212 research outputs found

    A Green TDMA Scheduling Algorithm for Prolonging Lifetime in Wireless Sensor Networks

    Get PDF
    Fast data collection is one of the most important research issues for Wireless Sensor Networks (WSNs). In this paper, a TMDA based energy consumption balancing algorithm is proposed for the general k-hop WSNs, where one data packet is collected in one cycle. The optimal k that achieves the longest network life is obtained through our theoretical analysis. Required time slots, maximum energy consumption and residual network energy are all thoroughly analyzed in this paper. Theoretical analysis and simulation results demonstrate the effectiveness of the proposed algorithm in terms of energy efficiency and time slot scheduling

    Delay Optimized Time Slot Assignment for Data Gathering Applications in Wireless Sensor Networks

    Get PDF
    International audienceWireless sensor networks, WSNs, are an efficient way to deal with low-rate communications in confined environments such as mines or nuclear power plants because of their simplicity of deployment and low cost. In these application domains, WSNs are used to gather data from sensor nodes towards a sink in a multi-hop convergecast structure. In this paper, we focus on a traffic-aware time slot assignment minimizing the schedule length for tree topologies and for two special deployments (i.e. linear and multi-linear) representative of unusual environments. We formalize the problem as a linear program and provide results on the optimal number of slots. We then propose a delay optimized algorithm with two heuristics that minimize on the one hand the energy consumption and on the other hand the storage capacity as secondary criteria

    Real-Time and Energy-Efficient Routing for Industrial Wireless Sensor-Actuator Networks

    Get PDF
    With the emergence of industrial standards such as WirelessHART, process industries are adopting Wireless Sensor-Actuator Networks (WSANs) that enable sensors and actuators to communicate through low-power wireless mesh networks. Industrial monitoring and control applications require real-time communication among sensors, controllers and actuators within end-to-end deadlines. Deadline misses may lead to production inefficiency, equipment destruction to irreparable financial and environmental impacts. Moreover, due to the large geographic area and harsh conditions of many industrial plants, it is labor-intensive or dan- gerous to change batteries of field devices. It is therefore important to achieve long network lifetime with battery-powered devices. This dissertation tackles these challenges and make a series of contributions. (1) We present a new end-to-end delay analysis for feedback control loops whose transmissions are scheduled based on the Earliest Deadline First policy. (2) We propose a new real-time routing algorithm that increases the real-time capacity of WSANs by exploiting the insights of the delay analysis. (3) We develop an energy-efficient routing algorithm to improve the network lifetime while maintaining path diversity for reliable communication. (4) Finally, we design a distributed game-theoretic algorithm to allocate sensing applications with near-optimal quality of sensing

    Topology aware task allocation and scheduling for real-time data fusion applications in networked embedded sensor systems

    Get PDF
    2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    The Hybrid Algorithm for Data Collection over a Tree Topology in WSN

    Get PDF
    Wireless sensor networks have wide range of application such as analysis of traffic, monitoring of environmental, industrial process monitoring, technical systems, civilian and military application. Data collection is a basic function of wireless sensor networks (WSN) where sensor nodes determine attributes about a phenomenon of concern and transmits their readings to a common base station(sink node). In this paper, we use contention-free Time Division Multiple Access (TDMA) support scheduling protocols for such data collection applications over tree-based routing topology. We represent a data gathering techniques to get the growing capacity, routing protocol all along with algorithms planned for remote wireless sensor networks. This paper describes about the model of sensor networks which has been made workable by the junction of micro-electro-mechanical systems technologies, digital electronics and wireless communications. Firstly the sensing tasks and the potential sensor network applications are explored, and assessment of factors influencing the design of sensor networks is provided. In our propose work using data compression and packet merging techniques; or taking advantage of the correlation in the sensor readings. Consider continuous monitoring applications where perfect aggregation is achievable, i.e., every node is capable of aggregate the entire packets expected from its children as well as that generate by itself into a particular packet before transmit in the direction of its sink node or base station or parent node. Keyword: Aggregation, Data Converge-cast, Data fusion, Energy Efficiency, Routing and TDMA

    DiSCA: a Distributed Scheduling for Convergecast in Multichannel Wireless Sensor Networks

    Get PDF
    International audience—The new IEEE 802.15.4e standard does not specify how the schedule of medium accesses followed by wireless sensors is built. That is why, we propose a distributed interference-aware joint channel and time slot assignment, called DiSCA, for a traffic-aware convergecast in multichannel wireless sensor networks (WSNs). Unlike most previous studies, we consider two cases of transmissions: without acknowledgment and with immediate acknowledgment. We provide the minimum bound on the number of time slots needed for a convergecast with a sink equipped with multiple radio interfaces. Simulations results show that DiSCA is close to the optimal in terms of the number of slots and outperforms TMCP

    Balanced Multi-Channel Data Collection in Wireless Sensor Networks

    Get PDF
    Data collection is an essential task in Wireless Sensor Networks (WSNs). In data collection process, the sensor nodes transmit their readings to a common base station called Sink. To avoid a collision, it is necessary to use the appropriate scheduling algorithms for data transmission. On the other hand, multi-channel design is considered as a promising technique to reduce network interference and latency of data collection. This technique allows parallel transmissions on different frequency channels, thus time latency will be reduced. In this paper, we present a new scheduling method for multi-channel WSNs called Balanced Multi Channel Data Collection (Balanced MC-DC) Algorithm. The proposed protocol is based on using both Non-Overlapping Channels (NOC) and Partially Overlapping Channels (POC). It uses a new approach that optimizes the processes of tree construction, channel allocation, transmission scheduling and balancing simultaneously. Extensive simulations confirm the superiority of the proposed algorithm over the existing algorithms in wireless sensor networks

    An Analytical Model for Wireless Mesh Networks with Collision-Free TDMA and Finite Queues

    Full text link
    Wireless mesh networks are a promising technology for connecting sensors and actuators with high flexibility and low investment costs. In industrial applications, however, reliability is essential. Therefore, two time-slotted medium access methods, DSME and TSCH, were added to the IEEE 802.15.4 standard. They allow collision-free communication in multi-hop networks and provide channel hopping for mitigating external interferences. The slot schedule used in these networks is of high importance for the network performance. This paper supports the development of efficient schedules by providing an analytical model for the assessment of such schedules, focused on TSCH. A Markov chain model for the finite queue on every node is introduced that takes the slot distribution into account. The models of all nodes are interconnected to calculate network metrics such as packet delivery ratio, end-to-end delay and throughput. An evaluation compares the model with a simulation of the Orchestra schedule. The model is applied to Orchestra as well as to two simple distributed scheduling algorithms to demonstrate the importance of traffic-awareness for achieving high throughput.Comment: 17 pages, 14 figure

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks
    corecore