate all

redundant filtering operations of DT and IF.

One concern is that the Invalid P Key Table might grow bigger than the valid

P Key Table as an attacker uses many invalid P Keys. In this case, to prevent the

long table look-up time, the ingress filtering needs to look up P Key Table to pass

legitimate traffic with valid P Keys. The Ingress P Key Violation Counter still needs

to be counted because if it does not change for some time, the switch’s port has

30

to return to the normal operation. When disabling filtering, it is necessary to flush

Invalid P Key Table and reset Ingress P Key Violation Counter. Due to this, any

attempts to stage a DoS attack on the SM by triggering multiple trap messages will

also be blocked soon. This is because once the number of invalid P Keys becomes

larger than the valid P Key Table, packets only with valid P Keys will be passed.

SIF’s overhead depends on how often DoS attacks are occurring and how many

invalid P Keys are used for the attacks. Let Pr(n) be the probability that one node

joins a P Key attack and let p′ be the number of invalid P Keys used in the P Key

attacks. The memory overhead for one switch is n
s
·Min(p′, p) · k bytes and the table

look-up operation will be Pr(n) · f(Min(p′, p)) where Min(p′, p) is the minimum

between p′ and p. By limiting the maximum p′, the memory overhead will be smaller

than or equal to that of DT or IF. Furthermore, considering that DoS attacks are not

occurring often, the low Pr(n) will make the table look-up overhead of SIF negligible.

4. Source Identification Scheme in IBA

One more concern to implement the SIF is that a compromised node may use fake

source addresses, referred to as spoofing. In this case, the SIF would block wrong

ports. Since IBA allows software to choose which source address will be used in an

outgoing packet, spoofing is possible if a hacker successfully manipulates the address

information in a CA.

To remove this problem, a source identification scheme capable of tracing back

the real attackers is necessary. In [35], Aljifri categorized traceback methods into four

categories: link testing, logging, ICMP-based traceback, and packet marking. Since

link testing and ICMP-based traceback should generate additional traffic, they will

degrade the overall performance of cluster. Logging requires additional storage and

computing power in routers/switches, which are not desirable due to additional costs.

31

1111111010 54 bits of 0 64 bits of assigned value

(a) Link-local address format

1111111011 38 bits of 0 16 bits of
Subnet prefix 64 bits of assigned value

(b) Site-local address format

Fig. 4. GRH address format. GRH can be in use both within a subnet and be-

tween subnets by using link-local prefix, 1111111010, and site-local prefix,

1111111011, respecively. 64 bits are used for addressing inside a subnet and an

additional subnet address (16 bits) is necessary for addressing between subnets.

The commonly unused 38 bits of two formats can be used as MF.

In contrast, marking schemes proposed in [36, 37, 38] simply mark (or write) some

information in packets while routing the packets to help receiving nodes investigate

where the attacking traffic comes from. Since marking schemes do not cause additional

overhead except additional marking time in each switch, we choose to develop a

marking scheme in this study.

a. Marking Field in IBA

The first requirement to use any marking scheme is an additional space in an IBA

packet to mark on, referred to as Marking Field (MF). An IBA packet uses different

headers relying on where a destination node is located. If a destination and a source

nodes are located in the same subnet, LRH is enough to switch inside a subnet. But

IBA specifies that a GRH can be used within a subnet by setting the link-local prefix

to 1111111010 as depicted in Fig. 4(a). If the two communicating nodes are located

in different subnets, the GRH is necessary to route these packets properly. For this,

the destination address should set the site-local prefix to 1111111011 described in

32

Fig. 4(b). Therefore, the 10 bits prefix indicates whether a packet’s destination node

is inside the site. If a packet is leaving a site, we do not mark the packet. Otherwise,

54 and 38 bits of a destination address are set to zeroes. We suggest using the common

38 bits as the MF.

b. Deterministic Packet Marking

In a deterministic marking algorithm, each switch (or router) writes its own infor-

mation such as switch indexes in every packet’s MF. When a cluster is not so big,

end nodes and switches are usually connected in a tree structure. For example, the

lowest level switches equipped with tens of ports are connecting end nodes and those

switches are connected to upper level switches hierarchically. In this environment,

all hops can be most likely recorded in the MF. If there are n switches in a cluster,

b38/ log nc hops can be recorded in the 38 bits marking field. Alternatively, each

switch’s port index can be recorded instead of the switch index. In this method with

the 38 bits MF, b38/ log pc hops will be traced back where p is the maximum number

of ports in switches.

We show an example of a deterministic packet marking on a fat tree which is the

most popular network topology in IBA clusters. Fig. 5(a) depicts a 3-level fat tree in

a logical view. As the level goes up, the bandwidth of each link is squared to provide

non-blocking switching. Before marking packets, each port is first numbered in its

switch using log p bits where p is the number of ports in the switch. In Fig. 5(a),

two-bit port numbers are shown next to links. Accordingly, an address of a leaf node

is the concatenation of port numbers from the top level switch to the lowest level

switch. For example, the address of node 6 is (00,01,10).

To identify a source node, when a packet traverses to upper levels, each switch

writes down the index of the port that the packet comes through. For example, the

33

00 01 10 11

00 01 10 11

00 01 10 11

Node
6

(-,-,10)

(-,01,10)

(00,01,10)

1

4

16

(00,01,10)

00 00 00 00

01 01

10

(00,01,10) (00,01,10) (00,01,10)

(a) logical topology (b) an implementation using 8-port basic switches

Fig. 5. Deterministic packet marking on 3-level fat tree. As a packet goes up, each

switch marks an incoming port’s number in the packet’s MF. Marking com-

pletes when a packet reaches the top level switch. This marking scheme works

for a fat tree built by a large number of minimal basic switches since this

scheme marks only port numbers not switch indexes.

lowest switch marks 10 on packets coming from node 6, so their MF will be (-,-,10).

Then, 01 and 00 are written at the upward switches. As a result, the MF field will

have (00,01,10) at the top level switch which is exactly same as node 6’s address.

A real implementation of the fat tree using a simple small-size switch is depicted in

Fig. 5(b). Even though packets coming from one leaf node can take different upward

paths, the recorded MF values are always the same because each switch records a

port number, not a switch index. As described in Fig. 5(b), although packets from

node 6 take four different paths, all the recorded values are (00,01,10). When the

maximum number of ports is p, a 38 bits long MF will record at most b38/ log pc

hops. Assuming all intermediate nodes are switches and leaf nodes are computing

nodes or storage nodes, the maximum size of cluster which the 38 bits MF supports

is pb38/ log pc as summarized in Table II.

However, when a cluster consists of tens or hundreds of thousands of nodes with

regular interconnects such as mesh and hypercube, the average number of hops be-

comes so large that deterministic packet marking schemes cannot work. For example,

34

Table II. Scalability of Deterministic Packet Marking scheme

Topology Max ports per switch Max Cluster Size

fat-tree p pb38/ log pc

the diameter of a 20×20 mesh network is 39 where diameter is the longest hop in

the shortest paths between any pair of nodes. Furthermore, when the routing is not

static but adaptive, recording all hops becomes impossible because a routing path can

be much longer than the shortest path depending on the current network condition.

Therefore, the deterministic marking schemes will be inapplicable to large networks

with regular topologies or adaptive routing schemes.

c. Deterministic Distance Packet Marking

To alleviate this problem, we propose the Deterministic Distance Packet Marking

(DDPM) scheme. This scheme records only relative distance from the current position

of a packet to the source node without keeping track of intermediate paths. For

example, in an n-dimensional mesh, we locate a node, X by using its coordinate,

(x0, x1, ..., xn−1). A relative distance between two nodes, X (x0, x1, ..., xn−1) and Y

(y0, y1, ..., yn−1), can be defined as a vector V (v0, v1, ..., vn−1) where vi = yi - xi. This

vector is the coordinate difference. There is a unique distance vector between any two

nodes in the network. That is, with a distance vector V , node Y identifies a unique

node, X.

35

Inputs: Destination D (d0, d1, ..., dn−1)
Current X (x0, x1, ..., xn−1)

Output: Next Y (y0, y1, ..., yn−1)
Source S (s0, s1, ..., sn−1)

Variables: Distance V (v0, v1, ..., vn−1)
New distance V ′ (v0′, v1′, ..., vn−1′)
Difference ∆ (δ0, δ1, ..., δn−1)

Procedure:
if X = D then

V := Extract MF();
S := X - V ;
exit;

endif
Y := Routing(V);
V := Extract MF();
∆ := Y - X;
V ′ := V + ∆;
Store MF(V ′);
exit;

Algorithm 1. Deterministic Distance Packet Marking

In each hop, each packet’s distance vector is updated. V is set to a zero vector

when a packet first enters a switch from a node, which is hardcoded in switch or

CA. After the switch decides the next hop, it updates the distance vector. In regular

networks, a packet moves by one hop in one dimension at each switching. Therefore,

at each hop, one vi is added or subtracted according to the routing direction. After a

switch stores the new distance vector V in the MF, the switch transmits the packet

to the next switch. The full algorithm is described in Algorithm 1. Routing() is

a function that returns the next node coordinate. Extract MF() returns a distance

vector from the GRH header, and Store MF() stores it in the header. Regardless of

intermediate routing paths, the final distance vector V is the exact difference from

the source to the destination node. Therefore, the destination can identify the source

node instantly with only one packet.

Fig. 6(a) shows an example that a packet traverses a 2-D mesh adaptively from

(1,1) and (2,3).

36

0,0

1,0

2,0

3,0

0.1

1,1

2,1

3,1

0,2

1,2

2,2

3,2

0,3

1,2

2,3

3,3

(0,0)

(1,0)

(2,0)(2,-1)

(1,-1) (1,1) (1,2)

000 010

001 011

100 110

101 111

(0,0,0)

(-1,-1,0)

(0,-1,0)

(0,-1,1)

(-1,0,0)

(-1,0,1)

(0,0,1)

(a) 4×4 mesh (b) 3-hypercube

Fig. 6. An exmaple of deterministic distance packet marking. When a packet traverses

through switches, each switch calculates the difference between its own coor-

dinate and a neighboring switch passing the packet. The difference is added

up to the current distance vector to update the MF. The receiving node easily

identifies the source node by subtracting (or XORing) the distance vector from

the receiving node’s position. Note that this marking algorithm is robust to

any adaptive routing algorithms which allow looping as shown in (a).

The distance vector changes as following: (0,0), (1,0), (2,0), (2,-1), (1,-1), (1,0),

(1,1), and (1,2). When (2,3) node receives the distance vector (1,2), it can subtract

(1,2) from (2,3) and quickly identify the source (1,1). In the hypercube in Fig. 6(b),

the distance vector changes as following: (0,0,0), (1,0,0), (1,0,1), (0,0,1), (0,1,1),

(0,1,0), and (1,1,0). (0,0,0) can identify the source (1,1,0) by XORing its coordinate

(0,0,0) and the distance vector (1,1,0). Note that in hypercube XOR is used instead

of subtract.

The DDPM can support a larger number of nodes compared to the deterministic

marking algorithm regardless of routing policies. To support n×n 2-D mesh and torus,

the half of the 38 bits MF contains the distance in one dimension. The distance can

be negative, so 218× 218 2-D mesh and torus networks can be marked by the DDPM.

For a 3-D mesh and torus, the DDPM can mark 211× 211× 211 networks by splitting

37

Table III. Scalability of Deterministic Distance Packet Marking scheme

Topology Required Field Max Cluster Size

n× n mesh, torus 2 log n - 2 218 × 218

n× n× n mesh, torus 3 log n - 3 211 × 211 × 211

n-cube hypercube log2n 238

the MF into three parts (233 nodes cluster). For the hypercube, the whole MF can be

used for the distance vector, so the DDPM can mark 38-cube hypercube (238 nodes

cluster). Table III summarizes these facts.

F. Security Analysis

• Defending Attacks

Type I attack : As we showed an example in Section 2, GCM encrypts using

AES with the CTR mode considering a PSN as a counter. Since AES is considered to

be secure without any serious weakness until now, the brute-force attack is believed

to be the most effective attack. When a 128 bits key is used, on average 2127 trials are

needed to find the key, which is infeasible in the foreseeable future. Another concern

is the multiple use of the same PSN since it will expose partial information of original

plaintexts even though the amount of information is not much. Suppose E1 and E2

are two different ciphertexts using the same counter C and the same secret key, K.

If a hacker gets these two ciphertexts and XOR them, he will get an XOR of two

original plaintexts by clearing out the keystream.

In the QP-level key management, since a new session key is assigned to a new

communication session, the multiple use of the same PSN will not cause this problem.

However, it does in the partition-level key management since multiple consumers will

38

use the same key. To avoid the problem, we propose a 128 bits random number be

created and shared during a communication set-up phase. The use of a PSN along

with a random number as an input to AES will remove the concern except when

any two random numbers happen to be the same, called collision. The probability,

Pcollision, that any two random numbers out of given n integers with range [1,d] are

same is approximated as in equation (3.1) [39].

Pcollision = 1− e−(n(n−1))/2d (3.1)

Suppose 210 nodes keep sending packets at their full speed in 1X IBA (2.5 Gbps) for

ten years and the average length of packets is 1024 bytes. During the time, around

261 random numbers will be generated. Therefore,

Pcollision = 1− e−(261(261−1))/2129

≈ 0.0078

Considering the normal amount of traffic, Pcollision will be far less than this approxi-

mation. Therefore, the proposed encryption scheme will be secure in the foreseeable

future.

Type II attack : Any MAC algorithms using 32 bits MAC can be used to

remove Type II attack. It is known that the security strength of GCM is the same

as the strength of its block cipher, AES [34, 23]. As Hellekalek et al. concluded that

pseudorandom numbers generated by AES are indistinguishable from real random

numbers [33], a 32 bits tag generated by GCM using AES is a near random number.

Therefore, on average after 231 trials, a hacker can successfully make an authentic

MAC without a legitimate key. In an IBA cluster with 2.5 Gbps link, assuming all

packets are 1024 bytes long, 218 packets can be generated in one second. This means it

will take the hacker about less than three hours to spoof a packet. However, note that

the attacker should send wrong MACs 231 times on average before he succeeds. These

39

attacks can be detected by issuing an alert in a case of consecutive authentication

errors.

Type III attack : The DDPM described in Section 4 can trace back the original

location of an attacking node, which is robust to fake addresses.

Type IV attack : The SIF blocks DoS attacks which are using illegal Keys.

• Replay Attacks

In replay attacks, a hacker captures a packet carrying a legitimate MAC and keeps

sending it to disrupt the network. Our authentication scheme is vulnerable to this

attack because the proposed scheme is per packet authentication method. Therefore,

repeated packets will be considered as authentic due to the legitimate MAC. Among

possible approaches, timestamps can be deployed in IBA clusters [40]. In the times-

tamps scheme, a sending node inserts a timestamp into each packet and a receiving

node checks whether this timestamp is sufficiently close to the local time. For sure,

the timestamps should be included for generating MACs to prevent false timestamps.

There are two basic requirements to use this scheme. One is that communication

nodes should be synchronized and the other is that each packet should have a space

to carry a timestamp. In a cluster system, the global time synchronization is rather

easy because time synchronization packets can be broadcasted periodically with a

very short delay. Concerning the space, as we mentioned in Section 4, the GRH can

be used in every packet and some bits out of MF can used to store a timestamp

as long as the rest of MF bits support the network. For example, 4K nodes mesh

network requires 14 bits as a marking field. Then, 24 bits can be used as a timestamp

space and it will wrap around in 194 days when the time granularity is second. If

the network is huge and the administrator is more concerned about the replay attack

than type III attack, the source identification scheme may be disabled and the whole

40

38 bits can be used for timestamps, which will make the wrap-around time thousands

of years.

• Tamper-Resistant Storage

As we assumed before, each device has tamper-resistant storage. This storage

is usually built using battery backed RAM (BBRAM) [41]. Its contents will be in-

stantly zeroed by cutting off the power supply once a tamper is detected. FIPS 140-1

recommends BBRAM to store sensitive data [42]. The contents of BBRAM should

be toggled periodically because if the same data is stored for a long time the contents

can be imprinted into RAM. In addition, each device should be hardwired to keep any

secret information on BBRAM only accessible through its subnet manager. Finally,

all secret keys stored in devices’ BBRAM will be protected against any software and

physical attacks.

G. Performance Analysis

1. Simulation Testbed

Our IBA testbed includes packet-level switches and host channel adapters compliant

with the IBA specification [30]. For our experiments, we simulated a 16-node network

designed using 5-port switches. To simulate the Single Data Rate (SDR) and Double

Data Rate (DDR), we use high bandwidth physical links up to 60 Gbps (DDR 12X).

For performance analysis, we use best-effort traffic only.

2. Performance Slowdown by Encryption & Authentication

To see the impact of encryption/authentication scheme, we compare end-to-end la-

tency. All delays of security operations are added up to the total latency. A recent

41

�

�

�

�

�

��

��

��

��

��

��

�� ��� ��� ��� ����

�	
���������������

�
�
��
��
�
�
��
	

�
��

�
�

�����
���� ��
����

�

���

�

���

�

���

�

���

�

���

�	
���

�����

		
���

���

�	
���

����

		
���

����

�	
����

����

		
����

����

�
�
��
��
�
�
��
	

��
�
�
�

����������� ��������

(a) 2.5 Gbps IBA (b) 48 Gbps IBA, 256 Bytes packet

Fig. 7. Performance slowdown due to security operations. (a) Security configuration

where both encryption and authentication are enabled incurs relatively small

overhead ranging from 0.7% to 12.4%, compared to No Security configuration.

(b) As IBA network speed increases, the performance overhead of Security con-

figuration also increases proportionally. However, since the additional overhead

is still nanoseconds scale, Security configuration will be practical.

design of AES can encrypt 30∼70 Gbps using 0.18µm CMOS with 80 ns of initial

latency [43, 13]. We call this initial latency AES latency. This means that at the

sender in Fig. 3(a) it takes one AES latency to get E[1] at the first encryption. The

subsequent encryptions till E[m] are pipelined with no delay. According to [23], a

parallel implementation of multH can keep up with any pipelined implementation of

AES. Calculating Tag requires one more multH latency because it should wait until

the completion of E[m] in our simulation. So we set the total additional overhead to

320 ns per packet. We assume that the table look-up time for partition- or QP-level

secret key is negligible. If there are a huge number of QP-level secret keys, it will be

necessary to take the look-up time into account.

Fig. 7(a) shows the overall network performance slowdown incurred by encryption

and authentication. No Security represents the original IBA configuration without

any security function enabled. In the Security configuration, all encryption/authentication

42

are enabled. As the packet length increases from 64 bytes to 1024 bytes, the average

latency decreases proportionally from 12.4% to 5.5%, 2.6%, 1.2%, and 0.7% since the

additional delay is constant to the packet length.

To see the effect of our scheme on very high speed networks, we simulate up to

60 Gbps (DDR 12X IBA). To rule out network congestion effect, we scaled down the

injection rate in high speed networks. The packet length is set to 256 bytes as default.

As shown in Fig. 7(b), the proportion of security overhead is increasing because the

320 ns AES latency is not changing while the average network latency decreases.

Even though our scheme incurs more performance overhead proportionally in high

speed IBA networks, the total additional latency is shorter than one microsecond,

hopefully making our scheme still practical.

3. Stateful Ingress Filter Simulation

To investigate the effectiveness of the SIF, we compare the SIF with the DT and

the IF. When DoS attacks are very rare or not happening, the SIF is definitely the

most efficient because it induces no delay while the DT and the IF require constant

additional delay regardless of the occurrence of DoS attacks. In the DT, all switch

ports compare each packet’s Key with valid Keys stored in switches while in the IF

only ingress switch ports do so. According to the IBA specification, each port can

have at most 32768 P Keys, so the maximum size of memory to store all the P Keys

is 64K bytes because one P Key is 16 bits long. Considering that the QP-level key

management can be enabled and the number of QPs is much larger than that of

P Keys, we assume the size of storage for holding all Keys is 1024K bytes in our

simulation. According to a cache access model [44], 1024K bytes SRAM memory

can be accessed within 5 ns. Therefore, the DT has 5 ns additional delay at every

switching port while the IF has the delay only at ingress ports.

43

0

20

40

60

80

100

120

140

160

T
o

ta
l L

a
te

n
cy

 (
u

s)

Origianl

DT IF SIF Origianl

DT IF SIF Origianl

DT IF SIF Origianl

DT IF SIF

Input load: 40% Input load: 50% Input load: 60%

Input load: 70%

(b) IF

(a) Performance comparison among Original, DPT, IF, and SIF (c) SIF

Fig. 8. Effect of SIF. (a) DT, IF, and SIF block DoS attacks successfully and show

little difference in terms of total latency except at the input load 70% where

SIF shows the best performance. Note that since SIF is enabled only when

there are active DoS attacks, SIF will show the best performance in normal

situation. (b) and (c) shows the distribution of end-to-end latency. Since IF

blocks all DoS traffic from coming into IBA network, there is no difference

in end-to-end latency as shown in (b). However, SIF allows DoS traffic for

short time. Due to this, there are high spikes of end-to-end latency in (c). All

static methods, DPT and IF, have to incur constant overhead regardless of the

occurrence of DoS attacks.

We simulate a DoS attack in the middle of the simulation and measure the average

end-to-end delay in four configurations: Original, DT, IF, and SIF shown in Fig. 8(a).

The simulation consists of four sets of simulations varying the input load from 40%

to 70%. The first four bars in the figure are tested with input load 40% and so forth.

The first bar of each set shows the average end-to-end latency under a DoS attack in

the original configuration. As the input load increases, the network performance is

further deteriorating. This is because the DoS attack saturates the already heavily

loaded network by injecting more traffic, thus resulting in significant delays of normal

traffic. The second and third bars of each set show the average delay of the DT

44

and the IF. Since they block all illegal traffic, their latencies are not affected by the

attack. However, redundant P Key table look-up operations incur some amount of

delay. Especially, under the heavy traffic, their filtering overhead results in longer

delay than the SIF. The fourth bar is showing the performance of SIF. Note that the

SIF enables port filtering only when a DoS attack is active. Therefore, with SIF there

is a delay to register an illegal Key in appropriate ingress ports after detecting the

illegal key. During the time, the attack affects other normal traffic even though its

overhead is small. Fig. 8(c) shows that the SIF blocks the traffic instantly but the

delay results in high spikes of end-to-end latency in the middle the simulation. In

contrast, the IF in Fig. 8(b) does not have such variations. This explains that the

average latencies of the SIF for the input load with 50% and 60% are slightly longer

than those of the DT and the IF

However, even with this effect the SIF in the input load 70% shows the best

performance. This implies that the ingress filtering in the DT and the IF can make

a tangible effect on heavily loaded networks. Standard deviations of the SIF at 40%

and 50% input load are around 14 and 11, standing higher than those of the DT and

the IF, around 5 and 8, due to the short-lived DoS attack. But at the high load up to

70%, standard deviations for all methods become much bigger because of high traffic.

H. Conclusion

This paper addresses a security provisioning framework for secure IBA. We have ar-

gued that the security vulnerability inside IBA can be a serious problem and proposed

a comprehensive framework to enhance IBA security in view of confidentiality, au-

thentication, and availability. For confidentiality and authentication, we proposed

partition-level and QP-level secret key management schemes and showed how IBA

45

accommodates GCM with minor modification to the IBA specification. For better

availability, we proposed a stateful ingress filtering scheme which is enabled only when

there is a DoS attack using invalid IBA Keys. The packet marking algorithms further

improve the availability by identifying source nodes instantly.

The important conclusions of this work are the following: First, we elaborated

on the IBA Key exposure problem and simulated possible DoS attacks inside IBA

cluster systems. Simulation results showed that overall performance can be affected

significantly. Second, we also showed that the overall performance overhead by adopt-

ing an encryption and authentication algorithm into IBA clusters can be as low as

0.7%. Considering the security strength of GCM with AES, our scheme improves

the security of IBA significantly with marginal performance degradation. Third, our

stateful ingress filtering incurs a low performance overhead by being active only when

necessary. Furthermore, our source identification algorithm successfully identifies real

attackers in large irregular networks and huge regular networks having 236 nodes with

2-D mesh and torus topology or 238 nodes with hypercube topology.

We are currently examining a number of possible extensions of this work. First,

we would like to implement our ideas and build a real testbed. Second, we will

extend our research to other cluster interconnects like Quadrics, Myrinet, and Gigabit

Ethernet. Since they have common contraints such as the speed limitation on security

operations, the hardware approach used in this research will be applicable to other

interconnects. Third, in a very large size IBA cluster, the number of QP-level secret

keys become so big that its look-up time is expected to become longer. For this,

we are investigating a fast secret key management with architectural support. Last,

since the OS can get much benefit from the proposed secure IBA for better cluster

security, we plan to investigate this possibility.

46

CHAPTER IV

A SESSION KEY CACHING AND PREFETCHING SCHEME FOR SECURE

COMMUNICATION IN CLUSTER SYSTEMS

A. Introduction

Cluster systems have emerged as the most cost-effective solution for many kinds of

applications and services. As many institutes like banks, military, and government

agents that can be targets of intensified terrors adopt cluster systems, the importance

of cluster security increases significantly. Besides, ordinary hackers are also attracted

to cluster systems because they can stage a massive security attack by utilizing abun-

dant resources such as huge computation power, large disk space, and high speed

networks. Unfortunately, traditional security countermeasures like firewalls and in-

trusion detection systems (IDS) are not sufficient to provide complete security for

cluster systems, as shown in the past successful attacks on cluster systems [45].

Among many possible attacks, we focus on physical and software attacks on clus-

ter communications∗. Physical attacks on cluster communications capture or modify

data from cluster interconnects through a snooping device attachable to the intercon-

nects. Since all cluster communication messages are plaintext, one successful physical

attack will leak a significant amount of information from cluster systems. In a recent

survey questioned to supercomputer administrators [46], 8 percent of respondents re-

ported that there were unlawful physical approaches to their systems, and another 8

percent told that someone had tried to bribe inside personnel to help them infiltrate

cluster systems. Considering tremendous aftereffects of physical attacks, the percent-

ages do not seem negligible at all. Moreover, as shown in [5], cluster interconnects can

∗Cluster communication in this paper is equivalent to intra-cluster communication.

47

be used to connect multiple clusters and storage systems, inevitably having its cable

vulnerable to possible physical attacks. Therefore, we believe that the possibility of

physical attacks cannot be overlooked any more, so the attacks should be prevented

with great care.

Meanwhile, software attacks on cluster communication are done by a hacker who

acquired a cluster account illegitimately and logged into a cluster node as a normal

cluster user. If the hacker injects or sniffs packets without constraints, the cluster sys-

tem will be compromised seriously. Note that preventing software attacks on cluster

communication can be very effective in bolstering cluster security because the hacker

may prefer such attacks to other software attacks. Moreover, the attacks on cluster

communications may be the last option for the hacker; thanks to enhanced cluster

security by using partitioning, sandboxing, multi-level security, or other confinement

schemes [47, 48, 49, 50], other possible software attacks beyond predefined resources

can be prevented. Consequently, we believe that cluster communications need to be

protected effectively against software attacks as well as physical attacks.

To prevent these attacks, in the previous chapter, we proposed a comprehensive

security framework for InfiniBand cluster systems. The framework uses a fine-grained

security scheme where any two communicating processes or queue-pairs in InfiniBand

architecture (IBA) share a session key dynamically to encrypt/authenticate all the

communications. Since in their framework the security function resides in cluster

interconnect cards (CICs), not in host CPUs, it causes no additional performance

overhead to host CPUs. However, we assumed that session keys stored in the CIC

are accessible for cryptographic operations without any delay. This assumption of

zero delay in session key access time is unrealistic for the following reasons. If the

session keys are stored in an off-chip memory in the CIC, every packet arrival incurs

an additional memory access, resulting in a very long packet processing time. Even

48

if a data cache in an embedded processor in the CIC can be used to store the session

keys, a cryptographic hardware that is usually implemented as a separate hardware

module cannot share the data cache with the embedded processor easily. As a remedy

for this, the hardware cryptographic unit can have its own cache to store recently used

session keys, referred to as session key cache (SKC). In order for the SKC to be used

in the CIC, a comprehensive study is necessary to answer the following important

questions:

• How will the CIC look like? Where are the hardware cryptographic unit and

SKC located? And what are their hardware costs in terms of area and power

consumption? If physical attacks are possible, the CIC can be vulnerable to the

attack, too. Then, what kind of security technology should be applied to the

CIC to protect the CIC from the physical attacks?

• Is a small SKC scalable to large-scale cluster systems? Will there exist any

analytic model to estimate a proper size of the SKC? What is the relationship

between the size and the hit rate of the SKC?

• If there are multiple applications (or processes) running on a node, does this

affect hit rates of the SKC? If so, is there a solution to maintain a high SKC

hit rate? Does the solution need to closely work with the OS’s schedulers? Will

the solution work well consistently with various cluster schedulers?

We attempt to answer these questions by doing rigorous research on cluster traffic

simulation and analysis. We first provide a detailed design of the CIC. Second, to

estimate the behavior of the SKC in large-scale clusters, we develop an analytical

model based on an observation that cluster traffic patterns are well fit to exponential

distributions [51]. We use this model to find out the relationship between SKC sizes

49

and hit rates of the SKC. Third, to maintain a short session key access time even in

multitasking environment we propose to incorporate a prefetch buffer in the CIC to

fetch session keys ahead of time by predicting the next scheduling decision. Finally,

to evaluate the new CIC design, we developed a trace-driven simulator by modifying

a cycle-accurate cluster network simulator that was used in [52, 30, 53]. We captured

real traces from an SGI Altix 3700 supercomputer by modifying source codes of NAS

parallel benchmarks. We also developed five schedulers: Linux local, spin-block (SB)

[54], dynamic coscheduling with spin-block (DCS-SB) [55, 56], periodic boosting (PB)

[55], and gang scheduler [57, 58].

Simulation results show that an SKC reduces security overhead on network la-

tency by 50 percent on average, compared to non-SKC configurations. In multitasking

environments, the session key prefetching scheme is helpful in reducing network la-

tency by 5 percent more on average. An analytic cache simulation estimates that a

16-Kbyte SKC can support up to thousands of session keys with high SKC hit rates.

The remainder of this chapter is organized as follows: Section B explains a threat

model of our research, and describes major challenges in providing high performance

cluster security. In Section C, we propose the design of an SKC and a prefetch

buffer, an analytical model for NAS parallel benchmarks, and a prefetching scheme.

Simulation results and their analysis are presented in Section D, followed by related

work and concluding remarks of this chapter in Sections E and F.

50

B. High Performance Cluster Security

In this section, we describe the threat model and the architectural environment of

our research, and then we advocate the CIC approach for high-performance cluster

security by comparing three possible scenarios: host CPU, security coprocessor, and

the CIC.

1. Threat Model

At first, we would like to begin with defining a threat model in order to clarify what

kinds of threats we want to defend against. As for physical attacks, we assume

the following constraints. We assume that an intruder can access a cluster system

physically and he wants to be as unobtrusive as possible in order to go unnoticed. So

he prefers installing a snooping device in the system to accessing a console connected

to the cluster system to get a root privilege or copy data from the console so that he

can steal data from the system secretly for a long time [59, 60, 61, 62, 63, 64, 65, 66,

14, 13, 67, 68]. Many previous studies have investigated physical attack prevention

mechanisms for a single system or each cluster node [59, 61, 62, 64, 65, 66]. So we

assume it is impossible to capture or modify data from processor, memory system,

memory bus, or hard drives. In addition, based on the studies of security coprocessor

and smartcard [69, 70], we also assume that the CIC has tamper-resistant mechanism

so that some part of the CIC can be physical attack-proof. As shown in Figure

9, we assume that the tamper-resistant mechanism is applied to the CIC controller

containing an embedded processor and caches, while other components like the CIC

memory and its memory bus are insecure, which is a common assumption in hardware

security research. Other cluster components including switch/router and cables are

also assumed to be vulnerable to physical attacks.

51

As for software attacks, we assume that a hacker compromised a cluster node,

so he has a full access to cluster interconnects through the node’s CIC. We assume

that a security compromise in one node does not mean that the whole cluster system

is compromised. This assumption is based on that system administrators can apply

appropriate confinement schemes such as logical partitioning, sandboxing, or multi-

level security to confine security attacks to predefined resources [47, 48, 49, 50]. We

also assume that switch/router are vulnerable to software attacks, so they can be

configured to mirror all traffic to some ports.

Interestingly, under the above assumptions, a physical intruder and a software

hacker will do a similar thing; they capture and inject packets from and to the cluster

interconnects. Through capturing attacks, they can steal data. If a cluster system

deals with confidential or classified data, data theft itself is a serious problem. Besides,

captured plaintext packets may reveal information of a global root privilege. Through

injecting attacks, they can inject new packets or modify in-transit packets. Without

a proper authentication scheme, any illegal modification on confidential data could

go unnoticed. In addition, the hacker can stage a spoofing attack using fake source

addresses so that it reaches other nodes beyond confined resources.

2. Solutions to Secure User-Level Communications

Before we propose a solution to the above mentioned security problems, we provide

the rationale behind the current design using CIC, not using host CPU or security co-

processor. First of all, it is very important to understand the main difference between

traditional communication and high-performance cluster communication. Traditional

data communication involves considerable OS interventions that need multiple mem-

ory copies, with centralized communication stack processing. A long latency with a

large overhead of a host CPU has been a big obstacle to high performance computing.

52

To solve this problem, most of high-end cluster systems have used the user-level com-

munication (ULC) including Myrinet and InfiniBand [29, 71, 72, 73, 74, 75, 12, 76],

which allows applications to bypass the OS to access network adapters directly. An

instance of the ULC usually consists of two stages: setup and data transfer. In the

setup stage, an application requests the OS for an access to its network adapter. The

OS then checks the request to guarantee the protection of the memory and communi-

cation among multiple applications, and approves the request by giving it a handler

to access the network adapter. In the data transfer stage, the application can send

and receive data directly using the handler. As a result, memory copies are reduced

dramatically because data are transferred between the application’s memory area and

the network adapter without any interventions by the OS.

An easy solution to secure ULC is the host CPU approach; before an application

sends a message, a host CPU executes a security function to encrypt it, and then a

receiving application calls another security function to decrypt the message. However,

it is well known that such cryptographic operations done by the host CPU incurs

significant performance overhead by consuming a large amount of CPU time [77,

78, 79, 80]. For example, a recent study on performance analysis of transport layer

security (TLS) web servers [78] shows in an experiment that the encryption and

authentication operations was almost the same as the original web server’s execution

time, meaning that the cryptographic operations incur 100% performance overhead.

So, it is quite obvious that such overhead will be intolerable for most cluster systems

because one of main purposes of the cluster systems is to provide high performance

computing power.

Another possible solution is the security coprocessor approach; security copro-

cessors can take over the host CPU’s cryptographic operations. In fact, this approach

was thoroughly investigated in [81]. It found out in real experiments of various secu-

53

rity coprocessors that the use of the coprocessor needs additional PCI transactions for

memory copies to/from the coprocessor and they become a limiting factor of system

performance.

By agreeing with [81]’s conclusion that the cryptographic support for secure

communication needs to be done in other places other than the security coproces-

sor, we advocate that a CIC augmented with security hardware should implement

secure ULC. This CIC approach will not need the additional PCI transactions for

memory copies. Applications can simply copy data to/from the CIC as in normal

ULC operations so that the CIC takes care of all cryptographic operations by using

the security hardware in it. Therefore, we believe that the CIC approach completely

satisfies ULC’s requirements for low latency and less OS involvement as well as meets

new demands for secure cluster systems.

C. Architectural Support for Secure Cluster Communication

In this section, we first explain the reason why we propose an SKC in the CIC for

secure cluster communication, and then we present a detailed architecture for an

SKC. Then, we develop an analytical model in order to find the right size of the SKC.

For further enhancement, we suggest a coscheduling-aware prefetching scheme.

1. Session Key Cache Architecture

In the fine-grained security scheme where a pair of communicating processes (or

queue-pairs in InfiniBand) share a unique session key as proposed in [48], each packet

needs to carry a session key identifier so that the receiving CIC can look up a corre-

sponding session key. If all the session keys are stored in an off-chip external memory,

every packet transmission requires additional delay for accessing the session keys. To

54

Prefetch
BufferSKC

General Purpose
Embedded Processor

Non-volatile
Memory

Data Link

PCI
Interface

Memory

PCI Bus

Cluster
Interconnects

Security
Unit

Bus
Interface

Memory Bus

Internal Bus

CIC Controller

TrustedTrusted
UntrustedUntrusted

Fig. 9. SKC, prefetch buffer, and security unit in a CIC.

minimize average session key access time, we propose the CIC should have an on-chip

SRAM, referred to as session key cache (SKC), for storing recently used session keys,.

Figure 9 depicts a general CIC design. The CIC controller is assumed to be

tamper-resistant while other components are not. The embedded processor is in

charge of all communication processing including packetization, connection manage-

ment, and protection, etc. Data Link unit represents any data link layer module that

manages data send/receive across physical links by doing error detection, flow con-

trol, and buffering. Security Unit controlled by the embedded processor is a generic

module for implementation of any security algorithms.

For security management, each embedded processor needs to be fabricated to

carry at least one unique secret key or a private key for protecting an initial security

setup such as distributing a system-wide secret key. To avoid the long system re-

initialization at every system rebooting, it is better for the CIC to store the system-

wide secret key and related secret information in non-volatile memory. Note that it

is necessary to encrypt/authenticate all data available in the untrusted area.

55

The SKC stores recently accessed session keys. Upon a session key cache miss,

the SKC fetches the session key from the external memory. Least Recently Used

(LRU) is used as a replacement policy to utilize temporal locality. For now, the SKC

is assumed to be a fully associative cache in which a session key can be stored at

any locations. Each cache entry should be large enough to hold one session key and

its identifier. To further increase the session key hit rate, we propose to add a small

buffer next to the SKC, called a Prefetch Buffer, that will be explained in Section 3.

To estimate our scheme’s impact on power and space of the CIC as well as

on the overall performance, we choose Galois/Counter Mode (GCM) [23] because

its authenticated encryption is enough to prevent eavesdropping and authentication

attacks described in our threat model. Its space and energy consumption are analyzed

as follows: a recently designed GCM’s throughput is about 35 Gbps at 271 MHz clock

rate, consuming around 500,000 gates [82]. According to [83], AMIS can make an

ASIC with high density (100,000 Gates / mm2) and low power (30nW/MHz/Gate

@ 1.8V) using 0.18 µm technology. By using this technology, one GCM block will

consume 5 mm2 space and 4 Watt with 271MHz clock speed. Meanwhile, we can

estimate the space and power overhead of the SKC and the prefetch buffer by using

CACTI model. An 16-Kbyte SKC with an entry size of 32 bytes needs 36.8 mm2

space and 0.347 Watt, and a 16-entry prefetch buffer needs 2.9 mm2 space and 0.132

Watt. Therefore, the total space and power for a GCM, an SKC, and a prefetch buffer

is 44.7 mm2 and 4.479 Watt, respectively.

2. Size of the SKC

A bigger SKC will increase the SKC hit rate, but its size will soon begin to matter

with the big space overhead and long access time as well as hardware cost. In this

section, we develop an analytical method to estimate a proper cache size by modeling

56

0 1 i n-1 n

n�

n�

(n-1)� (n-i)� �

(i+1)�� 2�

�0 �1 �i �n-1

�1 �2 �i+1
�n

Fig. 10. Markov chain for traffic aggregation of n processes.

process-to-process communications in cluster traffic.

One study [51] modeled and analyzed the workload characteristics of NAS par-

allel benchmarks. It showed that most benchmarks follow a traditional ON-OFF

traffic pattern. That is, each process will have a communication period ON, followed

by a computation period OFF that has few communications. The most interesting

observation in the study is that the lengths of ON and OFF are well fit to expo-

nential distributions. Owing to the distribution’s memoryless characteristic, we can

analytically model how many processes will be in ON stage concurrently. n processes

with the ON/OFF traffic pattern can be represented as a Markov chain with state

space {0, 1, . . . , n}, where n is the number of processors in a cluster system,

assuming that one process is running on each processor. A transition happens only

between adjacent states as depicted in Figure 10. State i means that the number of

processes in ON stage is i. Let λ and µ be the arrival rates of OFF and ON stage

of each process, respectively. An arrival of OFF stage initiates a start of ON stage.

Since all processes begin at OFF stage, the transition rate from state 0 to state 1,

λ0, is nλ. More formally, the transition rate from state i to state i+1 is ai,i+1 = λi

= (n − i)λ > 0, and likewise ai+1,i = µi+1 = (i + 1)µ > 0 for i = 0, 1, . . . , n. We

obtain the probability of being in state i, Pi, by solving the balance equation λiPi =

57

µi+1Pi+1 as shown in Equation 4.1.

Pi = P0

(

n

i

)(

λ

µ

)i

(4.1)

With Equation 4.1 and
∑n

i=0 Pi = 1, the probability of zero active process P0 can

be expressed as

P0 = 1/
n
∑

i=0

(

n

i

)(

λ

µ

)i

(4.2)

Using these equations, we can get a cumulative distribution function Fn(x) shown

in Equation 4.3. For any integer x (0 ≤ x ≤ n), Fn(x) represents the probability that

the random variable X is less than or equal to x.

Fn(x) = Pn(X ≤ x) =
x
∑

i=0

Pi = P0

x
∑

i=0

(

n

i

)(

λ

µ

)i

(4.3)

We can use this equation in two ways. First, we can estimate an SKC hit rate

p when a cache size x and the number of processes n are given. For example, when

λ = µ, x = 3, and n = 4, P0 = P4 = 1
16
, P1 = P3 = 1

4
, and P2 = 3

8
. We expect

that p will be at least 15
16

because
∑3

i=0 Pi = 15
16
. Second, we can also estimate n

that a cache of size x supports with a target p. n is referred to as cache capacity.

Similar to the previous example, if a target p is equal to 0.9, its cache capacity is 4

because
∑3

i=0 Pi =
15
16
> 0.9, and

∑3
i=0 Pi =

13
16
< 0.9 when λ = µ and n = 5. To CIC

architects, the latter usage will be more interesting because they can project the size

of a cluster system that a cache size under consideration can support with a target

SKC hit rate.

Note that in this model we implicitly assumed that a process communicates

with all other processes with an equal probability. According to [84], most processes

in many parallel applications including NAS benchmarks communicate with several

neighbors more frequently than the others, but there are also some processes that have

58

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Entry BT SP LU FT CG MG

N
u

m
b

er
 o

f
S

es
si

o
n

 K
ey

s

2KB 4KB 8KB 16KB

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Entry BT SP LU FT CG MG

N
u

m
b

er
 o

f
S

es
si

o
n

 K
ey

s

2KB 4KB 8KB 16KB

(a) SGI Origin 2000 (b) IBM SP-2

Fig. 11. Cache capacities of SKC for NAS benchmarks for target hit rate 0.9.

uniformly distributed destinations. Furthermore, [85] reported that there exist some

parallel applications whose processes communicate with all other processes equally.

To estimate cache capacities of real cluster systems, we use an analysis of NAS

parallel benchmarks running on an SGI Origin 2000 and an IBM SP-2 systems [51].

The analysis presented each benchmark’s average ON/OFF length (a reciprocal of

the arrival rate). We set p to 0.9 and x to 2, 4, 8, and 16-Kbyte caches. Since any

two communicating processes share a session key, a cache capacity directly represents

the total number of session keys that an SKC can support. Figure 11 shows cache

capacities for those benchmarks. In most cases, the cache capacities are much larger

than the number of cache entries represented as Entry. For example, in the SGI

Origin 2000, the cache capacity of 2KB SKC in BT benchmark is about 1000 while

its Entry is 128. This means that in BT benchmark SKC’s hit rate will be higher

than 90% until there are 1000 session keys. The capacity is quite surprising because

the 2KB SKC can hold up to 128 session keys. The reason for this is that the OFF

stage duration is at least several times longer than the ON stage duration. That is,

the number of processes that are simultaneously active is relatively small. Therefore,

we can expect that even a small SKC can support the communication with a fairly

59

large number of processes with a high SKC hit rate. Some might think that there

will be few cluster systems that need thousands of sessions keys. However, according

to the supercomputer Top 500 list released in November 2007, the percentage of

supercomputers that have more than one thousand processors is 91%. Considering

that its percentage in November 2005 list was only 29%, the number of processors in

cluster systems will continue to increase quickly. Therefore, the large cache capacities

supported by a small SKC will be practical.

3. Coscheduling-Aware Prefetching Scheme

In order to maximize the cluster system’s overall throughput, researchers have pro-

posed coschedulers that can schedule physically distributed processes of a job to run

as concurrently as possible [54, 86, 55, 56]. If these coschedulers are used in clus-

ter systems, multiple processes are running on each cluster node and there will be

context switches inevitably. The problem of context switches is that SKC hit rates

will decrease because a newly scheduled process needs to use a completely different

set of session keys for communicating with whole different nodes. As a result, many

subsequent session key accesses for the new process will miss until its SKC warms

up. The best solution to this problem would be to synchronize the contents of SKC

according to scheduling decisions of the coscheduler. That is, when a coscheduler

picks a process to run next, the OS provides the CIC with the decision so that the

CIC can prefetch session keys for that process. But it will cause OS interventions and

additional communications between the OS and the CIC. Moreover, it will increase

the complexity of the CIC design for the synchronization. To solve this problem,

we propose a simple prefetching scheme that can synchronize SKC and coscheduling

decisions without OS interventions.

Before describing the prefetching scheme, we would like to begin with explaining

60

why coschedulers are proposed and how they work. A drawback of batch scheduler

that assigns a number of processors to an application exclusively is the low CPU

utilization because a CPU often waits for I/O operations or messages. A simple

remedy is to assign multiple applications to each node by using a local scheduler.

However, since it does not consider the behavior of other processes running on other

nodes, one process would have to wait until the other process wakes up, resulting in

the low CPU utilization. In contrast, gang scheduler can explicitly run all processes

of a job at the same time [57, 58], but unfortunately it becomes quite complex in

large-scale cluster systems. To remove the above mentioned problems, researchers

proposed several communication-driven coscheduling schemes such as SB, DCS-SB,

and PB. These scheduling schemes are generally called implicit coscheduling because

a message arrival from a process in a remote node implicitly notices that the process

is running actively on the node. Its main benefit is that it still produces better CPU

utilization and throughput than the local scheduler while it does not need a complex

global control mechanism as in the gang scheduler [54, 55, 56]. In the SB [54], after a

process sends a message, it spins (or busy wait) for a fixed time before blocking itself,

hoping that a reply message arrives within the spinning time. The DCS-SB [55, 56]

acts like the SB except that, when a message arrives at a blocked process, it increases

the priority of the process. The PB [55] periodically boosts the priority of processes

that have unconsumed messages in a round-robin fashion.

Our prefetching scheme takes advantage of the fact that the aforementioned

implicit coschedulers use message arrivals as a hint for coscheduling. In other words,

if a message arrives at a process and the process is not occupying its CPU currently,

the CIC presumes that implicit schedulers will try to schedule the process soon. Based

on this, the CIC loads the process’s frequently used session keys to a prefetch buffer.

When a new message arrives, its session key can be found in the SKC if the message

61

Worldcup 98
Trace

Cluster Network
Simulator

Coscheduler
Simulator

Trace Analysis
& Conversion

Running on a Real
Parallel Machine

Modification of NAS
Parallel Benchmarks

Cache
Simulator

schedule
decision

delay for
cache access

timed and ordered event

Traffic Analysis of
NAS Benchmarks

Synthetic Workload
Generator

Cache
Simulator

Trace Analysis

ordered event

arrival rate

Fig. 12. Coscheduled cluster communication simulation platform.

belongs to the current process, or can be found in the prefetch buffer if the message is

for the new process. For this, a session key should be looked up in the SKC and the

prefetch buffer in parallel. If its session is found in the prefetch buffer, the session key

is moved to the SKC and one session key needs to be evicted from the SKC. At every

session key eviction, the CIC updates the list of frequently accessed session keys for

the process that the evicted session key belongs to. This operation can be done by

the embedded processor later, so the operation is not in the critical path.

D. Performance Evaluation

1. Simulation Platform

Figure 12 depicts the simulation platform for the coscheduled cluster communications.

Shaded rectangles represent what we developed, modified, or executed in this study.

We use NAS parallel benchmarks [87] that are widely used for measuring the system

performance in cluster/supercomputing environments. We first modified source codes

of the benchmarks to print all packets’ source and destination with a timestamp.

We ran the modified benchmarks on an SGI Altix 3700 consisting of 128 Itanium-2

62

processors and 256-Gbyte main memory with a batch scheduler where each processor

is assigned to only one program at a time. Due to our network simulator’s cycle-

accuracy, we used the small problem size (Class A) of the benchmarks using 16

processors. In this problem size, IS and EP benchmarks produced too few traces to

be used in our simulator. We also dropped FT because it had a compiling problem

in our system environment. Therefore, we used the other five benchmarks: CG, SP,

MG, BT, and LU. Then, we converted the captured traces into a different format so

that our cluster network simulator can use the format as input.

Our cluster network simulator used in [52, 30, 53] includes packet-level switches

and CICs that are compliant with InfiniBand, one of the promising cluster inter-

connects. To simulate more realistic cluster communications, we made three major

changes to the simulator: timed simulation, coscheduling simulation, and cache simu-

lation. First, we developed a trace-driven cluster simulator by modifying the existing

cluster network simulator in which all packets were generated randomly with a cer-

tain distribution. An important requirement of the new simulator was that packet

injection time needs to be adjusted dynamically. This is because a packet may come

across a shorter or longer network path during simulation due to differences between

the simulated networks and the real networks. To apply these dynamics to simula-

tion, our simulator provides the relative-timed injection by maintaining the actual

time distance between two consecutive packets’ timestamps. In other words, let us

suppose that in a real execution a node receives and sends two packets at t and t+ i,

respectively. If the first event (packet arrival) occurs at t′ during simulation, then the

second event (packet injection) should be scheduled at t′ + i. This timed injection

prevents unrealistically early or late packet injections. Because of this effect, the sim-

ulated execution time of the benchmarks is different from the actual execution time

in the real system as shown in Table IV.

63

Table IV. Original and simulated execution time of NAS benchmarks

Time (sec) CG MG LU SP BT

Original 3.72 11.86 268.61 244.12 291.73

Simulation 3.85 12.80 257.85 233.90 278.40

Second, to simulate a cluster system in which multiple applications are competing

for network and computing resources, we implemented a Linux local scheduler and

four coschedulers: SB, DCS-SB, PB, and gang. The Linux local scheduler is the same

as the one in the Linux kernel 2.6. The simulation parameters of each coscheduler

are the followings: the spinning time for SB and DCS-SB is 750 µs, a regular priority

boost in PB occurs every 2 ms, and the interval of the gang scheduling is 20 ms. All

the parameters are optimized through multiple simulations, and other implementation

issues are described in [86, 55].

Third, to simulate the SKC, we also implemented a cache simulator in the CIC.

Before sending and after receiving a packet, the CIC checks its SKC to see whether

the necessary session key is cached. If found, it takes only a cache access time to read

the session key, but, if not, a memory access time will be consumed. In Figure 12,

we draw the three simulators (coscheduler simulator, cache simulator, and cluster

network simulator) separately for better understanding, but in fact they are integrated

into the cluster network simulator.

Additionally, we developed a synthetic packet generator and a cache simulator to

simulate the analytical ON/OFF traffic model of NAS parallel benchmarks explained

in Section 2. Note that, since we are interested in the SKC hit rate, we use only the

sequence of packet arrivals, not the interval between packet arrivals. The benefit of

this simulation is to overcome the time limitation in simulating a large number of

long-running processes in a short simulation time, which would be impossible in a

64

cycle-accurate simulator.

Finally, there are several important simulation parameters. A GCM implementa-

tion presented in [82] requires 12 cycles to encrypt/decrypt the first 128-bit block and

one cycle for each additional block with last two cycles to generate an authentication

tag. If a 256-byte packet is in use, the additional delay is 30 cycles in sending or

receiving a packet. Since this delay needs to occur both in a sender and in a receiver,

the total additional one-way delay is 60 cycles that are converted to approximately

220 ns with 270MHz. According to the CACTI model, the cache access time of a

16-Kbyte fully associative cache is 3 ns. An access time to an external memory in a

CIC is set to 2.5 µs, as measured in [88].

2. Effectiveness of SKC

Figure 13(a) compares the average network latencies of several configurations of each

NAS benchmark. The reason why we compare the network latencies is that, since all

security operations are done in the CIC, the security overhead will be reflected in the

network latency. NoSecurity represents the original configuration without a security

function enabled. NoSKC represents the configuration where encryption/decryption

and authentication are enabled but the SKC does not exist. SKC -n configurations

have n entries in the SKC. Compared with NoSecurity, NoSKC has around 160

percent overhead on the network latency because each packet requires an external

memory access for retrieving a session key. In contrast, SKC-6 reduces the overhead

by 50 percent on average from NoSKC, adding 29 percent overhead to NoSecurity

configuration. The SKC hit rates of CG and LU shown in Figure 13(b) are almost

100 percent, showing little difference in the network latencies of SKC -n configurations

in Figure 13(a). However, other benchmarks have relatively low hit rates in small

SKCs, resulting in longer network latency. Therefore, we can say that the higher SKC

65

�

�

�

�

�

��

��

��

��

��

�������� �������� �������� �������� �	�	�	�	

�
��
��
�
�
�
�
�
	
�

�
��
��
�
�
�
�
�
	
�

�
��
��
�
�
�
�
�
	
�

�
��
��
�
�
�
�
�
	
�

��������	
 ����� ����

���� ���� ����

��

��

��

��

��

��

��

��

���

� 	 � �

��������	�
�����������������	�
�����������������	�
�����������������	�
���������

�
�
��
�
�
�

�
�
��
�
�
�

�
�
��
�
�
�

�
�
��
�
�
�

�� �� �� �� �	

(a) One-way latency (b) SKC hit rate

�

��

���

���

���

���

���

�������� �������� �������� �������� �	�	�	�	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��������	
 ����� ���

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � � 	 � � � � � � 	 � 	 � � � � � � �

 � � �
 � � �
 � � �
 � � �

� �
��

� �
�� �

�
��

��
�

����� ��
��
�� �

�

� �
��

� �
�� �

�
��

��
�

����� ��
��
�� �

�

� �
��

� �
�� �

�
��

��
�

����� ��
��
�� �

�

� �
��

� �
�� �

�
��

��
�

����� ��
��
�� �

�

�

�

	 �

	 �

� �

� �

� �

� �

� �
� ��

 !
" #

� �
��$

� �
� ��

 !
" #

� �
��$

� �
� ��

 !
" #

� �
��$

� �
� ��

 !
" #

� �
��$

�
�� � �
��
��
�� �

�

�
�� � �
��
��
�� �

�

�
�� � �
��
��
�� �

�

�
�� � �
��
��
�� �

�

��������	 ���
����	 �
����	

������� ���
��� �
���

(c) Completion time (d) CG completion time

Fig. 13. Performance comparisons of network latency of single application execution.

66

hit rate is positively related to the shorter network latency.

Figure 13(c) compares the benchmark completion time of the above configura-

tions. In contrast to our expectation, it does not seem that the big difference in the

network latency has a big impact on the overall application completion time. The

similar trend was reported by [89], explaining that many cluster applications are in-

sensitive to the network latency, even though some are sensitive. This implies that

NAS parallel benchmarks are not much sensitive to the network latency. However, we

believe that there are some applications that can get a great benefit from the short

network latency. For example, real-time multimedia applications used in a remote

surgery need quick responses as well as strong security on each packet. Considering

that cluster systems are being deployed for diverse applications, it will be useful to

minimize the additional network latency while providing fine-grained security. Fig-

ure 13(d) shows the completion time and the network latency of CG with various

packet lengths. Since the latency is measured till the last flit of a packet arrives at

its destination, the average latency also increases as the length of a packet increases.

Note that the network latency of SKC is similar to that of NoSecurity, but shorter

than that of NoSKC.

We also investigate the effectiveness of the SKC in providing cluster systems

with Internet security services such as TLS. Although those services can be done

by firewall, front-end routers, or host CPUs, the CIC with security hardware can

provide or at least help the services more efficiently, minimizing possible performance

overhead to other cluster components. For this, we fed the Worldcup 98 Web traffic

into our simulator. We choose the traces of June 10, 1998, the day of the final

match of the Worldcup, and randomly select an around 90-second-long trace for

simulation. The number of packets is about 20,000. Node 0 acts as a distributor to

67

��� ���

����� ���

����� ���

����� ���

� ��� ���

	 ��� ���

���� ���

� ��� ���

����� ���

���� ���

������� ���

������������� � � �������������� � � �������������� � � �������������� � � � ������������������������������������ ��������������������

�
�
�
�
��
��
�
	

�
��

�

�

�
�
�
	
�

�

�
�
�
�
��
��
�
	

�
��

�

�

�
�
�
	
�

�

�
�
�
�
��
��
�
	

�
��

�

�

�
�
�
	
�

�

�
�
�
�
��
��
�
	

�
��

�

�

�
�
�
	
�

�

�

��� 	

�

��� 	

�

��� 	

�

�
�
��

�
��

�
�
��
	
�
�

�
�
��

�
��

�
�
��
	
�
�

�
�
��

�
��

�
�
��
	
�
�

�
�
��

�
��

�
�
��
	
�
�

��
��
��

�
�
�
	
�

�

��
��
��

�
�
�
	
�

�

��
��
��

�
�
�
	
�

�

��
��
��

�
�
�
	
�

�

���������	
���� ������
����	��

���

 !���

"����

#����

$ ���

% ���

&����

' ���

(����

)����

 !�����

� !�*"��+#�� $ � % �+&�� ' �+(��*)��, !���

����������������������������

�
�
��
�
�
�

�
�
��
�
�
�

�
�
��
�
�
�

�
�
��
�
�
�

(a) Completion time & latency (b) Interarrival distribution

Fig. 14. Worldcup 98 Web traffic simulation.

forward web requests to other nodes according to their source IP addresses†. A simple

modulo operation is used for deciding a destination node so that packets having the

same IP address are forwarded to the same node for high SKC hit rate. When a

destination node receives a packet, it sends a reply message to Node 0 with a static

web request processing delay that is set to 1.3 ms, which is empirically measured in

one of our department’s web servers. Figure 14(a) shows a similar result as those of

NAS benchmarks; the completion times are almost similar, but the SKC minimizes

the additional network latency. The average SKC hit rate is 77.2 percent with a four-

entry SKC. Considering that the number of distinct IP addresses is around 1,200

in the trace, the small SKC yields quite a high SKC hit rate. To understand this

effect, we analyze inter-arrival time of the trace, the time duration between two

consecutive packets originated from the same IP address. Figure 14(b) shows that

most of consecutive packets from the same node arrive within a very short time period.

This high temporal locality is the reason for the high SKC hit rate. Therefore, even a

small SKC will have a high hit rate for any cluster applications whose traffic patterns

†Due to privacy concerns, real IP addresses are not available in the trace. However,
a client ID that the authors use as a requester’s identifier is mapped into a unique IP
address. Therefore, an IP address and its client ID can be used interchangeably.

68

�

�

�

�

�

�

�

�

	

��

�������������������� �������� �	�
���	�
���	�
���	�
�� �������� ������������

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��������	
 ����� ��� ����	��

����

����

����

����

����

����

����

����

�������������������� �������� �	�
���	�
���	�
���	�
�� �������� ������������

�
�
�
�
��
��
�
	

�
��

�
�
�
�
�
��
��
�
	

�
��

�
�
�
�
�
��
��
�
	

�
��

�
�
�
�
�
��
��
�
	

�
��

�

��
���
�
�
�
�
	
�

�

��
���
�
�
�
�
	
�

�

��
���
�
�
�
�
	
�

�

��
���
�
�
�
�
	
�

�

��������	
 ����� ��� ����	��

(a) Network latency (b) Completion time

Fig. 15. Performance gain from prefetch buffer on various coschedulers.

have a high temporal locality.

3. Effectiveness of Prefetching

To make workloads for the coscheduling environment, we assign a mix of several NAS

parallel benchmark traces to a node so that a scheduler of the node coschedules the

traces. Figure 15 shows the overall performance of all coschedulers in terms of network

latency and completion time. Each workload uses 15 NAS benchmarks traces: three

instances per each of the five benchmarks. The number of entries in the SKC is 10,

and the prefetch buffer can hold eight session keys. In Figure 15(a), Prefetch reduces

network latency by 5 percent on average. This performance gain mainly comes from

around 13 percent hit rate increase in Prefetch. However, it is still hard to tell that the

shorter latency always enhances the performance in terms of total completion time

based on our simulation results shown in Figure 15(b). Among coschedulers, DCS-SB

and SB have the shortest completion time, and Local the longest, which is similar

to the results in other literature [86, 55]. In the same coscheduler, most completion

times are similar except for PB; contrary to our expectation, NoSKC ’s completion

time is even shorter than completion times of other configurations. The main reason

for this is that even a subtle difference in the network latency changes the scheduling

69

�

���

�

���

� �� �� �� �� �� �� 	�

����������	����������	����������	����������	

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

�

�

��

��

��

��

��

��

�
�
�
��

��
��

��
��
�
�

�
�
�
��

��
��

��
��
�
�

�
�
�
��

��
��

��
��
�
�

�
�
�
��

��
��

��
��
�
�

��������	�
������������ �������	�
������������

��������	�
��������������� �������	�
��������������

�

���

�

���

� � � � � 	
 �

���������	���
�������	���������	���
�������	���������	���
�������	���������	���
�������	

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

	�

	�

�

�

��

��

��

��

�
��
��

��
��
�
�

�
��
��

��
��
�
�

�
��
��

��
��
�
�

�
��
��

��
��
�
�

��������	
������������ ��������	
�������������

�����
���������� �����
�����������

(a) pref. buf. = 2 (DCS-SB) (b) SKC = 5,20 (DCS-SB)

��

��

��

��

��

��

��

� �� �� �� �� �� �� ��

����������	����������	����������	����������	

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��

��

��

��

	�

	�

�

�

�
�
�
��

��
��

��
��
�
�

�
�
�
��

��
��

��
��
�
�

�
�
�
��

��
��

��
��
�
�

�
�
�
��

��
��

��
��
�
�

��������	�
������������ �������	�
������������

��������	�
��������������� �������	�
��������������

��

��

��

��

��

��

��

� � � � � � � 	

���������	���
�������	���������	���
�������	���������	���
�������	���������	���
�������	

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

�
�
��

�
��
�	

��
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��
��
��
�
�
�
�
�
�
�
�

��

��

��

��

	�

	�

�

�

�
�
�
��

��
��

��
��
�
�

�
�
�
��

��
��

��
��
�
�

�
�
�
��

��
��

��
��
�
�

�
�
�
��

��
��

��
��
�
�

��������	
������������ ��������	
�������������

�����
���������� �����
�����������

(c) pref. buf. = 2, (Gang) (d) SKC = 5,20 (Gang)

Fig. 16. Performance comparison on varying size of SKC and prefetch buffer.

order of a node, and this change has a chain effect, thus resulting in a completely

different scheduling order in the whole cluster system. In our simulation environment,

the variability of scheduling orders seems bigger than that of the performance gain

from the prefetching scheme, especially in terms of completion time. However, we

believe that the shorter network latency will help improve the overall performance in

the long term.

Figure 16 describes how the network latency and the SKC hit rate are affected

by the changes in the size of the SKC and the prefetch buffer. The SKC hit rate

encompasses all hits both on the SKC and on the prefetch buffer. In Figure 16(a),

we fix the size of the prefetch buffer to two, and increase the size of SKC. DCS-

SB is used as the coscheduler in this simulation. We compare two cases: one with

a prefetch buffer (/w) and the other without it (w/o). As expected, the latency

70

decreases and the SKC hit rate increases with the increasing size of SKC. Note that,

with a bigger size of the SKC, the additional gain from the prefetch buffer is slightly

decreased. This is because more session keys residing in a big SKC yields more hits on

the SKC, consequently reducing hits on the prefetch buffer. Therefore, the prefetch

buffer is more useful when the size of SKC is small. Figure 16(b) depicts how the

SKC performance varies as the size of the prefetch buffer increases, with two different

sizes of SKC, 5 and 20. In case of a 20-entry SKC, although the size of the prefetch

buffer becomes big enough to contain more sets of prefetched sessions keys of previous

SKC misses, the effect of old prefetched session keys is diminishing gradually. In the

figure, although the prefetch buffer size increases by eight times from 1 to 8, there is

a small performance gain, 0.17 µs in the latency and 2.8 percent in the SKC hit rate.

All other schedulers except the gang scheduler showed the similar trend, so they are

omitted in this paper.

Figure 16(c) and Figure 16(d) show the gang scheduler’s results. To our surprise,

as the size of the SKC reaches around 15, neither a prefetch buffer nor a larger SKC

improves network latency. This is related to how the gang scheduler coschedules mul-

tiple applications. The gang scheduler usually makes all processes of an application

in multiple nodes run concurrently, and then it moves to the next application after

a fixed time-slice. Since all applications are executed in order, the session keys used

by the previous application will not be used for a long time. In other words, once

the size of the SKC becomes large enough to hold all session keys of an application,

its hit rate will not increase much. This is why the increase in the SKC hit rate in

Figure 16(c) is minimal. For the same reason, larger prefetch buffers make little dif-

ference in the network latency and the SKC hit rate as shown in Figure 16(d). From

the above results, we conclude that the effect of the prefetch buffer varies according

to the size of SKC and coscheduling policy.

71

0

10

20

30

40

50

60

70

80

90

100

10
00

20
00

50
00

10
00

0

10
00

20
00

50
00

10
00

0

10
00

20
00

50
00

10
00

0

10
00

20
00

50
00

10
00

0

10
00

20
00

50
00

10
00

0

10
00

20
00

50
00

10
00

0

BT SP LU FT CG MG

Number of Session Keys

C
ac

h
e

H
it

 R
at

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

10
00

20
00

50
00

10
00

0

10
00

20
00

50
00

10
00

0

10
00

20
00

50
00

10
00

0

10
00

20
00

50
00

10
00

0

10
00

20
00

50
00

10
00

0

10
00

20
00

50
00

10
00

0

BT SP LU FT CG MG

Number of Session Keys

C
ac

h
e

H
it

 R
at

e
(%

)

(a) SGI Origin 2000 (b) IBM SP-2

Fig. 17. Cache hit rate of NAS benchmarks on a 16-KByte SKC.

4. SKC Size

To simulate the SKC behavior on a large-scale cluster system, the synthetic packet

generator increases the total number of session keys in one CIC from 1,000 to 10,000.

Although it is quite improbable for one process to communicate with 10,000 processes

at the same time, this simulation can show how a small SKC withstands such extreme

loads. The communication pattern between two processes follows the ON/OFF model

as described in [51]. In Figure 17(a) and Figure 17(b), the 16-Kbyte SKC shows

relatively high hit rates in most benchmarks, except for FT in SGI Origin 2000,

and FT, CG, and MG in IBM SP-2. The reason for the exceptions is that the

cache capacities of the benchmarks are less than 10,000 session keys as shown in

Figure 11. It is noteworthy to point out that LU has a little lower hit rates, even

with a large cache capacity in Figure 11. The reason for this is that LU has 10∼100

times shorter ON and OFF durations than those of other benchmarks, which means

that communicating processes are alternating frequently, thus resulting in lower SKC

hit rate. Still, we can say that a high cache capacity is strongly and positively related

to a high SKC hit rate. If a large fully associative cache causes space and speed

problems, we suggest that the CIC has a 16-way or 32-way SKC instead of a fully

associative cache because they show similar results to that of the fully associative

72

SKC.

E. Related Work

There has been some research to improve security inside clusters. An early study [11]

presented security enhancement methods for system area networks. [10] showed that

encryption can be used in clusters with a minimal performance impact. [8] proposed

the distributed security infrastructure (DSI) to supports a fine-grained cluster-wide

security enforcement by providing a process-level resource and access control. [6]

identified security characteristics unique to clusters. NVisionCC [90] was presented

to enhance the security inside cluster systems by monitoring processes across cluster

nodes. [91] proposed an instant attack stopper (IAS) scheme to instantly block inside

attackers in InfiniBand cluster systems. Recently, [48] pointed out security vulnera-

bilities of InfiniBand and proposed a security framework that can be easily integrated

into its specifications.

Some recent work has focused on the performance gain by use of the security

coprocessor on real systems. [80] analyzed the relative cost of network security proto-

cols, and advocated that the dedicated cryptographic hardware can make any security

protocols practically viable. [78] investigated the performance overhead of TLS web

servers using the host processor and the security coprocessor approaches. Due to the

limited performance gain by the security coprocessor, they concluded that an addi-

tional host processor would be more beneficial than the security coprocessor. [81]

presented an OpenBSD cryptographic framework. It contains a cryptographic API

to provide a uniform access to various cryptographic hardware, thus enabling the

high utilization of the hardware. [92] found that cryptographic hardware attached to

I/O bus would not improve security performance due to the severe bus contention,

73

and then the authors proposed a scheme similar to the CIC approach, but they left

out detailed performance evaluation. Several network adapters equipped with cryp-

tographic hardware are available in the market [93, 94, 95]. However, since they were

not developed for the ULC of cluster systems, and their detailed architecture is not

publicly available, it is difficult to directly compare them with our approach.

F. Conclusions

This study proposed an architectural support to enable fine-grained secure communi-

cations in coscheduled cluster systems with low performance overhead. The important

conclusions of this study are the followings. First, we advocated the CIC approach

because it incurs virtually no performance overhead to the host CPU and no addi-

tional PCI transactions, while retaining the performance benefit of the ULC through

bypassing the host CPU.

Second, to support fine-grained security, we proposed an SKC inside the CIC

to store recently accessed session keys. If the communication pattern of a cluster

application shows a high temporal locality, most of session key accesses will be found

in the SKC, thus incurring little performance overhead in managing the fine-grained

session keys. Simulation results showed that network latency is reduced by 50 percent

on average, compared with non-SKC configurations.

Third, to further increase the SKC hit rate, we proposed a prefetch buffer to fetch

session keys from memory ahead of time by predicting the job scheduler’s decision. We

implemented the Linux local scheduler and four coschedulers including SB, DCS-SB,

PB, and gang scheduler. Simulation results showed that the prefetch buffer reduces

network latency by 5 percent on average from that of SKC-only configurations.

Fourth, we constructed an analytical model to estimate the number of concurrent

74

processes that can be supported by a given size of SKC. The model showed that even

a 16-Kbyte SKC yields a high hit rate even when managing thousands of session keys.

We are currently examining a number of possible extensions to this study. First,

we are investigating the reason for the insensitive completion time. Second, we plan

to implement the proposed architecture on a reconfigurable NIC. Finally, we are

exploring other design alternatives to incorporate more security features in the CIC

such as fast attack detection and response.

75

CHAPTER V

DESIGN OF SECURE SHARED MULTIPROCESSOR SYSTEM∗

A. Introduction

Recent malicious attacks to many research/commercial servers have made protection

and security essential requirements in all computer systems. Especially, server systems

operated by institutes dealing with highly confidential data such as banks, military,

or government agents need absolute security because even one incident of information

leakage could result in very serious problems. Therefore, those institutes should seek

effective schemes to prevent/block any possible security attacks on their computer

systems. Considering that most of recent server systems have multiple processors

and share single or distributed memory, we believe that there should be appropriate

protections on the memory and communications betweeen processors. Moreover, since

performance compromise should be the last resort in the server systems, any security

schemes free of performance overhead are much desirable despite additional hardware

costs.

There are two types of possible attacks: software and physical attacks. Software

attacks exploit software vulnerabilities of the operating system (OS) and server appli-

cations such as web and database services. Buffer overflow attack is a good example

[96]. Physical attacks that are our focus capture or modify data from the system

memory or system bus through external devices physically attached to the system.

Although high-end servers are often assumed to be secure against such physical at-

∗Reprinted with permission from “I2SEMS: Interconnects-Independent Security
Enhanced Shared Memory Multiprocessor Systems” by Manhee Lee, Minseon Ahn,
and Eun Jung Kim, 2007. Proceedings of the 16th International Conference on Par-
allel Architecture and Compilation Techniques (PACT), pp. 94-103, Copyright 2007
IEEE.

76

tacks, that assumption cannot be sustained in many situations; it is possible that

inside personnel turn against their organization to steal data, and, moreover, there

exist real snooping devices that are attachable to system buses [97, 98]. To miti-

gate the physical attacks, memory encryption and authentication have been widely

investigated for uniprocessor systems [59, 60, 61, 62, 63, 64, 65, 66]. However, the

uniprocessor security models are not sufficient to design secure multiprocessor systems

due to the absence of cache-to-cache communication protection.

When multiple processors share data, a cache coherence protocol guarantees data

consistency among caches. Without protecting cache-to-cache communication, mem-

ory protection would be useless. A few studies raised this question and provided fast

encryption and authentication techniques that can be deployed on bus-based shared

memory multiprocessors [14, 13]. One common feature in the studies is that a bus

sequence number that counts every message on a shared bus is used as a counter

to generate an encrypted counter, called keystream [99]. Since all communications

on the shared bus are broadcasted to all processors, they can predict the next bus

sequence number to generate the same keystream in advance, thus turning a complex

encryption/decryption operation into a simple XOR (eXclusive OR) operation. How-

ever, since the above schemes are dependent on the shared bus, they cannot be easily

extended to general multiprocessor systems having different underlying networks or

distributed shared memory [100, 101].

A recent study by Rogers, et al. proposed a novel mechanism for protecting

cache-to-cache communication in distributed shared memory (DSM) multiprocessors

as a remedy for this problem [67]. However, since their design focused on the directory-

based cache coherence protocol used for the point-to-point communication, their idea

cannot be directly applied to the systems with other cache coherence protocols used

for multicasting/broadcasting communication such as the token coherence protocol

77

[102, 103]. For example, even in the directory-based cache coherence protocol, a

multicast network is reported to improve system performance by up to 18 percent

because the invalidation time is lessened by sending a multicast message to invalidate

multiple cache blocks instead of sending multiple messages sequentially [104, 105, 106].

To provide diverse multiprocessor architectures with a more general security

model, we propose an interconnect independent and cache coherence protocol inde-

pendent security model for shared memory multiprocessor systems, referred to as

Interconnects-Independent Security Enhanced Shared Memory Multiprocessor Sys-

tem (I2SEMS). To our best knowledge, I2SEMS is the first attempt to support the

protection of shared memory multiprocessor systems without any restrictions on com-

munication types and cache coherence protocols.

Our main idea is that a Global Counter Controller (GCC) assigns counters upon

a request from a processor and broadcasts the assignment to the other processors.

When receiving the counter assignment, processors generate the counters’ keystreams

and store them in a keystream queue or a keystream pool, depending on whether the

keystream will be used for encryption or decryption. To minimize the use of new

counters, a keystream cache stores both counters and keystreams so that it can re-

use them only when the re-use is safe; the same counter and its keystream can be

used for the same data block securely. With this architectural support, I2SEMS can

minimize enryption/decryption delay by providing timely available keystreams as well

as protect communications by guaranteeing that different blocks never use the same

counter.

We implemented I2SEMS by using Simics along with Wisconsin multifacet Gen-

eral Execution-driven Multiprocessor Simulator (GEMS) in a hierarchical switched

network [107, 108]. GEMS is a set of modules for Virtutech Simics to enable detailed

cache, memory, and interconnection simulations. We use SPLASH-2 benchmarks

78

and one SPEC OMP benchmark for workloads on up to 16-processor shared mem-

ory multiprocessors [109, 110]. Simulation results show that the overall performance

slowdown is 4 percent on average, and the keystream pool hit rate is as high as 78

percent, meaning that 78 percent of incoming messages are decrypted without de-

lay. Furthermore, we observed that, due to the re-use of keystreams through the

keystream cache, the increase of counter management related messages seems almost

static compared to that of total messages especially in 16-processor multiprocessor

systems. Based on this observation, we believe that I2SEMS will be scalable to much

larger multiprocessor systems.

The remainder of the chapter is organized as follows. Section B explains Ga-

lois/Counter mode and describes how the previous studies provided secure computing

models in uni/multiprocessor systems. In Section C, we explain our security model

and its design in detail. Security analysis and simulation results are presented in

Sections D and E, followed by the concluding remarks in Section F.

B. Secure Computing Models

In this section, we describe our threat model, and explain how the previous works

provided secure computing in uni/multiprocessor systems.

1. Threat Model

Before enhancing security of a system, it is necessary to classify secure and insecure

components in the system. Processing core, registers, caches, and control and data

paths in a processor are considered to be secure. We assume that memory and I/O

controllers are secure, while other off-chip components including memory, memory

bus, and I/O devices are insecure. We also assume that interconnection networks

79

that connect multiple processors and memory banks are insecure.

Through these insecure components, the following physical attacks are possible.

First, any wiretapping device attached to memory bus or interconnection network can

get information about memory transactions and processor-to-processor communica-

tions. Since in many cases cables of the interconnection network are exposed to the

outside of the system to connect multiple nodes packaged in one or several racks, they

are vulnerable to eavesdropping attacks. To make servers resistant to this attack, it

is necessary to provide the confidentiality service where all communications from pro-

cessors are encrypted. Second, assuming that attackers are much more determined

and well equipped, they can further inject or modify messages to the systems. This

attack includes injecting new data messages, modifying data in messages in transit,

and replaying old messages. To prevent this attack, the authentication service needs

to make sure that all data messages are genuine, not spoofed, modified, or replayed

by illegal devices. Third, in some cases attackers may intend to undermine the avail-

ability of the systems by keeping injecting garbage messages. These messages will be

finally discarded since authentication information will not be correct. but they will

have negative effects on the system performance because of possible congestion that

would occur in interconnection network or controllers for cache and memory. This is

similar to the denial of service attack in the Internet. However, this attack does not

seem much attractive to attackers not only because attackers get little benefit from

the attack, but also because a sudden performance drop or a system crash would lead

to a thorough search for attached devices. Therefore, the availability service is not

our focus. From now on, we will give an overview how the previous research provided

the confidentiality and authentication services in uniprocessor and multiprocessor

systems.

80

2. Uniprocessor Secure Model

Several uniprocessor memory authentication schemes were proposed in [59, 61, 64, 65].

XOM (eXecute Only Memory) uses MAC to verify each memory block’s integrity [61].

MAC for each block cannot defend against replay attacks where a hacker gets a valid

memory block and keeps resending it. Gassend, et al. proposed a hash tree to guar-

antee the integrity of the whole contents of memory [59]. While it removes the replay

attacks, a hash-tree has relatively high run-time overhead because it should check

memory integrity for every memory access with a logarithmic number of integrity

checks. To overcome this performance overhead, Suh, et al. suggested that MAC

verifies a series of memory operations using multiset hashing functions, resulting in

only 5 percent performance slowdown [64]. Moreover, Yan, et al., who first introduced

GCM to this research area, minimized authentication overhead by authenticating all

necessary levels of a hash tree in parallel [65].

For uniprocessor memory encryption, early studies used ECB mode [61, 63], but

later Counter mode was adopted for performance reasons [62, 64, 65, 66, 111]. In the

uniprocessor secure computing model, decryption speed is more critical than encryp-

tion speed because decryption should be performed quickly so that the processor can

use it for execution as early as possible. In contrast, the encryption delay of evicted

data is not time-critical because the data is first written in a write buffer and later

stored back to memory.

To speed up decryption, Yang, et al. suggested using an additional cache to store

counters [64, 66]. While a processor is waiting for a reply after sending a request to

memory, it can precompute a keystream by using a stored counter. To alleviate

this cache space overhead, a prediction scheme proposed by Shi, et al. precomputes

incremental counters by utilizing the principle of locality in memory access patterns

81

[62]. With an optimization scheme, they can predict keystreams with up to 99 percent

accuracy. Yan, et al. combines encryption and authentication using GCM, resulting

in 5 percent performance overhead [65].

3. Multiprocessor Secure Model

For multiprocessor shared-memory protection, it is possible to apply uniprocessor

security schemes, but cache-to-cache communications need a different protection

scheme. Unlike uniprocessor secure computing models, encryption and generation

of MAC in multiprocessor systems become time-critical because a receiving processor

may stall to wait for a reply. As for authentication of cache-to-cache communications,

Shi, et al. proposed an authentication speculation execution to remove MAC latency

from the critical path [14]. In this scheme, while the receiver verifies an incoming

message, it continues to execute speculatively by using un-authenticated data. Those

executions are committed only after all operands become authenticated. This scheme

reduces performance overhead by overlapping authentication and CPU execution.

However, each processor needs a complex speculation circuit, and this scheme is still

vulnerable to replay attacks. Zhang, et al. used Cipher Block Chaining (CBC) mode

in which the previous MAC is used to make the next MAC, thus preventing replay

attacks [13].

Rogers, et al. pointed out the limitation of above schemes on DSM systems

and proposed an efficient data protection design [67]. By focusing on point-to-point

communications of the directory-based cache coherence protocol, they were able to

utilize DSM systems’ temporal locality of communications, which means a processor

communicates with a relatively small number of neighboring processors in a short

period of time. Such locality makes it possible for each processor to have a small

table to hold counters, resulting in good scalability.

82

Please note that, in multiprocessor shared-memory protection, all processors and

related components like the memory controller need to share the same secret key. This

key can be fabricated inside processors and a memory controller from factory, or a

runtime distribution method is available as described in [112]. Since we assume that

processors and the memory controller are secure, capturing, snooping, or predicting

the secret key is impossible. Furthermore, even if an ASIC or FPGA is hooked up

to the system and pretends to be a peer processor in the multiprocessor systems, it

cannot break the privacy and integrity of the system since it is practically impossible

for the illegal device to have the same secret key.

C. Architectural Design of I2SEMS

In this section, we focus on the architectural design of I2SEMS providing contiguous

counters so that it is easy to predict the next counters. First, we discuss design

considerations of I2SEMS. Then, we present the design overview of I2SEMS, followed

by detailed explanation on each component.

1. Design Considerations for I2SEMS

In this section, we provide the rationale behind the current I2SEMS design. The

first design consideration is to decide whether messages should carry counters. In

previous studies on secure bus-based systems [14, 13], cache-to-cache messages do

not carry counters because receiving processors can always correctly predict the next

counter. However, such strict global synchronization is almost impossible in general

shared memory systems. Therefore, although it will incur additional overhead, in

our scheme each message carries its own counter. The overhead will be different

depending on implementation of interconnection networks. For example, if a wide

83

channel bus is used, an extra channel is necessary. In a network using serial links, the

message serialization latency will be increased by the time to serialize the counter.

The second design consideration is to decide whether to maintain multiple local

counters or one global counter. In the local counter management, the whole counter

range is divided into exclusive subranges that are assigned to the processors so that

each processor manages its own local counter, without worrying about the dupli-

cate use of the same counter. A disadvantage of this management is that adjacent

blocks would have discontinuous counters, when multiple processors share and up-

date those blocks. This discontinuity will result in slow decryption since predicting

the next counter, based on the current memory block’s counter, is often incorrect.

In the global counter management, in contrast, a central counter controller assigns

counters upon a counter request, thus resulting in relatively contiguous counters.

To improve both counter continuity and prediction correctness, the global counter

management is desirable, and thus we propose GCC. Since a request to the GCC

should be made early enough to finish generating new keystreams before their usage,

a keystream queue is necessary to hold the precomputed keystreams. A completely

different design alternative without using counters is possible by encrypting and au-

thenticating messages in all point-to-point links. However, this approach incurs ad-

ditional encryption/authentication delay per hop, thus increasing the total network

delay significantly in large networks. Power/energy consumption will also increase

linearly depending on the number of hop counts. Therefore, this approach will not

be suitable for the multiprocessor environment.

The third design consideration is to decide whether to use counters persistently

or compulsorily. In the persistent scheme, each processor always uses new counters

to encrypt cache blocks regardless of their cache status. Most of previous studies

consume counters in this way. However, we can make use of the fact that it is not

84

necessary to use new counters all the time because a previously used counter can

be re-used securely if a cache block has not been changed since the first use of the

counter. We refer to this as compulsory scheme. The benefit of this scheme is that it

will consume less number of counters than the persistent scheme, thus reducing the

number of counter request messages. This is why I2SEMS stores used counters and

keystreams in a keystream cache.

The last consideration is to decide when and how to start counter prediction:

responsive or broadcast counter prediction. In the responsive prediction, a receiving

processor starts to predict subsequent counters only after the processor receives a

message carrying a counter. A similar approach was introduced in the uniprocessor

prediction scheme [62]. The prediction correctness drops inevitably in data sharing

intensive applications because it is hard to predict which counter will be used next.

However, since we use the global counter management, a counter request to the GCC

hints that the requesting processor is actively consuming new counters and likely to

use the newly assigned counters shortly. In the broadcast counter prediction, the GCC

broadcasts the global counter to all other processors, and the processors precompute

keystreams based on the global counter. Although there is no guarantee that messages

carrying the new counters will arrive at the processors, if so, the prediction correctness

will increase. Since the responsive and broadcast schemes are orthogonal to each

other, we choose both of them to increase a prediction hit rate. To store these

precomputed keystreams, we use a keystream pool in each processor.

2. Design Overview of I2SEMS

Figure 18 shows the architecture of I2SEMS and its data flow. The system-wide GCC

85

Encrypted Data Block counter

Memory

counterEncrypted Data Block

……

counterEncrypted Data Block

Secure

Insecure

Processor 1 Processor n

Keystream
Cache

Keystream
Queue

System Cache

Global Counter
Controller (GCC)

Interconnection Network

Tag

Tag

…

Tag

Encrypted Data Block counter

Memory

counterEncrypted Data Block

……

counterEncrypted Data Block

Tag

Tag

…

Tag

Encrypted Data Block counter

Memory

counterEncrypted Data Block

……

counterEncrypted Data Block

Tag

Tag

…

Tag

Keystream
Pool

Keystream
Cache

Keystream
Queue

System Cache
Keystream

Pool

(1) (2)

(5)(4)(3) (6)

Fig. 18. I2SEMS security model.

is located in the memory controller†. In addition to a unified L2 cache, called System

Cache, each processor has a keystream queue, a keystream cache, and a keystream

pool. The GCC assigns counters upon a request from a processor and broadcasts

the assignment to the other processors. Keystreams in the keystream queue and the

keystream cache are used to encrypt outgoing messages, while those in the keystream

pool to decrypt incoming messages. Explanations on data flow between components

are in the followings.

When a processor transmits a data block to other caches or memory as shown

in Figure 18 (3) and (6), it needs to encrypt the block. If the cache block is modified

or exclusively owned by the processor, a new counter and its keystream are popped

†Depending on the location of the memory controller, the GCC can reside off or on
chip. When a processor has an off-chip memory controller like most Intel processors, a
multiprocessor system using such processors will have the GCC in its off-chip memory
controller usually located in the north bridge (or Memory Controller Hub). However,
some recent processors such as IBM’s POWER5 and AMD’s Athlon 64 and Opteron
processors have the on-chip memory controller for faster memory access. In this
case, by enabling one processor’s GCC, a single GCC will be located in an integrated
on-chip memory controller.

86

from the keystream queue to encrypt the cache block. In many cases, the cache status

changes to Owned, which means that this processor is in charge of replying requests

that other processors send to get this block’s copy. In this status, the previously

used counter and keystream can be re-used because the data did not change. For

this purpose, after using the new counter and its keystream, we store them in the

keystream cache. Therefore, when a cache block that will be transmitted has the

Owned status, the processor looks up the keystream cache. If not found, a new counter

and its keystream need to be popped from the keystream queue. This operation is

described in Algorithm 1 (3) and (6).

[t]

(1)
(EncryptedDataBlock , counter) = Memory . read (address) ;
Send (address , EncryptedDataBlock , counter) ;

(2)
(address , EncryptedDataBlock , counter) = Receive () ;
Memory . wr i t e (address , EncryptedDataBlock , counter) ;

(3 , 6)
(DataBlock , counter , Keystream , s ta tu s) = SystemCache . Read(address) ;
i f (isNewKeystreamNecessary (s t a tu s)) {

(counter , Keystream) = KeystreamQueue . pop () ;
Send (address , DataBlock ˆ Keystream , counter) ;
KeystreamCache . s t o r e (counter , Keystream) ;}

e l s e i f (KeystreamCace . IsKeystreamPresent (counter)) {
(counter , Keystream) = KeystreamCache . read (counter) ;
Send (address , DataBlock ˆ Keystream , counter) ;}

e l s e {(counter , Keystream) = KeystreamQueue . pop () ;
Send (address , DataBlock ˆ Keystream , counter) ;
KeystreamCache . s t o r e (counter , Keystream) ;}

(4 , 5)
i f (Data block a r r i v ed) {

(address , EncryptedDataBlock , counter) = Receive () ;
PARALLEL {

// Generate p Keystreams from counter to counter + p ˆ 1
counter [0 , . . . , p−1] = { counter , . . . , counter+p−1};
Keystream [0 , . . . , p−1] = AES(counter [0 , . . . , p−1] , s e c r e tk ey) ;
KeystreamPool . s t o r e (counter [1 , . . . , p−1] , Keystream [1 , . . . , p−1]) ;}

PARALLEL {
i f (KeystreamPool . IsKeystreamPresent (counter)) {

Keystream = KeystreamPool . read (counter) ;
DataBlock = EncryptedDataBlock ˆ Keystream ;
SystemCache . s t o r e (address , DataBlock) ;
KeystreamPool . d e l e t e (counter) ;}

e l s e { // wait un t i l f o r an AES la tency
DataBlock = EncryptedDataBlock ˆ Keystream [0] ;
SystemCache . s t o r e (address , DataBlock) ; } } }

e l s e i f (GCC rep ly a r r i v ed) {
(counter) = Receive () ;
counter [0 , . . . , CR−1] = { counter−CR+ 1 , . . . , counter } ;
Keystream [0 , . . . , CR−1] = AES(counter [0 , . . . , CR−1] , s e c r e tkey) ;
KeystreamQueue . enqueue (counter [0 , . . . , CR−1] , Keystream [0 , . . . , CR−1]) ;}

e l s e i f (GCC broadcast a r r i v ed) {
(counter) = Receive () ;
counter [0 , . . . , CR−1] = { counter−CR+ 1 , . . . , counter } ;
Keystream [0 , . . . , CR−1] = AES(counter [0 , . . . , CR−1] , s e c r e tkey) ;
KeystreamPool . s t o r e (counter [0 , . . . , CR−1] , Keystream [0 , . . . , CR−1]) ; }

Algorithm 1. Pseudocode for I2SEMS security model

When a processor receives a data block as shown in Figure 18 (4) and (5), it

87

tries to find a keystream in the keystream pool. Simultaneously it begins to generate

p keystreams by using the pipelining ability of AES logic. If found in the keystream

pool, referred to as a keystream hit, the counter’s keystream is used to decrypt the

arrived message. If not found, called a keystream miss, the keystream will be available

in an AES latency because the keystream generation already started regardless of

keystream hit or miss. All generated keystreams except the first one are stored in the

keystream pool, hoping that subsequent counters may be used in the near future. p

is called prediction depth and set to five as default. The impact of deep prediction

depth on performance is analyzed in Section 5.

When the remaining number of keystreams in the keystream queue becomes less

than counter reserve (CR), it sends a request to the GCC to get new counters. CR

is the number of counters that the GCC assigns at a time. More details on CR

are described in Section 3. Upon arrival, the GCC assigns and sends new counters

to the requesting processor. The GCC also broadcasts the assignment to the other

processors for them to precompute the counters’ keystreams. When a GCC reply or

a broadcast message arrives at a processor in (4) and (5), the processor generates the

CR number of keystreams and store them in the keystream queue or the keystream

pool, respectively. This operation is summarized in Algorithm 1 (4) and (5). All

other operations shown in Figure 18 are also described in Algorithm 1.

3. GCC and Keystream Queue

Since the GCC and the keystream queue work interactively to enable the efficient

counter assignment, we explain two components together. Figure 19 shows the detail

architecture of keystream queue, keystream cache, and keystream pool in I2SEMS.

When a data block is to be transmitted, the cache status bits select one keystream

from the keystream queue or the keystream cache. Since the system cache and the

88

K
ey

st
re

am
P

o
o

l

… cnt

AES

cnt Keystream
cnt Keystream

K
ey

st
re

am
Q

u
eu

e

status A. Tag Data Block

cntKeystream

status A. Tag Data Block

cntKeystream

Dest ID Addr Encrypted Data Tag cnt Dest ID Addr Encrypted Data Tag cnt

… cnt

AES

cnt Keystream
cnt Keystream

MUX

MUX

XOR

GF

XOR

GF

=

Message Encryption Message Decryption

Addr
Addr

K
ey

st
re

am
C

ac
h

e

System (L2)
Cache

Fig. 19. Architecture of keystream queue, keystream cache, and keystream pool.

keystream cache are accessed in parallel, the access time to the keystream cache is

not in the critical path. Note that I2SEMS checks the cache block status only, which

means I2SEMS works independently of any cache coherence protocol as long as the

protocol changes cache block status correctly.

To prevent a situation where the keystream queue has no available keystreams,

it sends a request to the GCC early enough to guarantee the keystreams’ availability

all the time. Appropriate counter request timing is closely related to the number of

messages that the processor can send in a round trip time to the GCC. Equation 5.1

defines CR formally where R is the round trip time to the GCC, O is the keystream

generation delay, M is the cache block size, and B is the network bandwidth. If the

number of remaining keystreams become less than CR, the keystream queue sends a

request to the GCC. To decrease the number of requests, the GCC assigns a block of

counters per request instead of one counter. We suggest that the size of the block be

also CR because the keystream queue can send only one request when the number

of remaining counters becomes less than CR. Thus, the size of the keystream queue

89

only needs to be large enough to hold 2 ∗ CR keystreams and counters.

R +O ≤
CR ∗M

B

CR ≥
B

M
∗ (R +O) (5.1)

Possible security problems on messages to and from the GCC will be discussed in

Section D. Besides security problems of the GCC, its scalability could be a problem

since I2SEMS has only one GCC. There are three possible problems; long latency

between processors and the GCC, bottleneck of the GCC, and high traffic overhead

of broadcasting of counters. The long latency problem can be solved by adjusting

CR. In Equation 5.1, the increased R will change CR so that it will guarantee the

availability of keystreams in the keystream queue. As for the bottleneck problem of

the GCC, since the GCC performs simple operations such as managing a counter

and replying to processors, the GCC will not be a bottleneck in communications.

If the underlying network does not support broadcasting or multicasting, the GCC

should generate and send all messages one by one, possibly causing some delays in

broadcasting. However, this delay will not be much critical to performance because

the newly assigned counters are not needed until the requesting processor uses up

all (CR-1) keystreams. Moreover, as we will show in Section 6, the total number of

requests to the GCC and its broadcasting messages is very small, as compared to

the total number of transmitted messages by processors. Therefore, we believe that

I2SEMS is scalable to large systems.

4. Architecture of Keystream Pool and Keystream Cache

Both the keystream pool and the keystream cache have the cache architecture. The

keystream pool size will affect the system performance. If its size is too small, the

90

keystream pool hit rate will decrease due to capacity misses, but, if the size is too

big, the long keystream pool access time increases the total decryption time. To

minimize performance slowdown and get a high hit rate at the same time, we will

use the largest possible cache architecture as long as its access time is hidden from

the system cache access. According to CACTI model [44], one cache access consists

of several circuit level delays. The following equation shows that a cache data access

time can be divided into address decoding, wordline, bitline, and sense amplifier time,

which occur sequentially.

Tdata = Tdecode + Twline + Tbline + Tsense (5.2)

Tdecode is the address decoding time to access a specific cache set in the cache. This

stage requires the address only, so we can utilize Tdecode to parallelize accesses to the

system cache and the keystream pool. In other words, if the keystream pool access

time, Taccess(KeystreamPool), is equal to or smaller than the system cache’s address

decoding time, Tdecode(SystemCache) as in Equation 5.3, we can hide the keystream

pool access time. In our experiment, we used a 1M bytes 4-way system cache with

6ns access time. Since its Tdecode is 3ns, we use a 512K bytes 4-way keystream

pool with 3ns access time for the keystream pool, which meets the requirement of

Equation 5.3. The effect of set associativity on the system performance is analyzed in

Section ??. Note that the six clock cycle authentication delay is not considered here.

That is because the authentication is not in the critical path for program execution.

Therefore, I2SEMS issues a lazy authentication fail alert.

Taccess(KeystreamPool) ≤ Tdecode(SystemCache) (5.3)

The high hit rate of the keystream cache will reduce the counter usage effec-

tively. Thus, the design of the keystream cache is tightly related to the scalability

91

of I2SEMS. Different from the keystream pool, the keystream cache can utilize the

temporal locality of memory accesses. When a cache block is being shared by multi-

ple processors actively, they are more likely to access the block within a short time

than later. In our simulation, we observed that, as the size of cache increases, the

keystream cache hit rate also increases, but the effect of larger caches is gradually

diminishing. Therefore, we believe in most cases even a small keystream cache can

yield a relatively high hit rate.

D. Secure Communications of I2SEMS

Until now, we proposed an architectural design of I2SEMS and showed how it can

predict and precompute next counters. In this section, we explain how I2SEMS

provides secure communications. First, we discuss how data messages are protected

in detail. Then, we describe methods to protect other messages such as GCC messages

and control messages.

1. Protection on Data Messages

By architectural support of I2SEMS, we can assume that a sender and its receiver

share the same counter. Even if the counter is not correctly predicted in the re-

ceiving node, it will be available soon when the message arrives. Figure 20 shows

how to encrypt a data packet carrying a 32-byte plaintext and generate a message

authentication codes (MAC) using GCM. Decryption has a similar design. Since the

block size of AES is 128 bits, the 32-byte plaintext is divided into two sub-plaintexts,

Plaintext1 and Plaintext2. Larger cache blocks will be divided into more number of

sub-plaintexts. The two plaintexts are encrypted in parallel by XORing with two

keystreams, making two ciphertexts, Ciphertext1 and Ciphertext2. The ciphertexts

92

AES K

Plaintext1

Ciphertext1

GF_Mult HGF_Mult H

RC || SD || DS || addr

counter0…00

AES K AES K

Plaintext2

Ciphertext2

GF_Mult H

MAC

counter0…01 counter0…10

Fig. 20. Galois/counter mode

are concatenated to make 32 bytes encrypted payload. GF MultH denotes mul-

tiplication in GF (2128) using a hash key H, which is the encrypted zero counter,

AES(0128, K), with a secret key K.

• Encryption of Data Message

Since AES is considered to be secure without any serious weakness until now,

the plaintext will be kept secret as long as all input counters of AES are unique for

different data. AESK is hardware implementation of AES algorithm with a secket key,

K. Note that in Figure 20 one 64-bit global counter is used to compose three 128-bit

counters to generate three different keystreams. In this example, I2SEMS appends

three different prefixes: 06200, 06201, and 06210, by using the 62-bit common prefix. If

the 64-bit counter is globally unique and all components including processors and the

memory share the same 62-bit common prefix, every counter used as an input of AES

is unique in the whole system. With regard to the uniqueness of the 64-bit global

counter, we already described how I2SEMS can accomplish it in the previous section.

Secure sharing of secrets like the common prefix was fully investigated in [112], so

we can assume that I2SEMS can share the common prefixes securely. To prevent

93

the global counter from starting with the same number at every booting stage, the

common prefix will be increased by one, and distributed securely to all processors

and the memory.

The last concern of confidentiality of data messages is counter-wrap-around. If

the 64-bit global counter wraps around, two different data blocks will use the same

keystream. We estimate the expected wrap-around time by considering the maximum

counter usage rate of a system. Let’s suppose a system has 26 processors using a 3.2G

bytes/sec network and a 32 byte-long message and counter is 64 bits long. When one

half of the processors keep sending modified cache blocks at its full speed and the other

half are receiving them, this system will consume 232 keystreams per second, thus

taking about 27 years to wrap around the counter in the worst case. Considering that

I2SEMS assigns new counters only when necessary, we expect the actual counter wrap

around time will be far longer than the estimation. Therefore, the 64-bit counter will

be big enough to support system lifetime of fairly large multiprocessor systems. Even

if a huge multiprocessor system runs for exceptionally long period of time enough to

reach its theoretical wrap-around-time, the system can be simply. Therefore, I2SEMS

can protect data messages from eavesdropping attacks trying to recover all or partial

information of plaintexts.

• Authentication of Data Message

Since the security strength of GCM is the same as the strength of its block cipher

[23], the authentication strength is greatly improved. Owing to this, any modification

and spoofing attack will not be successful because the hacker does not know the secret

key K. Additionally, the source node (SN) and destination node (DN) addresses are

input of GF MultH , so the redirection attack is not possible, either.

The last authentication concern is replay attacks on data messages. According

to why a data message transfer is necessary, there are different replay attack scenarios

94

C1 C2

Memory

a1

a2

a3

b1

b2

b3

c1

c2

Fig. 21. Data messages transfer

as shown in Figure 21. The first relay attack point is on data messages between two

L2 caches, which are numbered as a1,a2, and a3. When an L2 cache read miss occurs

in C1 and its authoritative copy is stored in other L2 cache, C2, a read request (a1)

is delivered to C2. C2 sends the requested block (a2) to C1, and then C1 sends an

acknowledgement message (a3) to C2. A possible replay attack is as follows. Suppose

a hacker captures two messages a1 and a2 for a specific address. Later, if C1 evicts

the cache block and needs it again, C1 will send a new request a′1 to C2 with the same

address. The hacker can drop a′1, replay a2 to C1, and drop a new acknowledgement

a′3. This attack will be successful because a2 has a correct MAC with the same node

addresses and memory address. To prevent this attack, we propose that every read

request from an L2 cache should need to carry a unique sequential number, referred to

as Request Counter (RC). Whenever a read request is sent out, the RC is increased

and attached to the request message. In the above example, a1 will carry RCC1 . C2

includes RCC1 in generation of its MAC. This is why the first input of GF MultH

is RCC1 ‖ SN ‖ DS ‖ addr. Let’s look at the replay attack again. a′1 will carry a

new RC, RC ′C1
that is different from RCC1 used in a1. The authentication of replayed

a2 will not be successful because C1 expects an MAC generated with RC ′C1
‖ SN ‖

DS ‖ addr but the replayed a2 carries an MAC generated with RCC1 ‖ SN ‖ DS

95

‖ addr. Since C1 keeps increasing RCC1 per memory request, no two RCC1 will be

the same within its wrap-around-time. To estimate the wrap-around-time of RC,

we need to fix the number of nodes and the size of memory. Suppose there are 26

processors and the memory size is 28 GB. Since | SN | is 6 bits, | addr | is 38 bits,

and the input width of GF MultH is 128 bits, | RC | can be 78 bits. Even if RC’s

width is 59 bits and a cache keeps sending 32-bits messages using a new RC in a 3.2

Gbytes/sec network, its wrap-around-time is approximately 27 years like that of the

global counter. Thus, the first 19 bits can be used as a prefix that is incremented by

one at the booting stage as we did for the global counter. After 219 rebootings, we

can see the same RC from the same cache, which will be almost impossible to happen

in real systems. Therefore, our scheme can prevent replay attacks on data message

between caches.

The second relay attack point is on data messages from the memory to an L2

cache, which are numbered as b1,b2, and b3. When C1 wants to access the memory

for read, a memory request is delivered to the memory (b1). The memory sends the

requested block (b2), and then C1 sends an acknowledgement message to the memory

(b3). Since communication steps are exactly the same as those between two caches,

replay attack scenario and its prevention are also the same.

The third replay attack point is on data messages from an L2 cache to the

memory. The transfer happens when a modified block is evicted from the cache and

written back to the memory. This replay attack is different from the two previous

attacks because there will no read request such as a1 and b1. C2 directly sends a

write-back request with data (c1) in Figure 21. A possible replay attack is as follows.

Suppose a hacker captured c1 for a specific address. Then, the hacker can recover the

old data anytime by replaying c1. Since c′2 will also be dropped, the attack will go

unnoticed by cache coherence protocols. To prevent this replay attack, we insert the

96

RC in the request as well as use RC to make an MAC. That is, C2 use RCC2 ‖ SN

‖ DS ‖ addr for its MAC, and c1 carries RCC2 . The memory should remember each

cache’s last RC so that it can raise a security alert when an arriving RC is smaller

than or equal to the last RC. Therefore, I2SEMS prevents the replay attacks on data

messages.

For the complete protection of memory, we additionally adopt Merkle tree or a

recently proposed Bonsai Merkle tree [65, 113]. Even though it is out of our research

scope, Merkle tree can prevent memory authentication attacks like memory block

replacements. Note that since I2SEMS prevents replay attacks, we can ease a hard

requirement of Merkle tree authentication that a root authentication code needs to be

stored in processor/cache that is assumed to be secure. In our design, as long as the

secure memory controller can store the root authentication code, making sure that

the memory contents are not modified or replaced through physical attacks, I2SEMS

can guarantee secure communications between caches and memory. This will remove

possible overhead for updating the root authentication codes in multiple processor

systems at every memory writing.

Until now, we implicitly assumed that the underlying general interconnect pro-

vides in-order delivery and there is no packet loss because we simply compared the

most recent RC and a newly arrived RC. In larger multiprocessor systems, however,

out-of-order delivery and message loss are possible. For example, two invalidation

requests from the same node to the same destination node can arrive out of order

by taking different paths in adaptive routing schemes, meaning the smaller RC can

arrive later. The strict requirement of monotonic increasing RC will not be working

in out-of-order delivery interconnects. Note that, however, the replay attack will be

only successful when a hacker sends exactly same copies of previous messages, which

means that the replayed message’s RC already arrived before. In other words, out-

97

of-order delivery will cause skipped numbers in received RC while replay attacks will

result in duplication among received RCs. For this, each cache needs to maintain his-

tory information of other caches’ RC. The maximum delay of out-of-order delivery

and message retransimission time will decide the size of the storage. Since most mul-

tiprocessor systems provide highly reliable interconnects, it seems less likely to have

a larger number of out-of-order or lost messages for long period of time. Therefore,

the space overhead of the stoage will be small.

2. Protection on Control Messages

Control messages like invalidation or write requests need appropriate protection for

the follwoing reason. In Figure 21, suppose that C2 is an exclusive owner of a cache

block of an address. A hacker spoofs a write request with C1 as the source node

and C2 as the destination node. C2 would invalidate its block by understanding that

C1 wants to have an owenership to overwrite the block. This attack results in cache

incoherence because the cache coherence protocol considers C2 as the owner of the

address, but C2 already invalidated the block. For this, we propose to authenticate

control messages by using local counters. Each cache has its own 64-bit counter and

increases it by one at every control message. This local counter instead of the global

counter is used as an input of AESK in Figure 20. Since there is no data to encrypt,

Plantext1 and Plantext2 will be simply 0128. Instead, two ciphertexts will be used

only for generation of MAC. Still, the input of GF MultH is RC ‖ SN ‖ DS ‖

addr, and the message needs to carry RC. Like the global counter, the local counter

will be initialized at every booting stage to prevent every local counter from starting

with the same number. Note that we do not consider performance implication of

authentication of control messages. That is because we can presume this will not cause

significant performance overhead by using the combination of local counter prediction

98

and speculative authentication. As we did in the global counter, each cache can

predict the next local counter and precompute its keystream so that it can instantly

generate incoming control message’s MAC. According to [67], there is a temporal

locality in cache coherence communications, meaning that a cache communicates

with relatively small number of caches at a time. Therefore, the prediction hit rate

is expected to be very high. Furthermore, in case of a local counter miss, which

could incur an authentication delay, we use authentication speculation. In other

words, when a keystream to authenticate a control message is not available, instead

of waiting for the generation of the keystream, the receiving cache simply checks

RC first, and then process the control message as requested. Considering that the

authentication will be successful when there is no security attack, the authentication

of control messages will not affect the overall performance.

3. Protection on Counter Messages

Since the whole security mechanism depends on the counters assigned by the GCC,

the protection of the GCC and its counter distribution is critical. Therefore, the

GCC itself needs to be tamper-resistant so that its operation and secret keys will be

protected. So, we need to provide appropriate protection on the counter messages.

to remove any possibility of modifying, forging, or replaying attacks,

First of all, counters carried on counter messages need authentication only, not

encryption, because even if the counter is available to a hacker he cannot generate

or predict any keystreams without knowing a secket key in use. For authenticating

counter messages, we propose a new counter, GCC Counter (GC), similar to the

local counter in protection of control messages. When a keystream queue needs more

global counters, it sends a counter request with an RC to prevent a possible replay

attack on counter request and reply messages. Upon a counter request, the GCC first

99

makes a reply message to the requester. The input of AESK uses GC, Plaintext1 is

a new global counter, Plaintext2 is zero, and the input of the input of GF MultH

is RC ‖ GCC ‖ DS. Then, the GCC makes a broadcast message to all keystream

pools. The input of AESK uses GC + 1, Plaintexts are the same, and the input

of the input of GF MultH is GCC ‖ ∗. * is a special character for a broadcasting

address. The GCC increases GC by two for next counter requests. A replay attack

on counter broadcast messages does not look interesting to a hacker since it will end

up with broadcasting an old counter that can be simply dropped by comparing the

arriving global counter and the most recent global counter. Out-of-order delivery

interconnects may allow a broadcast message to arrive earlier than its reply message

or its previous broadcast messages. In the former case, the cache keeps waiting for

a reply message by discarding the broadcast message. In the latter case, if there is

skipped global counters in the broadcasted messages, keystream pools assume that

out-of-order delivery or packet loss happens, so it can precompute all the global

counters’ keystreams including the skipped counters. With regard to performance of

authentication of GCC messages, keystream queues and keystream pools authenticate

most GCC messages with little delay by correctly predicting GC because the GCC

keeps broadcasting GC to all processors.

E. Performance Analysis

1. Simulation Framework

Simulator: We evaluate the performance of I2SEMS by using the Simics full-system

multiprocessor simulator developed by Virtutech AB [107]. To simulate general shared

memory systems and various cache coherence protocols, we use GEMS as an ex-

tension of Simics [108]. We developed I2SEMS in four cache coherence protocols:

100

Table V. Processor model parameters

Parameters Values

CPU 1 GHz

L1 I-Cache 128K bytes, 4-way, 2ns latency

L1 D-Cache 128K bytes, 4-way, 2ns latency

L2 Cache 1M bytes, 4-way, 6ns latency

Cache Block Size 32 bytes

Keystream Pool 512K bytes, 4-way, 3ns latency

Keystream Cache 32-entry fully associative, 2ns latency

Memory 2G bytes, 80ns

network link bandwidth 3.2G bytes/sec

AES latency 80ns

AES throughput 3.2G bytes/sec

broadcasting, directory, hammer, and token. Broadcasting and directory coherence

protocols are traditional protocols used in current shared memory multiprocessor

systems. Hammer cache coherence protocol is an approximation of AMD’s Hammer

protocol used in AMD multiprocessor systems [114]. Token coherence protocol re-

cently proposed by Martin, et al. is a low latency cache coherence protocol enabled

by decoupling performance and correctness [103].

Configuration: We configured Simics as a Sun Fire server with UltraSPARCIII+

processors and Solaris 9 OS using the parameters shown in Table V. Since the decod-

ing time of the unified L2 cache is approximately 3ns, we use 512K bytes keystream

pools with 3ns access time to parallelize a keystream pool access with an L2 cache

access. The keystream cache is 32-entry fully associative cache with 2ns hit latency.

Due to the recent development of AES implementation, a 128 bit AES unit can pro-

101

duce 30∼70 Gbps using 0.18µm CMOS technology. In our experiment, default AES

latency is 80ns and throughput is 3.2G bytes/sec [62, 13, 43]. CR is calculated to be

32. We configured the network using hierarchical switches with fanout degree of 4,

which is default in GEMS [108]. Since in our simulation the network latency to trans-

mit a 32 bytes cache block is 10ns, the six clock cycle delay for GF multiplications

discussed in Chapter II can be overlapped without causing an additional delay.

Benchmarks: We used four SPLASH-2 benchmarks; FFT, LU, RADIX, and

OCEAN with their typical settings as described in [110] and one SpecOMP2001

benchmark, APPLU.

2. Overall Performance Slowdown

We ran five benchmark programs using two secure configurations and one non-secure

configuration; one secure configuration is I2SEMS and the other is prediction only

scheme to compare with I2SEMS. Similar to Counter mode proposed by Shi, et al.

[62], the prediction only scheme has a keystream generator and a small number of

keystream buffers. Regardless of a keystream pool hit or miss, the keystream gen-

erator keeps generating p keystreams by using the next counters. We assume that,

in the prediction only scheme, each cache controller knows its own exclusive range of

counters.

Figure 22 (a) shows the overall performance slowdown normalized to the execu-

tion time of the non-secure configuration. As compared to the baseline configuration

with no security measures, I2SEMS incurs around 4 percent performance slowdown

on average. It is clear that I2SEMS causes less performance slowdown than the pre-

diction only scheme. However, it is hard to find a common trend in performance

slowdown among varying number of processors. That is possibly because the execu-

tion time can be easily affected by other factors. Since we use the non-deterministic

102

0%

5%

10%

15%

20%

25%

%
 S

lo
w

do
w

n

2C
P

U
s

4C
P

U
s

8C
P

U
s

16
C

P
U

s
2C

P
U

s
4C

P
U

s
8C

P
U

s
16

C
P

U
s

2C
P

U
s

4C
P

U
s

8C
P

U
s

16
C

P
U

s
2C

P
U

s
4C

P
U

s
8C

P
U

s
16

C
P

U
s

2C
P

U
s

4C
P

U
s

8C
P

U
s

16
C

P
U

s

FFT LU RADIX OCEAN APPLU

Prediction Only I2SEMS

0%

20%

40%

60%

80%

K
ey

st
re

am
 H

it
R

at
e

2C
P

U
s

4C
P

U
s

8C
P

U
s

16
C

P
U

s
2C

P
U

s
4C

P
U

s
8C

P
U

s
16

C
P

U
s

2C
P

U
s

4C
P

U
s

8C
P

U
s

16
C

P
U

s
2C

P
U

s
4C

P
U

s
8C

P
U

s
16

C
P

U
s

2C
P

U
s

4C
P

U
s

8C
P

U
s

16
C

P
U

s

FFT LU RADIX OCEAN APPLU

Prediction Only I2SEMS

(a) Performance Slowdown (b) Keystream Pool Hit Rate

Fig. 22. Overall performance.

full-system architectural simulator and multithreaded workloads, the execution path

of each benchmark program is not always the same. Thus, a small difference in the

selection of OS scheduling may cause large variability in the execution time. The

similar effect was discussed by Zhang, et al. [13]. Instead, we use the keystream pool

hit rate for performance comparison not only because it is less variable than execution

time, but also because the high hit rate is positively correlated with performance.

Figure 22 (b) shows keystream pool hit rates of five benchmark programs. The hit

rates vary from 22 percent to 78 percent, but note that in all benchmarks I2SEMS has

higher hit rates than the prediction only scheme. This is because the prediction and

broadcast schemes adaptively yield a high keystream pool hit rate in both memory-

read and memory-write dominant applications.

We would like to emphasize that the counter prediction of a uniprocessor system

is completely different from that of multiprocessor systems. According to [62], unipro-

cessor’s prediction scheme showed 82 percent keystream hit rate and optimization

techniques can increase the rate even up to 99 percent. However, in our simulation,

the prediction only scheme shows a lower keystream pool hit rate. This is because the

counter in the uniprocessor system will be highly contiguous, so the sequential predic-

103

tion is very likely to be correct. However, in the prediction only scheme, the exclusive

counters would result in counters’ discontinuity in adjacent cache blocks when those

blocks are modified by multiple processors having different counter ranges. There-

fore, it is unavoidable to have a high miss rate, especially in data sharing intensive

applications. In contrast, our scheme will show a high prediction hit rate in both high

and low data sharing situations because the high hit rate of I2SEMS comes from not

only the counter prediction but also the counter broadcast.

3. Keystream Pool Size

To investigate the effect of the keystream pool size and associativity on the keystream

pool hit rate, we varied the keystream pool size from 64K bytes to 512K bytes with

direct-mapped, 2-way, and 4-way set associativities. In Figure 23, as the size increases,

keystream pool hit rates also increase. It is intuitive that a large cache can hold more

keystreams and consequently yield a higher keystream pool hit rate. Note that, even

after the keystream pool size is increased exponentially, the keystream pool hit rate

does not go up dramatically, ranging from 5 percent to 20 percent. The reason is

that the recently assigned or predicted keystreams are more likely to be hit. Cache

set associativity does not have a substantial effect on the keystream pool hit rate. A

high set associative cache is useful only when many blocks are mapped to the same

set. However, the counter itself is increasing monotonically, so cache contentions do

not occur often. Therefore, we conclude that, in the presence of area and power

constraints, the direct-mapped keystream pool is more desirable.

4. Cache Coherence Protocol

We investigate the relationship between the keystream pool hit rate and cache co-

herence protocols. In Figure 24, to illustrate individual contributions, we show the

104

0%

10%

20%

30%

40%

50%

60%

70%

80%

K
ey

st
re

am
 H

it
R

at
e

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

LU 4CPUs LU 8CPUs RADIX
4CPUs

RADIX
8CPUs

1-way 2-way 4-way

0%

10%

20%

30%

40%

50%

60%

70%

80%

K
ey

st
re

am
 H

it
R

at
e

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

LU 4CPUs LU 8CPUs RADIX
4CPUs

RADIX
8CPUs

1-way 2-way 4-way

(a) Broadcast (b) Token

0%

10%

20%

30%

40%

50%

60%

70%

80%

K
ey

st
re

am
 H

it
R

at
e

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

LU 4CPUs LU 8CPUs RADIX
4CPUs

RADIX
8CPUs

1-way 2-way 4-way

0%

10%

20%

30%

40%

50%

60%

70%

80%

K
ey

st
re

am
 H

it
R

at
e

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

64
K

B

12
8K

B

25
6K

B

51
2K

B

LU 4CPUs LU 8CPUs RADIX
4CPUs

RADIX
8CPUs

1-way 2-way 4-way

(c) Directory (d) Hammer

Fig. 23. Hit rate vs. keystream pool size and associativity.

105

0%

20%

40%

60%

80%

100%

K
ey

st
re

am
 H

it
R

at
e

2C
P

U
s

4C
P

U
s

8C
P

U
s

16
C

P
U

s
2C

P
U

s
4C

P
U

s
8C

P
U

s
16

C
P

U
s

2C
P

U
s

4C
P

U
s

8C
P

U
s

16
C

P
U

s
2C

P
U

s
4C

P
U

s
8C

P
U

s
16

C
P

U
s

broadcast directory hammer token

Broadcast Prediction

0%

20%

40%

60%

80%

100%

K
ey

st
re

am
 H

it
R

at
e

2C
P

U
s

4C
P

U
s

8C
P

U
s

16
C

P
U

s
2C

P
U

s
4C

P
U

s
8C

P
U

s
16

C
P

U
s

2C
P

U
s

4C
P

U
s

8C
P

U
s

16
C

P
U

s
2C

P
U

s
4C

P
U

s
8C

P
U

s
16

C
P

U
s

broadcast directory hammer token

Broadcast Prediction

(a) RADIX (b) LU

Fig. 24. Keystream origination.

breakdown of keystream hit rate according to their origination: Broadcast and Predic-

tion. We observe that, in both graphs, the proportion of hits on broadcasted counters

is increasing as the number of processors is increasing. Therefore, we can conclude

that a memory-writing dominant application will have a high keystream pool hit rate.

However, even in a memory-reading dominant application, its keystream pool hit rate

will not drop sharply because read-only memory accesses usually show high locality

of memory accesses, and consequently the prediction scheme will contribute to a high

keystream pool hit rate more than the broadcast scheme. Therefore, I2SEMS will

show good performance irrespective of memory access patterns in large multiproces-

sor systems.

5. Prediction Depth

The prediction depth is the number of keystreams that a keystream pool generates

upon an arrival of a message. To investigate the impact of deep prediction depth on

the keystream pool hit rate, we increased the prediction depth up to 160, testing on up

to 16-processor systems as depicted in Figure 25. As the prediction depth increases,

both the keystream pool hit rate and its prediction portion gradually increase while

106

0%

10%

20%

30%

40%

50%

60%

70%

80%

K
ey

st
re

am
 H

it
R

at
e

P
re

di
ct

5
P

re
di

ct
10

P
re

di
ct

20
P

re
di

ct
40

P
re

di
ct

80
P

re
di

ct
16

0
P

re
di

ct
5

P
re

di
ct

10
P

re
di

ct
20

P
re

di
ct

40
P

re
di

ct
80

P
re

di
ct

16
0

P
re

di
ct

5
P

re
di

ct
10

P
re

di
ct

20
P

re
di

ct
40

P
re

di
ct

80
P

re
di

ct
16

0
P

re
di

ct
5

P
re

di
ct

10
P

re
di

ct
20

P
re

di
ct

40
P

re
di

ct
80

P
re

di
ct

16
0

RADIX 2CPUs RADIX 4CPUs RADIX 8CPUs RADIX 16CPUs

Broadcast Prediction

Fig. 25. Hit rate vs. prediction depth.

the broadcast portion slightly decreases. This is mainly because as the number of

predicted keystreams increases, previously precomputed broadcast keystreams are

evicted from the keystream pool. Note that, however, when the prediction depth

reaches 160, the overall keystream hit rate begins to decrease. Therefore, this result

shows that too deep prediction will have a negative impact on the performance from

some points, and that, even with deep prediction, the broadcast scheme contributes

substantially to the overall keystream pool hit rate.

6. Scalability of Global Counter Controller

Figure 26 shows the simulation results of RADIX benchmark using up to 16 proces-

sors. Figure 26 (a) shows that the keystream cache hit rate will be relatively high

even with the small keystream cache. This is due to the locality of memory accesses.

Figure 26 (b) illustrates how much a 32-entry keystream cache reduces the counter

107

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500

Number of Entries

K
ey

st
re

am
 C

ac
he

 H
it

R
at

e

broadcast directory hammer token

0%

5%

10%

15%

20%

25%

30%

2 4 8 16

Number of Processors

K
ey

st
re

am
 R

eu
se

 R
at

e

broadcast directory hammer token

(a) Keystream Cache Hit Rate (b) Keystream Reuse Rate

0

4000

8000

12000

16000

20000

2 4 8 16

Number of Processors

M
es

sa
ge

s
(K

)

non-GCC GCC

(c) Number of Messages

Fig. 26. Scalability of Global Counter Controller.

108

usage. When the number of processors is two, less than 3 percent of outgoing data

blocks reuse keystreams, but in the 16 processors the rate reaches around 25 per-

cent. Considering the rate is going up rapidly as the number of processors increases,

it is expected that a significant portion of outgoing messages will reuse keystreams.

In Figure 26 (c), while the number of normal messages increases dramatically at 16

processors, the number of GCC messages does not change proportionally, but even

appears static. This is because our scheme successfully reduces the number of new

counters through the keystream reuse by using both the keystream cache and the

block assignment of new counters. Although simulation results are only available in

up to 16 processors, the trend hints that the GCC will be scalable to larger shared

memory multiprocessor systems.

F. Conclusions

In this study, we proposed I2SEMS to guarantee confidentiality and integrity of shared

memory and cache-to-cache communication in multiprocessor systems by incorporat-

ing a small amount of additional hardware components: GCC, keystream queue,

keystream cache, and keystream pool. The GCC assigns globally unique counters for

memory/cache-to-cache communication security. Keystream queues and keystream

caches minimize encryption delay while reducing the counter usage rate. For fast

decryption, keystream pools precompute/store keystreams at a counter broadcast by

the GCC as well as at a message arrival. In addition, by separating security im-

plementation and cache coherence verification, I2SEMS can work on diverse cache

coherence protocols.

The important conclusions of this work are the following: First, we provided

confidentiality and integrity of shared memory and cache-to-cache communication in

109

multiprocessor systems with low performance overhead. We used GCM with AES for

better security and performance. The performance overhead of I2SEMS was 4 percent

on average although execution time was too variable to find a common trend. The

keystream pool hit rate was as high as 78 percent, meaning 78 percent of incoming

messages were instantly decrypted and authenticated upon arrival. Second, simula-

tion results showed that I2SEMS will have good performance in large scale shared

memory multiprocessor systems. Even though we tested up to 16-processors due

to the current status of our simulator, its trend looks obvious. In addition, I2SEMS

works well with any applications. If an application is memory-read dominant, the pre-

diction scheme where subsequent counters are predicted will contribute significantly

to a high keystream pool hit rate because of the high locality of memory access.

In memory-write dominant applications, the broadcast scheme where newly assigned

counters are broadcasted will increase the keystream pool hit rate. Therefore, we

conclude that I2SEMS can support large scale shared memory multiprocessors with

diverse memory access patterns. Note that, due to the limitation of the simulator, we

could not simulate distributed shared memory systems. Nevertheless, we believe gen-

eral trends will be similar not only because the number of GCC-related messages will

be still very small, but also because both the prediction scheme and counter broadcast

scheme will result in high keystream pool hit rates. Third, we found that relatively

small keystream pools can support a large system although the larger keystream pools

are beneficial to the high keystream pool hit rate. Set associativity does not have

much impact on the keystream pool hit rate. Therefore, a simple but moderate sized

keystream pool is desirable in I2SEMS.

We are currently examining a number of possible expansions to this work. First,

we were unable to analyze the realistic web-based or database servers. In-depth

experiments with those server applications should fortify the I2SEMS design. Next,

110

we would like to expand our research to much larger multiprocessor systems with

DSM and to new multiprocessor architectures such as Chip Multiprocessor (CMP)

systems.

111

CHAPTER VI

CONCLUSIONS

We have proposed three major topics in this dissertation. These are (i) study of a

secure cluster design that is robust to confidentiality, authentication, and availability

attacks, (ii) study of a security accelerating network interface card that can improve

security performance significantly by offloading security operations from host proces-

sors, (iii) design of interconnect-independent secure shared-memory multiprocessor

systems protecting the inter-processor communications from confidentiality attacks.

In the first study, we elaborated on the Key exposure problem of InfiniBand-

based cluster systems and showed that possible DoS attacks can affect the overall

performance significantly. Then, we detailed how to adopt an encryption and au-

thentication algorithm into IBA clusters with as low as 0.7% performance overhead.

We also proposed the stateful ingress filtering that can be active only when neces-

sary. Furthermore, our source identification algorithm can trace back real attackers

in large networks regardless of their topologies. In the second study, we focused on

enabling fine-grained secure communications in coscheduled cluster systems with low

performance overhead. For this, we proposed a small session key cache and a prefetch

buffer inside cluster interconnect card and showed that SKC is very effective when

communication patterns show high temporal locality. To estimate the size of SKC, we

developed an analytical model. This model showed that a 16-Kbyte SKC can support

large-scale cluster systems with a high hit rate. In the third study, we proposed a

secure shared-memory multiprocessor systems called I2SEMS. To provide confiden-

tiality and integrity of shared memory and cache-to-cache communication, I2SEMS

has a small amount of additional hardware components: GCC, keystream queue,

keystream cache, and keystream pool. Simulation results showed that I2SEMS will

112

show good performance in providing large scale shared memory multiprocessor sys-

tems with better security using GCM and AES. Its performance overhead is around

4 percent with as high as 78 percent keystream hit rate.

We are currently examining a number of possible extensions to this work. They

include secure cluster design for other cluster interconnects by extending ideas used

in secure IBA cluster system. We plan to implement secure NIC design by using a re-

configurable NIC. By doing this, we can get more practical analysis of its performance

impact on performance of cluster systems. Finally, we are exploring alternative secure

multiprocessor designs in various multi-processor or -core architecture.

113

REFERENCES

[1] Committee on National Security Systems, National Information Assurance

Glossary, http://www.cnss.gov/Assets/pdf/cnssi 4009.pdf; accessed April 24,

2008.

[2] David Geer, “Just How Secure Are Security Products?,” Computer, vol. 37,

no. 6, pp. 14–16, 2004.

[3] Avishai Wool, “A Quantitative Study of Firewall Configuration Errors,” Com-

puter, vol. 37, no. 6, pp. 62–67, 2004.

[4] “Attackers Penetrate Supercomputing Networks,”

http://www.teragrid.org/news/apps/0404/sconline3.html; accessed April

24, 2008.

[5] HPC wire, “InfiniBand Cluster Deployed at SC05,”

http://news.taborcommunications.com/msgget.jsp?mid=506904; accessed

April 24, 2008.

[6] William Yurcik, G.A.Koenig, X. Meng, and J. Greenseid, “Cluster Security

as a Unique Problem with Emergent Properties: Issues and Techniques,” in

Proceedings of Linux Revolution 2004, 2004, (CDROM).

[7] “Distributed Security Infrastructure,” http://disec.sourceforge.net/; accessed

Arpil 23, 2008.

[8] M. Pourzandi, “A new Distributed Security Model for Linux Clusters,” in

Proceedings of the USENIX 2004 Annual Technical Conference, Extreme Linux

Special Interest Group, 2004, pp. 231–236.

114

[9] Ian Foster, Nicholas T. Karonis, Carl Kesselman, and Steven Tuecke, “Manag-

ing security in high-performance distributed computations,” Cluster Comput-

ing, vol. 1, no. 1, pp. 95–107, 1998.

[10] Kay Connelly and Andrew A. Chien, “Breaking the Barriers: High Perfor-

mance Security for High Performance Computing,” in Proceedings of the 2002

Workshop on New Security Paradigms, 2002, pp. 36–42.

[11] Rossen Dimitrov and Matthew Gleeson, “Challenges and New Technologies for

Addressing Security in High Performance Distributed Environments,” in Pro-

ceedings of the 21st National Information Systems Security Conference, 1998,

pp. 457–468.

[12] InfiniBand Trade Association, “InfiniBand Architecture Specification,” Volume

1, Release 1.1, 2002, http://www.infinibandta.org/specs/; accessed April 24,

2008.

[13] Youtao Zhang, Lan Gao, Jun Yang, Xiangyu Zhang, and Rajiv Gupta, “SENSS:

Security Enhancement to Symmetric Shared Memory Multiprocessors,” in Pro-

ceedings of the 11th International Symposium on High Performance Computer

Architecture, 2005, pp. 352–362.

[14] Weidong Shi, Hsien-Hsin S. Lee, Mrinmoy Ghosh, and Chenghuai Lu, “Archi-

tectural Support for High Speed Protection of Memory Integrity and Confiden-

tiality in Multiprocessor Systems,” in Proceedings of the 13th International

Conference on Parallel Architecture and Compilation Techniques, 2004, pp.

123–134.

[15] Kohnfelder, “Toward a Practical Public Key Cryptosystem,” Bachelor’s thesis,

MIT, Cambrige, MA, 1978.

115

[16] National Institute of Science and Technology, “Advanced Encryption Standard

(AES),” FIPS 197, 2001, http://csrc.nist.gov/publications/fips/fips197/fips-

197.pdf; accessed April 24, 2008.

[17] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing

for Message Authentication,” RFC 2104 (Informational), Feb. 1997,

http://www.ietf.org/rfc/rfc2104.txt; accessed April 24, 2008.

[18] Gene Tsudik, “Message Authentication with One-Way Hash Functions,” in

Proceedings of IEEE INFOCOM, 1992, pp. 2055–2059.

[19] American National Standards Institute, “Financial Institution Retail Message

Authentication,” ANSI X9.19, 1996.

[20] National Institute of Standards and Technology, “Computer Data Authentica-

tion,” FIPS 113, 1994.

[21] International Organization for Standards and International Electrotechnical

Commission, “Information Technology. Security Techniques. Data Integrity

Mechanism Using a Cryptographic Check Function Employing a Block Cipher

Algorithm,” ISO/IEC 9797-1, 1999.

[22] John Black and Phillip Rogaway, “A Block-Cipher Mode of Operation for

Parallelizable Message Authentication,” in EUROCRYPT ’02: Proceedings of

the International Conference on the Theory and Applications of Cryptographic

Techniques, 2002, pp. 384–397.

[23] D. McGrew and J. Viega, “The Galois/Counter Mode of Operation (GCM),”

Submission to NIST Modes of Operation Process, 2004.

116

[24] Sven Dietrich, Neil Long, and David Dittrich, “Analyzing Distributed Denial of

Service Tools: The Shaft Case,” in Proceedings of the 14th USENIX Conference

on System Administration (LISA ’00), 2000, pp. 329–340.

[25] A. Machie, J. Roculan, R. Russell, and M. V. Velzen, “Nimda Worm Analysis,”

Tech. Rep., Incident Analysis, SecurityFocus, 2001.

[26] R. Russell and A. Machie, “Code Red II Worm,” Tech. Rep., Incident Analysis,

SecurityFocus, 2001.

[27] D. Song, R. Malan, and R. Stone, “A Snapshot of Global Internet Worm

Activity,” Tech. Rep., Worm Activity, 2001.

[28] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin, Firewalls and

Internet Security; Repelling the Wily Hacker, Second Edition, Reading, MA:

Addison-Wesley, 2003.

[29] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,

Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su, “Myrinet: A Gigabit-

per-Second Local Area Network,” IEEE Micro, vol. 15, no. 1, pp. 29–36, 1995.

[30] Eun Jung Kim, Ki Hwan Yum, Chita R. Das, Mazin S. Yousif, and José Duato,

“Performance Enhancement Techniques for InfiniBand Architecture,” in Pro-

ceedings of the 9th International Symposium on High-Performance Computer

Architecture (HPCA ’03), 2003, pp. 253–262.

[31] Manhee Lee, Eun Jung Kim, Ki Hwan Yum, and Mazin Yousif, “An Overview

of Security Issues in Cluster Interconnects,” in Proceedings of the Second Inter-

national Workshop on Cluster Security (Cluster-Sec), CCGRID ’06 Workshop,

2006, p. 25.

117

[32] Manhee Lee, Eun Jung Kim, and Mazin Yousif, “Security Enhancement in In-

finiBand Architecture,” in Proceedings of the 19th IEEE International Parallel

and Distributed Processing Symposium, 2005, p. 105.

[33] Peter Hellekalek and Stefan Wegenkittl, “Empirical Evidence Concerning

AES,” ACM Transactions on Modeling and Computer Simulation (TOMACS),

vol. 13, no. 4, pp. 322–333, 2003.

[34] D. McGrew and J. Viega, “Flexible and Efficient Message Authentication in

Hardware and Software,” Manuscript, 2003.

[35] Hassan Aljifri, “IP Traceback: A New Denial-of-Service Deterrent?,” IEEE

Security and Privacy, vol. 1, no. 3, pp. 24–31, 2003.

[36] Dawn Xiaodong Song and Adrian Perrig, “Advanced and Authenticated Mark-

ing Schemes for IP Traceback,” in Proceedings of IEEE INFOCOM, 2001, pp.

878–886.

[37] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson, “Practi-

cal Network Support for IP Traceback,” in Proceedings of the conference on

Applications, Technologies, Architectures, and Protocols for Computer Com-

munication (SIGCOMM ’00), 2000, pp. 295–306.

[38] Abraham Yaar, Adrian Perrig, and Dawn Song, “Pi: A Path Identification

Mechanism to Defend against DDoS Attacks,” in Proceedings of the 2003

IEEE Symposium on Security and Privacy, 2003, p. 93.

[39] William Feller, An Introduction to Probability Theory and Its Applications,

Third Edition, Hoboken, NJ: John Wiley & Sons, 1968.

118

[40] Dorothy E. Denning and Giovanni Maria Sacco, “Timestamps in Key Distri-

bution Protocols,” Communications of the ACM, vol. 24, no. 8, pp. 533–536,

1981.

[41] Joan Dyer, Ron Perez, Sean Smith, and Mark Lindemann, “Application Sup-

port Architecture for a High-Performance, Programmable Secure Coprocessor,”

in Proceedings of the 22nd National Information Systems Security Conference,

October 1999, (CDROM).

[42] National Institute of Standards and Technology, “Security Requirements for

Cryptographic Modules,” FIPS 140-1, 1994.

[43] A. Hodjat and I. Verbauwhede, “Minimum Area Cost for a 30 to 70 Gbits/s

AES Processor,” in Proceedings of the IEEE Computer Society Annual Sym-

posium on VLSI, 2004, pp. 83–88.

[44] S. Wilton and N. Jouppi, “CACTI: An Enhanced Cache Access and Cycle Time

Model,” IEEE Journal of Solid-State Circuits, vol. 31, no. 5, pp. 677–688, 1996.

[45] Jonathan Krim and Robert O’Harrow Jr., “Data Under Siege,” The

Washington Post, March 10, 2005, http://www.washingtonpost.com/wp-

dyn/articles/A19982-2005Mar9.html; accessed April 24, 2008.

[46] George Markowsky and Linda Markowsky, “Survey of Supercomputer Clus-

ter Security Issues,” in Proceedings of the 2007 International Conference on

Security and Management, 2007, pp. 474–480.

[47] Robert Fischer and Ming-Yang Kao, “Multi-Domain Sandboxing: An

Overview,” Harvard Technical Report Computer Science Group TR-05-00, Har-

vard, Cambridge, MA, 2000.

119

[48] Manhee Lee and Eun Jung Kim, “A Comprehensive Framework for Enhanc-

ing Security in InfiniBand Architecture,” IEEE Transactions on Parallel and

Distributed Systems, vol. 18, no. 10, pp. 1393–1406, 2007.

[49] Xin Qi, G. Parmer, and R. West, “An Efficient End-host Architecture for Clus-

ter Communication Services,” in Proceedings of the 2004 IEEE International

Conference on Cluster Computing, 2004, pp. 83–92.

[50] Chris Runge, “The Path to Multi-level Security in Red Hat Enterprise Linux r©

and HP Industry Standard Servers,” HP Whitepaper, 4AAO-4070ENUS, HP,

Palo Alto, CA, 2006.

[51] A. Waheed and J. Yan, “Workload Characterization of CFD Applications Using

Partial Differential Equation Solvers,” in Proceedings of Workshop on Work-

load Characterisatisation in High-Performance Computing Environments, 1998.

[52] Eun Jung Kim, Ki Hwan Yum, and Chita R. Das, “Performance Analysis of a

QoS Capable Cluster Interconnect,” Performanace Evaluation, vol. 60, no. 1-4,

pp. 275–302, 2005.

[53] Ki Hwan Yum, Eun Jung Kim, Chita R. Das, and Aniruddha S. Vaidya, “Medi-

aWorm: A QoS Capable Router Architecture for Clusters,” IEEE Transactions

on Parallel and Distributed Systems, vol. 13, no. 12, pp. 1261–1274, 2002.

[54] Andrea C. Arpaci-Dusseau, David E. Culler, and Alan M. Mainwaring,

“Scheduling with Implicit Information in Distributed Systems,” in Proceed-

ings of ACM SIGMETRICS ’98/PERFORMANCE ’98, 1998, pp. 233–243.

[55] Shailabh Nagar, Ajit Banerjee, Anand Sivasubramaniam, and Chita R. Das,

“Alternatives to Coscheduling a Network of Workstations,” Journal of Parallel

120

and Distributed Computing, vol. 59, no. 2, pp. 302–327, 1999.

[56] Patrick Sobalvarro and William E. Weihl, “Demand-Based Coscheduling of

Parallel Jobs on Multiprogrammed Multiprocessors,” in Proceedings of the

Workshop on Job Scheduling Strategies for Parallel Processing (IPPS ’95), 1995,

pp. 106–126.

[57] Y. Etsion and D. G. Feitelson, “User-Level Communication in a System with

Gang Scheduling,” in Proceedings of the 15th International Parallel and Dis-

tributed Processing Symposium (IPDPS ’01), 2001, p. 58.

[58] Atsushi Hori, Hiroshi Tezuka, and Yutaka Ishikawa, “Highly Efficient Gang

Scheduling Implementation,” in Proceedings of the 1998 ACM/IEEE confer-

ence on Supercomputing (Supercomputing ’98), 1998, pp. 1–14.

[59] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches

and Hash Trees for Efficient Memory Integrity Verification,” in Proceedings of

the 9th International Symposium on High-Performance Computer Architecture,

2003, p. 295.

[60] T. Gilmont, J.D. Legat, and J.J. Quisquater, “Enhancing the Security in the

Memory Management Unit,” in Proceedings of the 25th EuroMicro Conference,

1999, vol. 1, pp. 449–456.

[61] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and

M. Horowitz, “Architectural Support for Copy and Tamper Resistant Soft-

ware,” in Proceedings of the 9th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-IX),

2000, pp. 168–177.

121

[62] Weidong Shi, HsienHsin S. Lee, Mrinmoy Ghosh, Chenghuai Lu, and Alexandra

Boldyreva, “High Efficiency Counter Mode Security Architecture via Predic-

tion and Precomputation,” in Proceedings of the 30th Annual International

Symposium on Computer Architecture, 2005, pp. 14–24.

[63] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS:

Architecture for Tamper-Evident and Tamper-Resistant Processing,” in Pro-

ceedings of the 17th International Conference on Supercomputing (ICS), 2003,

pp. 160–171.

[64] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas

Devadas, “Efficient Memory Integrity Verification and Encryption for Secure

Processors,” in Proceedings of the 36th annual IEEE/ACM International Sym-

posium on Microarchitecture, 2003, p. 339.

[65] Chenyu Yan, Brian Rogers, Daniel Englender, Yan Solihin, and Milos Prvulovic,

“Improving Cost, Performance, and Security of Memory Encryption and Au-

thentication,” in Proceedings of the 33rd Annual International Symposium on

Computer Architecture, 2006, pp. 179–190.

[66] Jun Yang, Youtao Zhang, and Lan Gao, “Fast Secure Processor for Inhibit-

ing Software Piracy and Tampering,” in Proceedings of the 36th annual

IEEE/ACM International Symposium on Microarchitecture, 2003, p. 351.

[67] Brian Rogers, Milos Prvulovic, and Yan Solihin, “Efficient Data Protection

for Distributed Shared Memory Multiprocessors.,” in Proceedings of the 15th

International Conference on Parallel Architecture and Compilation Techniques

(PACT ’06), 2006, pp. 84–94.

122

[68] Manhee Lee, Minseon Ahn, and Eun Jung Kim, “I2SEMS: Interconnects-

Independent Security Enhanced Shared Memory Multiprocessor Systems,” in

16th International Conference on Parallel Architecture and Compilation Tech-

niques (PACT ’07), 2007, pp. 94–103.

[69] Sean W. Smith and Steve Weingart, “Building a High-Performance, Pro-

grammable Secure Coprocessor,” Computer Networks, vol. 31, no. 9, pp. 831–

860, 1999.

[70] Oliver Kömmerling and Markus G. Kuhn, “Design Principles for Tamper-

Resistant Smartcard Processors,” in Proceedings of the USENIX Workshop on

Smartcard Technology, 1999, pp. 9–20.

[71] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik

Schauser, “Active Messages: a Mechanism for Integrated Communication and

Computation,” in Proceedings of the 19th Annual International Symposium on

Computer Architecture (ISCA ’92), 1992, pp. 256–266.

[72] Scott Pakin, Mario Lauria, and Andrew Chien, “High Performance Messaging

on Workstations: Illinois Fast Messages (FM) for Myrinet,” in Proceedings

of the 1995 ACM/IEEE conference on Supercomputing (Supercomputing ’95),

1995, p. 55.

[73] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: a User-Level Net-

work Interface for Parallel and Distributed Computing,” in Proceedings of the

Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95), 1995,

pp. 40–53.

[74] Cezary Dubnicki, Angelos Bilas, and Kai Li, “Design and Implementation of

123

Virtual Memory-Mapped Communication on Myrinet,” in Proceedings of 11th

International Parallel Processing Symposium (IPPS ’97), 1997, p. 388.

[75] R. Dos Santos, Ricardo Bianchini, and Claudio L. Amorim, “A Survey Of

Messaging Software Issues And Systems For Myrinet-Based Clusters,” Paral-

lel Distributed Computer Practices, Special issue High-Performance Comput.

Clusters, vol. 2, no. 2, 1999.

[76] Quadrics, http://www.quadrics.com/; accessed April 24, 2008.

[77] George Apostolopoulos, Vinod Peris, and Debanjan Saha, “Transport Layer

Security: HowMuch Does it Really Cost?,” in Proceedings of IEEE INFOCOM,

1999, pp. 717–725.

[78] Cristian Coarfa, Peter Druschel, and Dan S. Wallach, “Performance Analysis

of TLS Web Servers,” ACM Transactions on Computer Systems, vol. 24, no.

1, pp. 39–69, 2006.

[79] A. Keromytis, J. Ioannidis, and J. Smith, “Implementing IPsec,” in Proceed-

ings of Global Internet (GlobeCom) ’97, 1997, pp. 1948–1952.

[80] Stefan Miltchev, Sotiris Ioannidis, and Angelos D. Keromytis, “A Study of the

Relative Costs of Network Security Protocols,” in Proceedings of the FREENIX

Track: 2002 USENIX Annual Technical Conference, 2002, pp. 41–48.

[81] Angelos D. Keromytis, Jason L. Wright, Theo De Raadt, and Matthew Burn-

side, “Cryptography As An Operating System Service: A Case Study,” ACM

Transactions on Computer Systems, vol. 24, no. 1, pp. 1–38, 2006.

[82] Bo Yang, Sambit Mishra, and Ramesh Karri, “A High Speed Architecture

for Galois/Counter Mode of Operation (GCM),” Cryptology ePrint Archive,

124

Report 2005/146, 2005.

[83] AMIS, http://www.amis.com/asics/standard cell.html; accessed April 24,

2008.

[84] Sucheta Chodnekar, Viji Srinivasan, Aniruddha S. Vaidya, Anand Sivasubrama-

niam, and Chita R. Das, “Towards a Communication Characterization Method-

ology for Parallel Applications,” in Proceedings of the 3rd IEEE Symposium

on High-Performance Computer Architecture (HPCA ’97), 1997, p. 310.

[85] JunSeong Kim and David J. Lilja, “Characterization of Communication Pat-

terns in Message-Passing Parallel Scientific Application Programs,” in Proceed-

ings of the Second International Workshop on Network-Based Parallel Comput-

ing (CANPC ’98), 1998, pp. 202–216.

[86] Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz, Andy B. Yoo, and Chita R. Das,

“Coscheduling in Clusters: Is It a Viable Alternative?,” in Proceedings of the

2004 ACM/IEEE conference on Supercomputing (SC ’04), 2004, p. 16.

[87] NAS Parallel Benchmarks, http://www.nas.nasa.gov/Software/NPB/; ac-

cessed April 24, 2008.

[88] Mellanox, “InfiniHost III Ex MemFree Mode Performance,”

http://www.mellanox.com/pdf/whitepapers/PCIxVsMemfree WP 100.pdf;

accessed April 24, 2008.

[89] Richard P. Martin, Amin M. Vahdat, David E. Culler, and Thomas E. An-

derson, “Effects of Communication Latency, Overhead, and Bandwidth in a

Cluster Architecture,” in Proceedings of the 24th Annual International Sym-

posium on Computer Architecture (ISCA ’97), 1997, pp. 85–97.

125

[90] G. A. Koenig, Xin Meng, A. J. Lee, M. Treaster, N. Kiyanclar, and W. Yurcik,

“Cluster Security with NVisionCC: Process Monitoring by Leveraging Emergent

Properties,” in Proceedings of the Fifth IEEE International Symposium on

Cluster Computing and the Grid (CCGrid ’05), 2005, vol. 1, pp. 121–132.

[91] Manhee Lee, Eun Jung Kim, Ki Hwan Yum, and Mazin S. Yousif, “Instant

Attack Stopper in InfiniBand Architecture,” in Proceedings of the First Inter-

national Workshop on Cluster Security (Cluster-Sec), CCGRID ’05 Workshop,

2005, pp. 105–110.

[92] J. Smith, C. Traw, and D. Farber, “Cryptographic Support for a Gigabit

Network,” in Proceedings of INET, 1992, pp. 229–237.

[93] 3Com, “3Com Secure NIC,” http://www.3com.com/products/en US/detail.jsp?

tab=features&pathtype=purchase&sku=3CR990B-97; accessed April 24, 2008.

[94] Intel, “Intel Pro/100 S Server Adapter,”

http://www.intel.com/network/connectivity/products/pro100s srvr adapter.htm;

accessed April 24, 2008.

[95] Broadcom, “Broadcom Gigabit Ethernet Controller,”

http://www.broadcom.com/products/Small-Medium-Business/Gigabit-

Ethernet-Controllers/BCM5752M; accessed April 24, 2008.

[96] Aleph One, “Smashing The Stack For Fun And Profit,” Phrack, vol. 7, no. 49,

1996.

[97] Andrew ”bunnie” Huang, “The Trusted PC: Skin-Deep Security,” Computer,

vol. 35, no. 10, pp. 103–105, 2002.

126

[98] Andrew ”bunnie” Huang, Hacking the Xbox: An Introduction to Reverse En-

gineering, No Starch Press, San Francisco, CA, 2003.

[99] H. Lipmaa, P. Rogaway, and D. Wagner, “CTR-Mode Encryption,” in Pro-

ceedings of NIST Workshop on Modes of Operation, 2000.

[100] HP, “HP Superdome,” http://www.hp.com/products1/servers/scalableservers/

superdome/index.html; accessed April 24, 2008.

[101] SGI, “SGI Origin 3000,” http://www.sgi.com/products/servers/origin/3000/;

accessed April 24, 2008.

[102] E. Ender Bilir, Ross M. Dickson, Ying Hu, Manoj Plakal, Daniel J. Sorin,

Mark D. Hill, and David A. Wood, “Multicast Snooping: A New Coherence

Method Using a Multicast Address Network,” in Proceedings of 26th Annual

International Symposium on Computer Architecture (ISCA ’99), 1999, pp. 294–

304.

[103] Milo M.K. Martin, Mark D. Hill, and David A. Wood, “Token Coherence: A

New Framework For Shared-Memory Multiprocessors,” IEEE Micro, vol. 23,

no. 6, pp. 108–116, 2003.

[104] Hung-Chang Hsiao and Chung-Ta King, “An Application-Driven Study of Mul-

ticast Communication for Write Invalidation,” The Journal of Supercomputing,

vol. 18, no. 3, pp. 279–304, 2001.

[105] M. P. Malumbres, Jose Duato, and Joseph Torrellas, “An Efficient Imple-

mentation of Tree-Based Multicast Routing for Distributed Shared-Memory

Multiprocessors,” in Proceedings of the 8th IEEE Symposium on Parallel and

Distributed Processing (SPDP ’96), 1996, p. 186.

127

[106] Dhabaleswar K. Panda, Sanjay Singal, and Pradeep Prabhakaran, “Multides-

tination Message Passing Mechanism Conforming to Base Wormhole Routing

Scheme,” in Proceedings of the First International Workshop on Parallel Com-

puter Routing and Communication (PCRCW ’94), 1994, pp. 131–145.

[107] P.S.Magnusson and et al., “Simics: A Full System Simulation Platform,” IEEE

Computer, vol. 35, no. 2, pp. 50–58, 2002.

[108] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R.

Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and

David A. Wood, “Multifacet’s General Execution-driven Multiprocessor Simu-

lator (GEMS) Toolset,” SIGARCH Comput. Archit. News, vol. 33, no. 4, pp.

92–99, 2005.

[109] “SpecOMP2001 Benchmark Suite,” http://www.spec.org/omp/; accessed April

24, 2008.

[110] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta, “The SPLASH-2 Programs: Characterization and Methodolog-

ical Considerations,” in Proceedings of the 22nd International Symposium on

Computer Architecture, 1995, pp. 24–36.

[111] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas, “Design and Imple-

mentation of the AEGIS Single-Chip Secure Processor Using Physical Random

Functions,” in Proceedings of the 30th Annual International Symposium on

Computer Architecture, 2005, pp. 25–36.

[112] Ruby B. Lee, Peter C. S. Kwan, John Patrick McGregor, Jeffrey Dwoskin,

and Zhenghong Wang, “Architecture for Protecting Critical Secrets in Micro-

128

processors,” in Proceedings of the 32nd Annual International Symposium on

Computer Architecture (ISCA ’05), 2005, pp. 2–13.

[113] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin, “Using

Address Independent Seed Encryption and Bonsai Merkle Trees to Make Secure

Processors OS- and Performance-Friendly,” in Proceedings of the 40th annual

IEEE/ACM International Symposium on Microarchitecture, 2007, pp. 183–196.

[114] Milo M.K. Martin and et. al., “Protocol Specifications and Ta-

bles for Four Comparable MOESI Coherence Protocols: To-

ken Coherence, Directory, Snooping, and Hammer,” 2003,

http://www.cs.wisc.edu/multifacet/theses/milo martin phd/; accessed April

24, 2008.

129

VITA

Name: Man Hee Lee

Address: Department of Computer Science

Texas A&M University

College Station, TX 77843-3112

Email Address: manheelee@gmail.com

Education: Ph.D. in Computer Engineering, Dept. of Computer Science,

Texas A&M University, 2008

M.E, Dept. of Computer Engineering, Kyungpook National

University, Korea, 1997

B.E, Dept. of Computer Engineering, Kyungpook National

University, Korea, 1995

Experience: Lecturer, Dept. of Computer Science, Texas A&M University,

Spring 2008, CPSC321 Computer Architecture

Intern, Midrange Routing Business Unit, Cisco Systems, Inc.,

May 2007-Aug. 2007

Research Assistant, Dept. of Computer Science, Texas A&M

University, Spring & Fall 2007

Teaching Assistant, Dept. of Computer Science, Texas A&M

University, Fall 2005-Fall 2006 Fall 2005, spring & summer

2006: CPSC321 Computer Architecture, Fall 2006: CPSC614

Advanced Computer Architecture

Network researcher, Supercomputing Center, KISTI, Korea,

Dec. 1996-Jul. 2003

