41 research outputs found

    A differentiated proposal of three dimension i/o performance characterization model focusing on storage environments

    Get PDF
    The I/O bottleneck remains a central issue in high-performance environments. Cloud computing, high-performance computing (HPC) and big data environments share many underneath difficulties to deliver data at a desirable time rate requested by high-performance applications. This increases the possibility of creating bottlenecks throughout the application feeding process by bottom hardware devices located in the storage system layer. In the last years, many researchers have been proposed solutions to improve the I/O architecture considering different approaches. Some of them take advantage of hardware devices while others focus on a sophisticated software approach. However, due to the complexity of dealing with high-performance environments, creating solutions to improve I/O performance in both software and hardware is challenging and gives researchers many opportunities. Classifying these improvements in different dimensions allows researchers to understand how these improvements have been built over the years and how it progresses. In addition, it also allows future efforts to be directed to research topics that have developed at a lower rate, balancing the general development process. This research present a three-dimension characterization model for classifying research works on I/O performance improvements for large scale storage computing facilities. This classification model can also be used as a guideline framework to summarize researches providing an overview of the actual scenario. We also used the proposed model to perform a systematic literature mapping that covered ten years of research on I/O performance improvements in storage environments. This study classified hundreds of distinct researches identifying which were the hardware, software, and storage systems that received more attention over the years, which were the most researches proposals elements and where these elements were evaluated. In order to justify the importance of this model and the development of solutions that targets I/O performance improvements, we evaluated a subset of these improvements using a a real and complete experimentation environment, the Grid5000. Analysis over different scenarios using a synthetic I/O benchmark demonstrates how the throughput and latency parameters behaves when performing different I/O operations using distinct storage technologies and approaches.O gargalo de E/S continua sendo um problema central em ambientes de alto desempenho. Os ambientes de computação em nuvem, computação de alto desempenho (HPC) e big data compartilham muitas dificuldades para fornecer dados em uma taxa de tempo desejável solicitada por aplicações de alto desempenho. Isso aumenta a possibilidade de criar gargalos em todo o processo de alimentação de aplicativos pelos dispositivos de hardware inferiores localizados na camada do sistema de armazenamento. Nos últimos anos, muitos pesquisadores propuseram soluções para melhorar a arquitetura de E/S considerando diferentes abordagens. Alguns deles aproveitam os dispositivos de hardware, enquanto outros se concentram em uma abordagem sofisticada de software. No entanto, devido à complexidade de lidar com ambientes de alto desempenho, criar soluções para melhorar o desempenho de E/S em software e hardware é um desafio e oferece aos pesquisadores muitas oportunidades. A classificação dessas melhorias em diferentes dimensões permite que os pesquisadores entendam como essas melhorias foram construídas ao longo dos anos e como elas progridem. Além disso, também permite que futuros esforços sejam direcionados para tópicos de pesquisa que se desenvolveram em menor proporção, equilibrando o processo geral de desenvolvimento. Esta pesquisa apresenta um modelo de caracterização tridimensional para classificar trabalhos de pesquisa sobre melhorias de desempenho de E/S para instalações de computação de armazenamento em larga escala. Esse modelo de classificação também pode ser usado como uma estrutura de diretrizes para resumir as pesquisas, fornecendo uma visão geral do cenário real. Também usamos o modelo proposto para realizar um mapeamento sistemático da literatura que abrangeu dez anos de pesquisa sobre melhorias no desempenho de E/S em ambientes de armazenamento. Este estudo classificou centenas de pesquisas distintas, identificando quais eram os dispositivos de hardware, software e sistemas de armazenamento que receberam mais atenção ao longo dos anos, quais foram os elementos de proposta mais pesquisados e onde esses elementos foram avaliados. Para justificar a importância desse modelo e o desenvolvimento de soluções que visam melhorias no desempenho de E/S, avaliamos um subconjunto dessas melhorias usando um ambiente de experimentação real e completo, o Grid5000. Análises em cenários diferentes usando um benchmark de E/S sintética demonstra como os parâmetros de vazão e latência se comportam ao executar diferentes operações de E/S usando tecnologias e abordagens distintas de armazenamento

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    Parallelizing Training of Deep Generative Models on Massive Scientific Datasets

    Full text link
    Training deep neural networks on large scientific data is a challenging task that requires enormous compute power, especially if no pre-trained models exist to initialize the process. We present a novel tournament method to train traditional as well as generative adversarial networks built on LBANN, a scalable deep learning framework optimized for HPC systems. LBANN combines multiple levels of parallelism and exploits some of the worlds largest supercomputers. We demonstrate our framework by creating a complex predictive model based on multi-variate data from high-energy-density physics containing hundreds of millions of images and hundreds of millions of scalar values derived from tens of millions of simulations of inertial confinement fusion. Our approach combines an HPC workflow and extends LBANN with optimized data ingestion and the new tournament-style training algorithm to produce a scalable neural network architecture using a CORAL-class supercomputer. Experimental results show that 64 trainers (1024 GPUs) achieve a speedup of 70.2 over a single trainer (16 GPUs) baseline, and an effective 109% parallel efficiency

    Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale - February 2-4, 2010, Washington, D.C.

    Full text link
    The goal of the "Scientific Grand Challenges - Crosscutting Technologies for Computing at the Exascale" workshop in February 2010, jointly sponsored by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research and the National Nuclear Security Administration, was to identify the elements of a research and development agenda that will address these challenges and create a comprehensive exascale computing environment. This exascale computing environment will enable the science applications identified in the eight previously held Scientific Grand Challenges Workshop Series

    Improving Storage Performance with Non-Volatile Memory-based Caching Systems

    Get PDF
    University of Minnesota Ph.D. dissertation. April 2017. Major: Computer Science. Advisor: David Du. 1 computer file (PDF); ix, 104 pages.With the rapid development of new types of non-volatile memory (NVRAM), e.g., 3D Xpoint, NVDIMM, and STT-MRAM, these technologies have been or will be integrated into current computer systems to work together with traditional DRAM. Compared with DRAM, which can cause data loss when the power fails or the system crashes, NVRAM's non-volatile nature makes it a better candidate as caching material. In the meantime, storage performance needs to keep up to process and accommodate the rapidly generated amounts of data around the world (a.k.a the big data problem). Throughout my Ph.D. research, I have been focusing on building novel NVRAM-based caching systems to provide cost-effective ways to improve storage system performance. To show the benefits of designing novel NVRAM-based caching systems, I target four representative storage devices and systems: solid state drives (SSDs), hard disk drives (HDDs), disk arrays, and high-performance computing (HPC) parallel file systems (PFSs). For SSDs, to mitigate their wear out problem and extend their lifespan, we propose two NVRAM-based buffer cache policies which can work together in different layers to maximally reduce SSD write traffic: a main memory buffer cache design named Hierarchical Adaptive Replacement Cache (H-ARC) and an internal SSD write buffer design named Write Traffic Reduction Buffer (WRB). H-ARC considers four factors (dirty, clean, recency, and frequency) to reduce write traffic and improve cache hit ratios in the host. WRB reduces block erasures and write traffic further inside an SSD by effectively exploiting temporal and spatial localities. For HDDs, to exploit their fast sequential access speed to improve I/O throughput, we propose a buffer cache policy, named I/O-Cache, that regroups and synchronizes long sets of consecutive dirty pages to take advantage of HDDs' fast sequential access speed and the non-volatile property of NVRAM. In addition, our new policy can dynamically separate the whole cache into a dirty cache and a clean cache, according to the characteristics of the workload, to decrease storage writes. For disk arrays, although numerous cache policies have been proposed, most are either targeted at main memory buffer caches or manage NVRAM as write buffers and separately manage DRAM as read caches. To the best of our knowledge, cooperative hybrid volatile and non-volatile memory buffer cache policies specifically designed for storage systems using newer NVRAM technologies have not been well studied. Based on our elaborate study of storage server block I/O traces, we propose a novel cooperative HybrId NVRAM and DRAM Buffer cACHe polIcy for storage arrays, named Hibachi. Hibachi treats read cache hits and write cache hits differently to maximize cache hit rates and judiciously adjusts the clean and the dirty cache sizes to capture workloads' tendencies. In addition, it converts random writes to sequential writes for high disk write throughput and further exploits storage server I/O workload characteristics to improve read performance. For modern complex HPC systems (e.g., supercomputers), data generated during checkpointing are bursty and so dominate HPC I/O traffic that relying solely on PFSs will slow down the whole HPC system. In order to increase HPC checkpointing speed, we propose an NVRAM-based burst buffer coordination system for PFSs, named collaborative distributed burst buffer (CDBB). Inspired by our observations of HPC application execution patterns and experimentations on HPC clusters, we design CDBB to coordinate all the available burst buffers, based on their priorities and states, to help overburdened burst buffers and maximize resource utilization

    Abstract Machine Models and Proxy Architectures for Exascale Computing

    Full text link

    Analyzing Metadata Performance in Distributed File Systems

    Get PDF
    Distributed file systems are important building blocks in modern computing environments. The challenge of increasing I/O bandwidth to files has been largely resolved by the use of parallel file systems and sufficient hardware. However, determining the best means by which to manage large amounts of metadata, which contains information about files and directories stored in a distributed file system, has proved a more difficult challenge. The objective of this thesis is to analyze the role of metadata and present past and current implementations and access semantics. Understanding the development of the current file system interfaces and functionality is a key to understanding their performance limitations. Based on this analysis, a distributed metadata benchmark termed DMetabench is presented. DMetabench significantly improves on existing benchmarks and allows stress on metadata operations in a distributed file system in a parallelized manner. Both intranode and inter-node parallelity, current trends in computer architecture, can be explicitly tested with DMetabench. This is due to the fact that a distributed file system can have different semantics inside a client node rather than semantics between multiple nodes. As measurements in larger distributed environments may exhibit performance artifacts difficult to explain by reference to average numbers, DMetabench uses a time-logging technique to record time-related changes in the performance of metadata operations and also protocols additional details of the runtime environment for post-benchmark analysis. Using the large production file systems at the Leibniz Supercomputing Center (LRZ) in Munich, the functionality of DMetabench is evaluated by means of measurements on different distributed file systems. The results not only demonstrate the effectiveness of the methods proposed but also provide unique insight into the current state of metadata performance in modern file systems

    High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    Full text link
    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.Comment: 72 page
    corecore