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ABSTRACT

The demand on memory capacity from applications has always
challenged the available technologies. It is therefore important to
understand that this demand and the consequential limitations in
various aspects led to the appearance of new memory technologies
and system designs. Fundamentally, not a single solution has man-
aged to fully solve this memory capacity challenge. As argued in
this survey paper, limitations by physical laws make the effort of
expanding local off-chip memory impossible without adopting new
approaches. The concept of Non Unified Memory Access (NUMA)
architecture provides more system memory by using pools of pro-
cessors, each with their own memories, to workaround the physical
constraints on a single processor, but the additional system com-
plexities and costs led to various scalability issues that deter any
further system expansion using this method.

Computer clusters were the first configurations to eventually
provide a Distributed Shared Memory (DSM) system at a linear cost
while also being more scalable than the traditional cache coherent
NUMA systems, however this was achieved by using additional
software mechanisms that introduce significant latency when ac-
cessing the increased memory capacity. As we describe, since the
initial software DSM systems, a lot of effort has been invested to cre-
ate simpler and higher performance solutions including: software
libraries, language extensions, high performance interconnects and
abstractions via system hypervisors, where each approach allows
a more efficient way of memory resource allocation and usage
between different nodes in a machine cluster.

Despite such efforts, the fundamental problems of maintaining
cache coherence across a scaled system with thousands of nodes is
not something that any of the current approaches are capable of
efficiently providing, and therefore the requirement of delivering a
scalable memory capacity still poses a real challenge for system ar-
chitects. New design concepts and technologies, such as 3D stacked
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RAM and the Unimem architecture, are promising and can offer
a substantial increase in performance and memory capacity, but
together there is no generally accepted solution to provide efficient
Distributed Shared Memory.
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1 INTRODUCTION

Ensuring fast memory access to the required capacity is crucial for
defining the performance profile of a computing system. As already
predicted by the memory wall concept in 1994, [75] there is a con-
tinued disparity between CPU and main memory speed increase
in favour of the processor resulting in performance losses due to
processor data starvation. Caches fill the gap between the slower
main memory and the large data capacity demands of the applica-
tions [37], but due to the relative limited size of caches, memory
accesses are still very frequent with applications often still requir-
ing to access a byte of memory for every operation computed [54].
Moreover, it is also essential to keep main memory as physically
close to the processor as possible in order to minimize latency and
maintain signal integrity.

In addition, applications attempt to ensure data is stored entirely
in main memory in order to avoid accessing the slower storage
memory that would impact application performance significantly.
Providing adequate and fast memory to store the majority if not all
the information of data-intensive application is a difficult task for
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any system. Besides, supplying the application with more memory
poses a continuous challenge, due to the trend of the ever growing
applications needs for memory. The problem of providing more
memory by expanding the memory capacity has lots of aspects, and
this paper describes how various attempts and approaches have
been taken to relieve this problem, how technologies have evolved
over time and why none of current approaches appear capable of
solving it. To the best of our knowledge, there is no similar up-to-
date survey in literature that covers the broad aspects of this issue
to this extent, and provide an insight into the future vision and
trends.

The issues in creating a processing device capable of supporting
a large memory capacity range from the physics of resistance and
capacitance through to hardware design rules, including several
factors such as the maximum die size, number of routable pins,
timing issues and constraints as well as the mechanical placement
of the memory interfaces on the silicon die, all making it more
difficult to further expand main memory capacity supported by a
single processing device. Due to current semiconductor manufac-
turing process, there are limits in chip dimensions that in return,
limit the number of supportable memory interfaces as well as the
connectivity to the off-chip memory devices. Maintaining timing to
achieve the high frequencies of modern memory devices is also a
limiting factor when attempting to place multiple memory DIMMs
next to the processing device. Current technology has also pushed
the limits in increasing the memory density inside a DRAM chip
due to physical restrictions [41]. However, newly introduced mem-
ory technologies such as non-volatile memories are promising as
a capacity replacement but still fall short in terms of performance
compared to conventional DRAM [74], [10]. On the other hand, new
interfaces such as High Bandwidth Memory (HBM) [36] [58] and
Hybrid Memory Cube (HMC) [60] [66] offer potential solutions to
some of these problems described, but are still not widely available
nor provide the overall capacity offered by a DSM system.

NUMA Architectures have attempted to address the need of in-
creased memory capacity by allowing access to memory interfaces
across multiple sockets of processing devices however with different
performance characteristics. Although these multi-socket NUMA
systems offer additional memory capacity than a single socket
system, this is at the cost of non-uniform and additional latency
overheads requiring power hungry protocols to maintain cache
coherence and consistency of memory access. Such systems also
require kernel [43] and application awareness to ensure scalability
further adding to the cost of hardware and software complexity.
However, such systems continue to struggle to scale up beyond a
limited number of sockets [50] due to maintaining coherence and
associated inter-processor communication.

The struggles in scaling NUMA and emergence of computer
clustering led to the creation of other approaches and architectures,
such as DSM across clusters, that albeit cheaper, offer a unified
address space in which all participating nodes can share a global
view of the available memory. Such a DSM system is Unimem,
that encapsulates the mechanism of inter-node communication
while providing a paradigm for accessing the global data. Another
contribution is the description of the Unimem architecture and the
subsequent ongoing hardware implementation inside the context
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of the EuroExa project, that will eventually contribute towards the
mitigation of the memory capacity issue described in this paper.

2 CONSTRAINTS ON SINGLE SOCKET
MEMORY CAPACITY

Increasing the total memory capacity supported by a single socket
processor is a profound solution to the memory capacity problem,
but in reality, it is limited by various factors. These include the
placement of memory devices, the dimensions of the processor
chip and the methods available to connect these two. Even with
technologies that start to address aspects of these issues, the funda-
mental challenge related to the size of the capacitor cell required to
hold the memory state is limiting any further increase in memory
density and hence, capacity.

2.1 Die size limitations

Semiconductor design requires the high performance I/O such as
memory interfaces to be placed near the edges of a processor die,
however there are only four available edges on any conventional
2D die. It would be very convenient for the chip designer to have
available any size and therefore the desired area in order to fit
the required number of interfaces and logical components around
the edges of the die. However, as discussed below, in addition to
the obvious cost implications, there are various reasons on why
this cannot happen. Chip manufacturers use a procedure called
microlithography to fabricate a silicon die. A silicon wafer is a thin-
sliced semiconductor material, which acts as a base out of which
dies are produced. A chip manufacturer desires as many rectangular
dies on a round wafer as possible, in order to maximize the yield,
which is associated to the usable and flawless surface area of the
wafer. A stepper machine first makes a number of passes around the
wafer, successively projecting the image of each die layer through a
photomask ,or reticle, and then, after several chemical procedures,
each die layer is fabricated. Larger dimension designs require larger
masks and size, and therefore it is more likely to have errors in the
resulting die due to fabrication imperfections or impurities in the
wafer, and as such resulting in a smaller yield. In addition, for a
given manufacturing technology node, the reticle has a maximum
size even if the designer can afford the limited yielding of a large
die. Thus, because of these restrictions on size, there is a limit on
the amount of edge space available for I/O logic which in turn limits
the number of interfaces that are used to access memory. Current
state-of-the-art processors are able to support around eight from a
single large die. [53] [15].

2.2 Packaging design limitations

Even when a large die implements many memory interfaces, further
issues arise due to the complexity of routing and driving these
interfaces on the Printed Circuit Board (PCB) on which and memory
devices reside. A key factor that affects this ability is the number
of pins that the packaged processor device can support and be
integrated using current PCB technologies. Despite the increasing
performance and I/O capabilities of a die, this also increases the
power requirement. This creates a tension between the number of
pins required to deliver power and the number of pins that can be
used for memory. Reducing the size and pitch of pins can provide



more pins, however each pin is less able to deliver the required
power, further increasing this tension. There is also the issue of
voltage drop in wires, also known as IR drop [65], which can reduce
the actual core voltage and hence signal integrity between the chip
and memory devices. This, in turn, limits the physical distance that
can be supported between the processor’s memory interface and
the memory device itself, which practically provides a depth limit
of eight rows of memory devices from the processor.

2.3 Interface and chip placement and routing

As mentioned earlier, the length of the signal path from the proces-
sor to the memory chip will affect performance and timing. The
shorter the path, the less the latency, and hence the longer the path,
the higher the frequency, but the more likelyhood of skew and
longer latency, factors that together limit the amount of memory
that can be placed on an interface. When adding more memory
channels, careful signal routing is required to maintain a uniform
distance while also avoiding noise and congestion between signals.
Another scaling problem comes from the parallel bus of a DDRx
systems. As the DRAM clock rates increased, the signal integrity
can become further degraded due to any noise. The fact that the
electrical contact to the DIMMs is maintained by physical pressure
from the DIMM slot contacts and is not soldered further contributes
to the issue. However in some situations in which more DIMMs
are added per channel, this problem further increases and often the
clock rate must be lowered in order to maintain signal integrity.
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Figure 1: Die layout of the Vulcan chip used within the Cav-
ium ThunderX2 processor device demonstrating the limita-
tions regards to the relative size and placement of I/0 and
memory interfaces on each edge of a large multicore proces-
sor die [4]
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This trade off of capacity for performance leads to further escala-
tion of the capacity problem. Given all the above, the addition of
more and more DRAM chips or interfaces to increase the memory
capacity is not an option.

2.4 Limitations in increasing the capacity of a
DRAM chip

In the memory chip level, extensive research and work has been
conducted throughout the years in order to increase the memory cell
density of a DRAM chip, and consequently, its capacity. Currently,
we have almost reached a point where physical constraints do
not allow any further increase of DIMM density on a single die, a
trend clearly visible in Figure 3. In a DRAM chip which can include
multiple dies, each bit of memory data is stored within a small
capacitor and the presence or absence of the electric charge of the
capacitor defines the memory state.

For successful DRAM cell operation, the capacitor in the DRAM
cell should meet two requirements, sufficient capacitance (~10
fF/cell) and ultralow leakage current (J g < 10-7 A/cm? given an
operating voltage) in order to limit the frequency by which a cell
must be refreshed. The cell capacitance is expressed by

C=6()k ﬁ

where C, €0, k, A, and tphys are the capacitance, vacuum permit-
tivity, dielectric constant, effective capacitor area, and the physical
thickness of the dielectric layer, respectively. Scaling of the DRAM
cell has continuously reduced the area allocated to the capacitor in
the cell, such that a 3D structured capacitor is used to obtain the
necessary capacitance in the limited area [42]. The aspect ratio of
the capacitor has sharply increased and will reach ~100 shortly be-
cause of the aggressive scaling of DRAM. However, further increase
in the aspect ratio is impossible because of structural vulnerability
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Figure 2: The board layout of a Cisco blade server demon-
strating the placing of DRAM memory devices (9-12) match-
ing the edges that contain the memory interfaces inside the
processors, further constrained by the physical dimensions
of the blade server [19]
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Figure 3: Graph showing the reality in reducing the feature
size (nm) (source [42])

of the capacitor, therefore, a higher-k material has to be used as
the dielectric. Industrial solutions provide new higher-k materials
to address this problem, but as the size of the lithography process
decreases, the task of developing higher-k materials becomes more
and more challenging.

In addition, due to leakage of the electrical charge, the capacitor
must be periodically refreshed, otherwise any data will be lost. By
shrinking the size of the capacitor, the memory density of the DRAM
can be increased. At the time being, DRAM manufacturers claim
to have hit the limit in how many electrons are required to hold a
charge within an acceptable refresh period.[42]. The complication
being that DRAM data cannot be accessed during a refresh, resulting
in performance loss.

2.5 Bypassing the limitations

In conclusion, the effort of increasing memory capacity associated
with a single socket device in order to reach the capacity required
by software has fought against physical limits that now more than
ever are forming a red line against various laws of physics. For
these reasons, interconnects and protocols have been created to
allow access to additional memory owned by another socket within
the same board or device within a network. This remote memory,
although not as fast as memory directly attached to the processor,
has promised to be faster than a traditional local storage device and
therefore can act as an suitable extension to meet the application
memory capacity requirements.

The following sections discuss the various technologies and
approaches that attempt to provide to the application access to
large capacities of memory.

3 NON UNIFORM MEMORY ACCESS
3.1 Emergence of NUMA

NUMA architecture implementations try to overcome memory ca-
pacity limitations by providing non uniform access to memory,
increasing the capacity by connecting multiple processors and their
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associated memory interfaces to appear as a single processor. Each
processor has directly attached memory, however any processor
can access any memory attached to any processor in the system.
NUMA does not change the memory to processor ratio in a system
but instead provides a linear increase in memory capacity as the
number of sockets increases. To improve NUMA memory access
performance [23], several improvements in NUMA designs have
been introduced, as well as increases in single node memory capac-
ity. Due to the existent physical limitations that halt any further
substantial increase on single socket memory capacity, NUMA can
be a substitute in achieving memory expansion.

Historically, One of the first successful commercial NUMA ma-
chines was the Honeywell Bull XP S-100, a medium scaled NUMA
multi-node system that was released in the late 1980s and supported
up to 64 users and the by then incredible amount of 16MB of RAM
across multiple memory banks.

3.2 Multi-node systems

A multi-socket NUMA system consists of processor chips in multi-
ple sockets, each with globally accessible local memory (as shown in
Figure 4). Accesses to remote memory of another socket was made
possible through processor-to-processor interconnects and associ-
ated protocols, but their overhead induced higher access time than
that of local memory. The transition from single node multi-socket
to multi node multi-socket NUMA systems where each multi-socket
node has additional links, required additional protocols in order to
continue to provide a unified memory view.

Performance wise, these additional layers increased access la-
tency due to the node-to-node communication overhead. This led
to a shift of the memory challenges from the independent memory
management into providing efficient software-hardware protocols
that unify local and remote memory and allow any socket to access
this unified memory address space. While minimizing latency is
important, achieving higher performance on a Distributed Shared
Memory NUMA system versus a typical Symmetrical Multi Pro-
cessor (SMP) system with shared memory relies on using efficient
interconnects and protocols, an efficient network topology ( ex.
fat trees - hypercubes), as well as having a good fraction of data
references satisfied by local memory. Also, locality is an impor-
tant performance factor that can be greatly aided by the operating
system when it can allocate memory for processes on the same
node as the processors they are running on. From the developer’s
aspect, the distinction of the performance gap between local and re-
mote memory accesses should also be known and therefore handled
appropriately.

3.3 System scalability effort and the memory
coherence problem

In addition to the overhead induced by the introduced intercon-
nects and protocols to access remote memory, more issues arose
as soon as the number of nodes increases in a NUMA system. In
order to provide the same programming model, the fundamental
aspect of cache coherence is guaranteed through the serialization
of memory writes [5], but as the processor count increases, so does
the scalability limitations due to this serialization effort, which
after a point, it hits a limit [6]. Multi-socket cache coherent NUMA
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Figure 4: An example of two dual socket NUMA machine each having local memories interconnected to provide a global

Distributed Shared Memory system

(cc-NUMA) systems after this point eventually struggled to provide
increased performance while presenting a cache coherent memory
view by means of write serialization, thus limiting any further scal-
ability. On a typical cc-NUMA, (although typically still abbreviated
to just NUMA) system communication between cache controllers
provide a consistent memory image when more than one cache
stores the same memory location. Fundamentally, as the system
scales, it clearly becomes a communication-latency problem. As
more processing nodes are inserted, the latency associated with the
interconnect increases with the number of cores, which also further
increase the per-core memory requirement for large systems and
hence total capacity requirements. Also, it is becoming even harder
to provide a system unified memory due to software overheads and
network constraints, for which expensive custom hardware and
software solutions are required.

Research studies [49] dictate that by tracking the shared data
owners, the overall traffic overhead with each miss is not signifi-
cantly larger with a larger core count. On the other hand the article
does not provide an efficient solution on a larger scale beyond 4
thousand cores. After this core count, invalidations are becoming
more expensive, and efficient tracking of the page or cache owners
require even more hardware resources.

Industrial solutions such as NUMAscale with the NUMACon-
nect architecture [67] allow direct access to memory locations from
any processor within the system, resulting in a homogenous cc-
NUMA system, which is crucial to a program that exploits parallel
processing, such as a High Performance Computing (HPC) appli-
cations. Instead, in a commodity cluster, communication typically
takes place with explicit message passing between the processes
on different nodes.

Historically, SGI (silicon graphics incorporated) [2] was one of
the first companies to push NUMA the furthest of anybody with its
Scalable Shared Memory Multiprocessor (SSMP) [46] architecture
and largely scaled NUMA systems deployments using multi-sockets

[69]. SSMP introduced and described by SGI as "the industry’s first
64-bit cc-NUMA architecture and supported up to 1024 processors."
SGI effectively created a DSM system while maintaining the sim-
plicity of the SMP programming model and latency. However it was
necessary for them to create a hierarchical partition scheme (hy-
percubes), to allow their multi-socket NUMA system to scale even
further. This effectively alleviated the problem of write serialization
however conceptually turned the system into a distributed clus-
tered system. An example of such a system was the NASA Columbia
supercomputer back in 2000s, that includes over 40 SGI Altix 4700
racks for a total of 4608 cores and 9 Terabytes of memory.[13] How-
ever, it became clear that clustering was a more efficient solution
that could scale higher than a cc-NUMA system.

4 INTRODUCTION TO DISTRIBUTED
SHARED MEMORY SYSTEMS

By definition, DSM systems consists of a collection of nodes with
one or more processors and private memory that are connected by a
high speed interconnection network. The structure of an individual
node is similar to a stand alone computer, except the nodes are
usually smaller in terms of peripherals. At the highest level, a
DSM creates a global address space that can be accessed by all
nodes. A range of the global address space can be inserted into the
existing Local address space of each node, or each node can receive a
fraction of a separate global address space that is then subsequently
partitioned and shared across all system nodes. For the system to
be scalable, various prerequisites which will be discussed later are
required. In addition there is a distinction between how the global
address space is presented to an application and how the system
implements the node-to-node communication.

It is also useful to understand the distinction between system
scale-up and scale-out, as these two forms of scaling act as the basis
between the memory capacity that can be obtained within a single
node (scale-up) and the number of nodes that are required to provide
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the desired system capacity-capability (scale-out). Over time, many
solutions have contributed in both these aspects, targeting either
in increased performance through various innovations such as
interconnects or to reduce system complexity such as software
based DSM implementations.

The term scale-up, or vertical scaling is referring to the ability
of an application running on a single node to use all the increasing
resources attached to that node. By scaling up a system, memory
capacity or processor count can be increased but the system node
count does not. In cc-NUMA, coherence is provided to maintain
the application programming model, but as the system scales, it
reaches a point where coherence overheads become so large that it
negates any performance gains by adding more resources, such as
processors, meaning that further scale-up is not possible.

Scale-out, or horizontal scaling is effectively the addition of sys-
tem nodes typically with similar capabilities, by attaching all nodes
to a common network. The aim is to create a uniform and capa-
ble system where applications that adopt a distributed computing
model can take advantage of the additional number of nodes. How-
ever, application developers still long fought for the existence of
the shared memory software model which offer an efficient way of
passing data between programs, even on these network clustered
machines and marked the beginning of existence of DSM.

Therefore, the evolution of DSM needed to concentrate on two
aspects; how applications access the global address space typically
through libraries and language extensions and how the node inter-
connect creates the global address space.

4.1 Evolution of Interconnects

Initial DSM systems used the existing interconnect protocol stacks
between nodes, such as TCP/IP, to provide communication between
the nodes of a DSM. By definition these stacks add a significant
overhead to the remote memory access and became a prime candi-
date for initial innovation. An obvious improvement was to replace
the TCP with a lightweight protocol such as UDP or support the
protocol with hardware offload such as Remote Direct Memory
Access (RDMA) where blocks of memory can be moved directly
between nodes without processor involvement. This trajectory has
continued with newer innovative interconnect architectures that of-
fer significant performance gains by further removing the network
overhead of existing protocols and processor involvement.
RapidIO [24] was a hardware communication stack which pro-
vided coherence between nodes in clusters, however it was not
well adopted due to its proprietary nature. Newer non-proprietary
interconnection protocols provide the semantics for easier adapta-
tion. For example, Gen-Z [22] is a scalable, universal system inter-
connect that uses a memory-semantic (Load/Store) protocol and
enables multiple components of different types to efficiently com-
municate by instantiating a bridging device which provides direct
byte addressable communication with the remote node compared
to the RDMAs block structure while, at the same time, natively
providing addressability into the global address space. Practically,
this allows to any component (processors, accelerators, network
cards) that can access this bridging device to talk to any other com-
ponent as if it were communicating with its own local memory
using dedicated memory access commands, and thus it is called
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as "memory-semantic protocol" by Hewlett Packard Enterprise.
Memory-semantic communication moves data between memories
located on different components with minimal overhead and latency
by using load-store memory semantics everywhere. The drawback
is that it does not support cache coherence, thus limiting perfor-
mance in shared memory systems in which software (and subse-
quently additional overhead) is required to maintain coherence
around every transaction across the application. Although promis-
ing, lack of cache coherence support will make scalable applications
development difficult beyond the benefit of providing byte access
to large storage devices.

Another interconnect, the Cache Coherent Interconnect for Ac-
celerators (CCIX) [21] is a scale-up interconnect architecture de-
veloped by the CCIX consortium and offers memory consistent
communication between heterogenous elements such as system
accelerators and processors. This is accomplished by providing a
cache-coherent protocol over the standard PCle physical interface
which may allow it to be more successful than RapidIO. Although
high-performance, this heterogenous NUMA architecture suffers
from the very same memory coherence scalability issues that write
serialization induces, introducing similar bottlenecks as in a homo-
geneous scaled system, and therefore this cannot be considered a
solution to the memory scalability issue.

4.2 Advancement of language extensions and
libraries

From software perspective, in order to abstract the interconnect
protocols and provide a DSM programming model, several language
extensions as well as software libraries have been implemented.
Within the HPC market various Partitioned Global Address Space
(PGAS) programming models have been developed that assume
a parallel programming model with a logically partitioned global
memory address space across nodes. PGAS languages try to com-
bine the advantages of a distributed memory system programming
model such as MPI [72], that can benefit from hardware accelerated
interconnect, with explicit data referencing semantics of a shared
memory system. Examples of such implementations include, BXI
by Atos [26] and ConnectX by Mellanox [73], that combine propri-
etary interconnects and hardware primitives that can be mapped
directly to communication libraries.

PGAS can be provided to the programmer either as a language,
language extension or through libraries, such as such as Chapel
[16], Unified Parallel C (UPC) [29], and Co-array Fortran [57]. They
often allow a weak memory consistency to counter the restrictions
of a strict sequential consistency which as the system scales, be-
comes prohibitively expensive performance wise. Unfortunately,
these approaches are provided by multiple vendors, each often us-
ing proprietary hardware solutions, and therefore have a limited
adoption. Efforts have been made to tackle this proprietary nature
constrain, with attempts to standardize RDMA access to lower la-
tency, or adding additional layers of abstraction such as Portals 4
[12] in order to standardize underlying hardware and provide low
latency from either the language semantics or software libraries.

Several software DSM implementations rely on kernel modifica-
tions and libraries to provide a portable solution of a DSM system
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Figure 5: Demonstrating the distinction between CCIX and Gen-Z path to main memory

over network by merging mainly commodity solutions into a uni-
fied system. Treadmarks [40] supported DSM over UDP/IP, where
Grappa supported both TCP and RDMA configurations [56] and
provided a user-level library and runtime to the user, although these
solutions came with a significant software overhead and memory
latency. Treadmarks tried to reduce the amount of necessary com-
munication to maintain memory consistency but was successful
only to a point. FaRM [27] utilized RDMA for better performance
by removing TCP/IP network stack, but throughput is still limited
to the RDMAs lowerr effective bandwidth compared to the cross
sectional bandwidth of the network between multiple nodes and the
inefficiencies of setting up an RDMA transfer for small amounts of
data. In the latter case, a more traditional approach of data copying
should be adopted.

ArgoDSM [39] is another new, highly-scalable, software DSM
system for HPC and Big Data applications, meant to be run on top of
a RDMA-capable network layer that can provide a cache coherent
global address space in a distributed system without dedicated
hardware support but with efficient synchronization, page locking
and a new software based coherence protocol. Benchmarks show
that Argo scales more than UPC after a certain number of nodes, and
generally relieves the problem of centralized coherence approach,
but without dedicated hardware support, such as fast interconnects,
access latency remains high.

Lastly, efforts exist to create a specification for a standardized
API for parallel programming in PGAS through OpenSHMEM [17].
Along with the specification, OpenSHMEM provides a reference
of a portable API implementation that allows it to be deployed in
various environments and hardware interconnect accelerators.

4.3 Virtualization of the memory system

Despite the efforts to standardize languages and library access to
DSM, the most portable standard in terms of application accessing
memory is the processor architecture itself, the Instruction Set
Architecture (ISA).

In this aspect, efforts there have been made to utilize the hard-
ware virtualization of the processor to virtualize the Global memory
address space and implement the DSM within the hypervisor and
hence provide the global memory as an integrated part of the vir-
tualized processor local address space. This removes the need for
any library and language extension to be used by the application
to access global memory, thus reducing the overall overhead. Over
the years, the pure software and language implementations of DSM
systems focused on reducing memory update cost for increased
system scalability whereas virtualization [61] was utilized to share
the available resources for increased flexibility. In the first examples
where the DSM moved into the hypervisor it simply presented
remote memory pages in the virtualized local address space [18],
however more recent examples have been able to provide a more
relaxed memory consistency models in order to reduce the network
load while also using advanced AI/ML algorithms that provide real-
time optimization mechanisms, such as page and thread migration
based on workload and memory patterns as an attempt to improve
locality and offer optimal performance in common situations.

Examples of hypervisors that provide DSM to ther guests include
industrial products, such as vSMP [68] by ScaleMP that combines
clusters of commodity x86 servers in order to create a distributed
virtual symmetric multiprocessing system. By doing so, the virtual
SMP system can have better scaling capabilities to proprietary SMP
systems, while maintaining the cluster’s low cost. Another product
example is Hyperkernel, the core of the TidalScale [55] tool, and
as the name suggests, is a hypervisor that creates a distributed
kernel to manipulate system nodes, but is transparent to the appli-
cations that run on it. TidalScale currently supporting only intel
Xeon processors. AMD Epyc processors, ARM server processors,
or IBM Power processors are yet to be supported. Although the
application has been simplified due to access to a processor native
memory system, the total complexity and depth of the stack used
to implement the DSM has increased. Even with the addition of
further intelligent innovations offered through the flexibility that
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the hypervisor provides to limit the costs of remote access, there
are still many usage scenarios, such as when a large number of
threads access the same page, or when a single task is accessing
lots of remote pages that lead the application suffering from the
full latency cost of the stack. Nevertheless, system virtualization,
with further novel additions, can be a potent contributor towards
the relief of the memory capacity problem.

5 EMERGING TECHNOLOGIES

On the hardware level, innovations and new architectural approaches
of the memory subsystem led to significant breakthroughs, result-
ing in new technologies that offer higher memory capacity. Several

memory dies are now stacked inside a single die, Non Volatile

Memories (NVM) are pushing the density limits far beyond DRAM

could ever reach, memory interfaces with serialized bus allow more

memory devices to be attached to a single processor, and novel

approaches, such as Unimem that aims to lift the barriers of a DSM

system at scale, all these innovations would eventually allow higher

capacities of memory available to a system.

5.1 Multi-chip modules

One of the ways to overcome the size induced yields issues on a
single die is by partitioning the large die into smaller dies which
also in consequence increases the total edge area. This partitioning
simplifies power supply requirements because of shorter intercon-
nect lengths, and offers the opportunity for greater miniaturization
and reliability at system level due to decreased number of intercon-
nects between system level components thus leading to lower cost
and simplification of by putting several devices, including memory
devices, into a single package.

Historically, research on the Multi-chip modules (MCMs) dates
back to the 80s. [14]. Currently, the evolution of chip manufacturing
process allowed the creation of devices with more dies integrated
into a single package both in 2D and 3D plane, providing higher
yielding devices capable of supporting a larger number of memory
interfaces, as demonstrated in Figure 6.

5.2 Non Volatile Memory technologies

As discussed earlier, single DRAM chips have almost reach their
density limits. However, since NVMs do not use capacitors, they
are able to scale further and provide additional capacity compared
to DRAM. Current generation of volatile memories cannot replace
DRAM due to performance and durability concerns as already stated
in [10], but since they offer higher capacity and lower power, NV
Memory is a very interesting trajectory for increasing the capacity
of memory that is close to the processor. This emerging technology
could solve may of the big issues introduced earlier, such as the
capacity per mm? while also capable of solving the pin out problem,
due to the capabilities of the processors to control flash through
the high speed serial I/O already present.

Research has shown that NV Main Memory (NVMM) improves
application performance significantly over flash-based SSDs and
HDDs, without application changes [76]. Table 1 summarizes the
characteristics of NVM technologies, compared to DRAM [51]. Spin
Transfer Torque RAM [8] has worse write performance compared to
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DRAM, as well as lower density compared to other NVMs. Resistive-
RAM [71] has the potential to be integrated into a CPU die, since it
can be fabricated in a standard CMOS logic process, and enable mas-
sive memory parallelism, high performance and power efficiency,
as shown in [35]. The same study also makes clear that several
challenges that span across multiple system abstraction layers need
to be overcome for this concept to be realized, More specifically,
in addition to the immature ability of the ReRAM to be used as
main memory instead of flash memory (in terms of latency and
reliability), a large chip area is to be occupied by ReRAM logic,
directly pointing to the need for designing much larger cores, a
task that is already difficult as we already described in Section 2.1.

Phase Change Memory (PCM) [63] offers higher memory density
but also higher write latency and low endurance, however, as this is
a significant research area, newer technologies such as Domain Wall
Memory [70], which is the less mature of the non volatile Memory
technologies due to its physical nature, can offer higher density but
non uniform access latency. Other promising technologies include
CeRam, nanotube or Skyrmion [52] based devices.

Currently, processors do not uniformly have native provision for
the persistence in main memory which is a trait of NVM. Assuming
that future generations of processors will overcome this by provide
support for NVMM persistence, and the technologies will mature,
there is a true potential to increase the total memory capacity of
even a single node.

64 lanes High-speed I/O

4 Channels 4 Channels

DDR4

64 lanes High-speed 1/0

Figure 6: The layout of an EPYC package containing 4 chips,
supporting a total of eight DDR4 channels
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DRAM PCM Other NVMs
Density (F?) 6-12 4-16 4-60
Read Latency 10-50 ns 48-70 ns 10-100 ns
Write Bandwidth | 1 GB/s per die | 100 MB/s per die | 140 MB/s - 1 GB/s per die
Endurance (cycles) | >106 10° 1012 - 1013
Byte Addressable | Yes Yes Yes
Volatile Yes No No

Table 1: Comparison of Memory technologies properties [76]. We can see the larger density supported by NVMs over DRAM.
Other NVMs include the Memristor, STTM, FeRAM, and MRAM..

5.3 Memory Interfaces

As discussed in section 2, the delivery of memory comes through
a parallel bus, which limits the off-chip capacity that can be sup-
ported. To address this problem, in-package substrates which can
support many smaller pins between processors and memory can be
used to alleviate the pin count problem. HBM leverages the benefits
of smaller pins, and in turn by being integrated within a MCM,
together they significantly reduce the issues associated with inter-
facing a processor with memory, however the amount of memory
that can be placed inside the MCM is still small compared to the
amount of memory that can be placed off-chip.

An alternative to the parallel memory bus is to use a high speed
serial bus. This approach addresses many issues, including the num-
ber of pins needed to be supported by the processor device. The
narrower bus is also easier to route and can travel further across the
PCB without suffering from timing skew. Together, this effectively
allows more memory devices to be attached to a single processor,
however it requires the memory device to include active control of
the DRAM. The HMC includes a logic layer that redirects requests
between off-chip serial interfaces and die components, while also
supporting in-memory operations. HMC is a good example of this
approach which in addition when multiple high speed interfaces
are provided to the HMC device, a chain network of memory de-
vices and processors can be created [66], thus effectively creating
a DSM. In both the HMC and HBM technology approaches, the
capacity to the associated memory devices is limited by the form
factor, however the stacking of memory dies is allowing these to
approach the capacity of traditional DRAM DIMMs. Performance-
wise, simulations have shown that HMC and HBM can reduce
end-to-end application execution time by 2x-3x over DDRx and
LPDDR4 architectures [47].

5.4 Stacked memory technologies

The introduction of 3D-stacked DRAM inside the die however leads
to the increase of the single memory device capacity by accommo-
dating more dies inside a package, and therefore can offer more
package memory density.

The DDR4 [25] standard introduced the ability for Through-
Silicon Vias (TSV) stacking extensions that allowed manufacturers
to create high capacity DIMMs. In addition, Registered DIMMs
(RDIMMs) allow more stability in situations where more than one
DIMM per channel is used. Samsung announced 256-Gbytes 3D
stacked RDIMM based on the 10 nm fabricating process, 16-gigabit

DDR4 DRAM that offer lower power consumption and improve
performance by doubling its current maximum capacity [32].

The stacked DRAM dies are connected with TSVs that shorten
the interconnection paths, reducing the channel latency and the
energy consumption. An HMC implementation provides device
addressable memory stacked DRAM dies on top of a silicon die
while removing the obstruction of limited pin count by introducing
differential serial links connected to the processor. A version of
HMC named Multi-Channel DRAM (MCDRAM) was developed
in partnership with Intel and Micron to be used in the Intel Xeon
Phi processor codenamed Knights Landing. This introduces a new
paradigm in which DDR4 and 3D-stacked RAM are used by the pro-
cessor, each with different performance characteristics and modes,
such as a cache-only, memory addressable, and hybrid mode, which
is a mixture of both [9]. Lastly, it is worth mentioning what is ar-
gued in [62]; even when device chains of 3D-stacked DRAM may
significantly increase the available memory bandwidth, only ap-
plications with high level of memory-level parallelism will benefit,
while the rest will not.

5.5 Compute units, Chiplets and Unimem

At the DATE conference [20] in 2013, the concept of a Compute Unit
was first discussed in which a computation engine, its memory and
a coherence interconnect provides a locally coherent view of the
unit’s memory hierarchy to the outside world while also providing
a path to remote memory (see Figure 8). This remote memory space
by means of a global interconnect becomes a globally shareable
address space, in addition to the local address space, in which remote

High speed links

Processor

Figure 7: An example of 3D stacked RAM.
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units can access locally owned memory coherently with any cached
access from any computation engine within the local unit. Unlike
traditional shared memory models, this model defines a single-
sided coherence scheme in which only the owning unit can cache
any globally shared region of local memory. This removes the
complexities and costs associated with maintaining a coherence
protocol between units, and hence lifting the scalability limiting
serialization of coherent writes, while also removing any need for
software to manage caches at the memory owning unit. Address
translation facilities in the bridges between the local and remote
address spaces also enable the remote address map to be defined
by the configuration of the global interconnect as opposed to a
globally agreed configuration between all the local unit’s address
spaces.

These aspects of a Compute Unit were defined to enable a DSM
capability between multiple units with the global interconnect
operating at the processor native address layer of the Compute Unit.
This also removes various levels of the typical DSM communication
stack in that an application or any hardware block executing in
one unit is able to natively Load/Store a remote unit’s memory.
Protection and translation between each unit’s configuration of
its local address space is accomplished via the configuration of
their local bridges to the global address space. Support for global
atomic transactions by using monitors local to each of the local
memories, thus providing the fundamental capabilities to support
NUMA enabled operating systems. Clearly the requirement not
to cache remotely accessed memory would significantly lower the
performance of operations on remote memory, however, other than
sharing within a single distributed virtual address space it was
found that for inter-process communication, the local cache was
typically cold as the processors move data between processes.

A further benefit of the Compute Unit and the flexibility in the
arrangement for the global address space was also defined so that a
silicon implementation of a Compute Unit could be reused between
designs and be delivered as a silicon module called a Chiplet. The
term Chiplet was first used to define a silicon module that has the
properties of a Compute Unit, however more recently the term is
also being used to mean any subsystem of a design hardened as
a module in silicon. The link between the concept of a Compute
Unit, its delivery as a Chiplet, and the scalability of a design was
first investigated and prototyped in the EU funded FP7 project
EuroServer [28].

Following the EuroServer project, a number of subsequent projects
further refined various aspects of the Compute Unit based DSM
architecture, in what has become known as the Unimem Memory
System Architecture [64]. Currently, the H2020 project EuroExa [3]

Compute
Unit

Coherent view into memory

hierarchy of this unit

Local Coherent
Interconnect

Path to address locations
not accessible by this unit

addressable by this unit

Path to local memory l

Figure 8: The concept of compute unit (Source: ARM)
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is implementing a large scale prototype of a Unimem capable HPC
platform that implements an Arm processing system as a Compute
Unit Chiplet capable of processor-native Load/Store transactions
through address translation bridges in which a global interconnect
and routing topology provides an owner-coherent, DSM system.

6 OVERVIEW OF THE UNIMEM
ARCHITECTURE

A further contribution towards the alleviation of the issue comes
by providing a description of the Unimem memory scheme, and
outlining the ongoing effort of a Unimem-enabled hardware imple-
mentation, and more importantly, describing an efficient hardware
mechanism for the address translation procedure in order to support
a global virtual address space.

6.1 An evolved compute architecture

From 1970 up to 90’s the typical compute architecture was com-
prised of the CPU, the main memory and the storage memory,
following the von-Neumann model. Later on, until 00’s, newly
introduced Multi-socket SMP systems provided a computing para-
digm that offers more computing power at the expense of less main
and storage memory per thread. In the decade that followed, the
commercially available Multi-core Multi-socket NUMA systems
delivered an increased computing power while at the same time
mitigating the memory issue by providing more RAM and storage
memory to threads. Nevertheless, the impotence of NUMA systems
to scale beyond a certain point contributed to the appearance of
non Von-Neumann architectures in which the computations are
offloaded to accelerators, leading to shorter computation times, but
at the same time, access to main or storage memory is bottlenecked,
since all memory operations are propagated through the host itself.
In order to alleviate this issue, a control-data plane architecture
is proposed in EuroEXA project, where each data plane owns its
own main-storage memory. In the context of the project a proto-
type system that aims to take the HPC approach a step further is
being implemented in which accelerators are given native access
to both network and application memory, and in addition, storage
memory is distributed with locality to each node in contrast with
the traditional HPC model where all the network and accelerator
data movement to the host memory is processed by the host itself,
as shown clearly in Figure 9. The acceleration is centralised to the
FPGA fabric of a single device and the storage is moved physically
onto the network interface, which is also implemented on FPGA.
Unimem is an innovative scalable memory scheme firstly de-
scribed in the EUROSERVER project as a new memory model across
the server system, which breaks the traditional dual memory types
available in today’s systems: cached memory and device memory.
Typically, in order to provide scalability to the cached memory
type, a global coherent protocol is required, thus limiting system
scalability. In return, this practically limits the ability to deliver fast,
shared memory to the application, but at the same time is crucial for
maintaining a consistent shared memory state across the system. It
is known that applications in data-centres tend to partition their
datasets across servers, presuming that these datasets will be placed
near the processors and caches of an application task. In many cases,
it is faster and more energy efficient to move tasks near the datasets
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Cache coherent shared memory | Requires coherence protocol across all memories and nodes, thus limiting scalability. Unimem

(eg. SMP, ccNUMA, SGI)

surpasses this limitation by delivering local memory coherence

Software managed PGAS

Software solutions required to create a model and API for communicating in address space.
Instead, Unimem provides true hardware support for PGAS

RDMA communication

By using a dedicated DMA device engine to move data directly to remote memory, Unimem supports
a common global address space with no correlation between source and destination addresses

Communication devices

No need for the application to allocate software managed buffers for data movement. Unimem
natively supports direct puts-gets at hardware level

Table 2: Comparison of the Unimem approach with other communication schemes
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Figure 9: Illustration of the node approach in a traditional HPC system vs the proposed approach by the EuroEXA project,
where the Accelerators have direct access to application memory and network interface

than moving the datasets near the processor, especially when the
datasets are large, but this requires advanced AI algorithms and
pattern analysis for page and thread migration, just as hypervisors
mentioned above already provide.

Instead, Unimem maintains consistency across the system by
providing cache coherence within each compute node and its local
DRAM, and treating remote memory as shared and uncached device
memory, thus providing flexibility to the communication paradigm
with small additional overhead, by utilizing the available ARM
technology. This approach offers a scalable system with minimal
performance loss due to maintaining cache coherency. A notable
proposed scalable system architecture is described in [34] in which,
NAND flash is used as main memory technology and DRAM as a
cache for flash, allowing a substantial increase in main memory
capacity with negligible performance loss. Although this system can
provide a global virtual address space and a considerable amount
of main memory per node, cache coherence is relied on software
solutions and eventually performance may suffer the latency cost
of the stack.

In Unimem, data movement acceleration is achieved by replac-
ing the commodity TCP/IP with RDMA for large data sizes or
direct CPU memory operations for smaller sizes, thus delivering a
large, fast amount of shared memory to the application. Since this

Unimem sharing path is directly from within the hardware memory
system of the Compute Units, the ExaNeSt-EuroEXA consortium
has already demonstrated that moving the traditional TCP/IP based
I/O communication stack directly on top of the Unimem RDMA
stack can significantly accelerate data movement, and has also
implemented additional features (such as transfer QoS) [31] [45]
[59] [44] [48]. The majority of data-centre applications are I/O [11]
and memory-bound [33], and should therefore benefit from remote
DRAM borrowing via Unimem. Ensuring backwards compatibility
with the existing application models and software investments is
important, however, Unimem’s raw capability also opens up signif-
icant opportunity for further optimizations in future runtimes and
application frameworks.

6.2 Features of Unimem

Unimem exposes a 128-bit global address space consisted of multiple
addressable Compute Units that can be addressed natively by low
latency, hardware level Load/Store transactions and primitives,
without any additional CPU intervention other than issuing the
transactions. In order for this local memory to be globally accessible,
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Component Width | Usage

Determine the memory page

Global Virtual Address | 64 and offset inside the GVAS

Location coordinates 16 Used for interconnect routing

Used for a variety of functions,

User bits 48 ex. to define the operation type

Table 3: Brief breakdown of the 128-bit Unimem global ad-
dress space format

the global address of each compute unit maps directly back to the
unit’s local address. In such a configuration:

o Any Processing Element (ex. CPUs) inside a Compute Node
can access the full local memory map

e Only a single data owner can cache globally shared memory,
thus providing data locality. This ensures optimal perfor-
mance and memory coherence across the system

e Nodes read/write data coherently with the data-owner

o Native hardware level one-sided communication is provided
for Load/Store or atomic operations.

A breakdown of the Unimem global address space is shown in
Table 3. Since current ARMv8 [30] architecture supports a 48-bit
Virtual Address Space, 16 out of the 64 Global Virtual Address
bits are provisioned to support future generations of CPUs. The
location coordinates field are used for interconnect routing and
allow geographic routing, since location awareness is provided to
each node, thus simplifying network logic. Lastly, 8 of the user
bits are used to specify the kind of operation, out of a total of 256
individual operations, and 16 bits are used to specify the Protection
Domain ID and used for security purposes, while the rest are also
reserved for future use.

Additionally, applications can use RDMA to generate both local
and remote transactions, in an library based API that also provides
global address memory allocation and sharing. Furthermore, Eu-
roExa adds support of native generation of remote transactions from
the processor, hence applications can also access remote address
space without using any intermediate software stack that. Table
2 compares briefly the Unimem to other communicating schemes,
highliting any similarities-differences.

Virtualized Mailboxes and Packetizers-Depacketizers are imple-
mented in FPGA in order to send short messages between Compute
Units as well as to support Atomic and Collective Unimem opera-
tions (such as barriers and reductions) across nodes, a concept that
been succesfully exposed already by ExaNode/ExaNeSt/EuroExa
projects [64] [38]. One additional feature of this system compared
to others is the implementation on FPGA of a large part of the
Unimem hardware involved in the translation procedure, which, in
conjuction with the flexibility of the user bits described earlier, pro-
vides the flexibility to broaden the range of operations accelerated
in hardware and therefore, be able to adapt to specific software
semantics. This approach eventually allows the implementation
of special DSM functions in order for the application to natively
access the shared memory.
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6.3 Implementation of Unimem

Each EuroEXA Compute Unit shares a common local address space
that includes ARM Cortex A series processors, 16GB of LPDDR4
DRAM, 154Gbps FPGA link and a 400 Gbps Interchip Link. Access-
ing the local address space in each node is achieved using native
AXI transactions generated from the local CPU or FPGA accelera-
tors. In current CPUs there is lack of native support for accessing a
large global address space, since the larger address width surpasses
the capabilities of current CPUs in terms of availible address bits.
For example, current ARM processors support up to 40 bits of phys-
ical addressing that could be used to map into memories of remote
nodes, practically limiting scalability. In order to provide such a
capability for remote memory transactions in a large global address
space, additional hardware beyond the CPU is required.

For this reason, each node contains hardware bridges imple-
mented partially in ASIC and FPGA logic that provide the required
functionality for any kind of remote memory operations between
nodes, and that are also easily extendable with low cost to support
future operations. The AXI locally generated transactions towards
the To-Bridge have a number of user bits that are used for opera-
tion encoding, thus enabling a particular remote operation to be
implemented in hardware. The To-Bridge is then responsible for
translating local memory addresses into Unimem Global Virtual
Addresses (Unimem GVA). These transactions reach the packetizer,
which is implemented in FPGA and converts the 128-bit Unimem
AXTI operations into Exanet [7] packets, according to the transaction
type specified in the AXI user bits. In addition, the ExaNet packet
80-bit address format has a 80-bit address address space includes:

e The Protection Domain ID (PDID) that identifies the system-
level process group to which the data belong. At each node,
there is at most one process per PDID;

e the Destination Coordinates ID (DCID) that identifies the
node at which the data reside, thus allowing a flexible net-
work topology;

o the Destination Memory Address that identifies a virtual or
physical address of the process belonging to the group PDID
and running at node DCID.

The ExaNet packets are then propagated into the network through
the ExaNet Network IP[7], implemented on FPGA by one of the
project partners, which is part of the remote interconnect as shown
in Figure 10.

On the receiver side, the From-Bridge of the remote node essen-
tially depacketizes and translates the exanet packets into a set of
operations, where operations such as atomics may trigger an inter-
rupt to the CPU and the corresponding interrupt handler perform
the specified operation. This setup offers flexibility in operations,
allowing collective or atomic operations to be conducted through
the appropriate CPU interrupt handler, or RDMA engines to be
used as accelerators for faster large remote reads and writes, where
in the common case of load and store instructions, the depacketizer
in the From-Bridge will issue native AXI read or write operations
directly to its local memory without invoking the local CPU, then
send the data or the notification back into the request node through
mailboxes.

Likewise, Figure 10 displays a high-level detail of implementa-
tion that shows the distinction of the local interconnect and remote
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Figure 10: Distinction of the various EuroEXA address formats (both for Virtual and Physical addresses), while a memory
operation traverses through the EuroEXA resources. On the initiator node , the ARM Cortex A series generates a 48 bits
Virtual Address (VA), which is fed to the Memory Management Unit (MMU). The Physical Address (PA) generated from the
MMU is 40 bits. Then, the Unimem-To module is responsible for translating the Local Physical Addresses into Unimem Full
Virtual Addresses (UFVA). Finally, the reverse translation process is handled in the destination node and the resources are

accessed through the System Memory Management Unit (SMMU)

interconnect in a compute unit, and the "To" and "From" Bridges,
implemented both in ASIC and FPGA, which are essentially respon-
sible for mapping the local addressed transaction into a remote
addressed transaction, and also map the local addressed transaction
into a remote addressed transaction respectively.

It is also worth describing more thoroughly how the address
translation process is carried out. The Unimem-To module is a
configurable custom hardware that provides a Unimem address
translation mechanism. The ARM-based processing elements gen-
erate AARCH64 virtual addresses, which are initially translated by
the Memory Management Unit of the CPU. Then, the Physical Ad-
dresses are routed into the Unimem-To module via the ARM AXI4
interconnection protocol [1]. The module contains two translation
caches that act as TLBs, depending on the Memory Type, either
Unimem, or Page Borrowing, where, in each case, the appropriate
translation cache is accessed. The output of the Unimem-To module
is a 128 bits Unimem Global Virtual Address.

These remotely addressed transactions are then directly packe-
tized into ExaNet packets rather than having to create an ExaNet
packet by writing multiple times to the packetizer AXI transac-
tions which would lead to additional latency. This approach allows

remote accesses to be implemented with native Load and Store in-
structions issued from the local CPU. We also argue that by utilizing
the configurable SMMU and the protection features it provides, we
can implement functions in hardware that do not invoke the OS (ex.
through interrupts) to access protected pages or other resources.
Instead, these functions can easily get access to these resources di-
rectly by simply meeting the SMMU security requirements already
specified for these resources.

In terms of software, provisions to the OS include the support
the larger 128-bit Unimem Address translation scheme, as well
as to provide as much local memory quantity as possible where
needed, in order to avoid the remote access penalty, and also provide
self-location awareness. In addition, since the local virtual address
translation into remote addresses is controlled by the remote To-
Bridge, a kernel managed lookup table will be implemented to
provide the Memory Management Unit (MMU) with the required
additional attributes in order to extend the local virtual address
into a Unimem global virtual address.
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7 CONCLUSIONS - VISION OF THE FUTURE

Due to the ever lasting conflict between the available memory ca-
pacity and the application needs, and the base technologies that
deliver memory capacity, the implementation constraints of DRAM
and processors appear to be reaching the limits of current tech-
nologies. Consequently, other approaches have been introduced,
such as the NUMA architecture which maintains a system in which
memory is accessible by any processor, although with subsequent
limits in scalability. Creating a distributed memory view across
clusters of machines, even though at a lower cost, suffered greatly
from interconnect technology inefficiencies and the abstractions
required to transit from the software layer to the various intercon-
nects. Emerging technologies and memory designs look promising
in increasing the memory capacity, however, in conjunction with
a scalable cluster technology at the hardware level, might be the
catalytic agent for providing a system with fast, and ample memory
capacity.

The described Unimem system enables the low cost future imple-
mentation of DSM functions in hardware, by exploiting the existing
memory management capabilities of commercial processors while
providing a global addressing scheme that, as already discussed,
allows a scalable coherent view of memory while at the same time
being customizable for supporting additional functionality in the
future. This functionality is to be evaluated throughout the software
stack involved, and the performance increase in various software
DSM environments and applications will be measured, but for this
to happen, additional kernel drivers for hardware management
are to be developed as well as modifications to extend the API of
software DSM environments to exploit the custom underlying hard-
ware. Along with the increase in examples of silicon module based
semiconductor design, it is expected that the Compute Unit concept
will be able to provide a reuse model for such modules, and that
the hardware transaction level interconnect of the Unimem system
will finally close the designed questions of DSM across a cluster
and once again deliver hardware native support for shared memory
between nodes in scalable and low cost cluster of computers.

REFERENCES

[1] [n.d.]. AMBA AXI specs. http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_
5721/labs/refs/AXI4_specification.pdf. Accessed: 2019-05-31.

[2] [n. d.]. Silicon Graphics — SGI - Computing History.
computinghistory.org.uk/det/8312/Silicon-Graphics-SGI

[3] 2017. Co-designed Innovation and System for Resilient Exascale Computing
in Europe: From Applications to Silicon. http://cordis.europa.eu/project/rcn/
210095{_}en.html

[4] 2019. The Vulcan Microarchitecture.
microarchitectures/vulcan

[5] Sarita V Adve and Kourosh Gharachorloo. 1996. Shared memory consistency
models: A tutorial. computer 29, 12 (1996), 66-76.

[6] Gene M Amdahl. 1967. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
Jjoint computer conference. ACM, 483-485.

[7] Roberto Ammendola, Andrea Biagioni, Fabrizio Capuani, Paolo Cretaro, Giu-
lia De Bonis, Francesca Lo Cicero, Alessandro Lonardo, Michele Martinelli,
Pier Stanislao Paolucci, Elena Pastorelli, et al. 2018. Large Scale Low Power
Computing System-Status of Network Design in ExaNeSt and EuroExa Projects.
arXiv preprint arXiv:1804.03893 (2018).

[8] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti
Tang, Daniel Lottis, Kiseok Moon, Xiao Luo, Eugene Chen, Adrian Ong, et al.
2013. Spin-transfer torque magnetic random access memory (STT-MRAM). ACM
Journal on Emerging Technologies in Computing Systems (JETC) 9, 2 (2013), 13.

[9] Ryo Asai. 2016. MCDRAM as High-Bandwidth Memory (HBM) in Knights
Landing processors: developers guide. Colfax International (2016).

http://www.

https://en.wikichip.org/wiki/cavium/

[10

(1]

[12

[14

(15]

[16

(17

(18

[19

[20]

[21

[22]

[23

[24

[25

[26]

~
=

(28]

[29

[30

w
—

(32

(33]

[34

™
i

K. Paraskevas, A. Attwood, M. Lujan and J. Goodacre

Amro Awad, Simon Hammond, Clay Hughes, Arun Rodrigues, Scott Hemmert,
and Robert Hoekstra. 2017. Performance analysis for using non-volatile mem-
ory DIMMs: opportunities and challenges. In Proceedings of the International
Symposium on Memory Systems. ACM, 411-420.

Manu Awasthi, Tameesh Suri, Zvika Guz, Anahita Shayesteh, Mrinmoy Ghosh,
and Vijay Balakrishnan. 2015. System-level characterization of datacenter applica-
tions. In Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering. ACM, 27-38.

Brian W Barrett, Ron Brightwell, Scott Hemmert, Kevin Pedretti, Kyle Wheeler,
Keith Underwood, Rolf Riesen, Arthur B Maccabe, and Trammell Hudson. 2012.
The Portals 4.0 network programming interface. Sandia National Laboratories,
November 2012, Technical Report SAND2012-10087 (2012).

Rupak Biswas, Dochan Kwak, Cetin Kiris, and Scott Lawrence. 2006. Impact
of the Columbia supercomputer on NASA space and exploration missions. In
2nd IEEE International Conference on Space Mission Challenges for Information
Technology (SMC-IT’06). IEEE, 8-pp.

Richard H Bruce, William P Meuli, Jackson Ho, et al. 1989. Multi chip modules.
In 26th ACM/IEEE Design Automation Conference. IEEE, 389-393.

Cavium. 2018. ThunderX2® CN99XXProduct Brief. (2018). https://www.marvell.
com/documents/cmvd78bk8mesogdusz6t/

Bradford L Chamberlain, David Callahan, and Hans P Zima. 2007. Parallel
programmability and the chapel language. The International Journal of High
Performance Computing Applications 21, 3 (2007), 291-312.

Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,
Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSHMEM: SHMEM
for the PGAS community. In Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model. ACM, 2.

Matthew Chapman and Gernot Heiser. 2009. YNUMA: A Virtual Shared-Memory
Multiprocessor.. In USENIX Annual Technical Conference. 349-362.

Cisco. 2016. Cisco UCS B420 M3 High Performance Blade Server Installation and
Service Note No Title. Technical Report.

Luke Collins. 2013. DATE: ARM proposes 4AYunit of compute’ as basis for
energy-efficient systems. http://www.techdesignforums.com/blog/2013/03/22/
date-arm-unit- of-compute-energy-efficient- systems/

CCIX consortium. 2018. An introduction to CCIX. Technical Report.
//docs.wixstatic.com/ugd/0c1418_c6d7ec2210ae47f99f58042df0006c3d.pdf
Gen-Z consortium. 2018. Gen-Z overview. Technical Report.  https://
genzconsortium.org/wp-content/uploads/2018/05/Gen- Z-Overview-V1.pdf
Alan L Cox, Robert J Fowler, and Jack E Veenstra. 1990. Interprocessor invocation
on a numa multiprocessor. Technical Report. ROCHESTER UNIV NY DEPT OF
COMPUTER SCIENCE.

System Architecture Manager Dan Bouvier. 2003. RapidIO: The Interconnect
Architecturefor High Performance Embedded Systems. (2003).

Inphi Corp. David Wang, Senior Principal Architect. 2013. Why migrate to DDR4?
Technical Report. https://www.eetimes.com/document.asp?doc_id=1280577
Said Derradji, Thibaut Palfer-Sollier, Jean-Pierre Panziera, Axel Poudes, and
Francois Wellenreiter Atos. 2015. The BXI interconnect architecture. In 2015 IEEE
23rd Annual Symposium on High-Performance Interconnects. IEEE, 18-25.
Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.
2014. FaRM: Fast remote memory. In 11th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 14). 401-414.

Yves Durand, Paul M Carpenter, Stefano Adami, Angelos Bilas, Denis Dutoit,
Alexis Farcy, Georgi Gaydadjiev, John Goodacre, Manolis Katevenis, Manolis
Marazakis, et al. 2014. Euroserver: Energy efficient node for european micro-
servers. In 2014 17th Euromicro Conference on Digital System Design. IEEE, 206
213.

Tarek El-Ghazawi and Lauren Smith. 2006. UPC: unified parallel C. In Proceedings
of the 2006 ACM/IEEE conference on Supercomputing. ACM, 27.

Shaked Flur, Kathryn E Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc
Maranget, Will Deacon, and Peter Sewell. 2016. Modelling the ARMv8 archi-
tecture, operationally: concurrency and ISA. In ACM SIGPLAN Notices, Vol. 51.
ACM, 608-621.

Dimitris Giannopoulos, Nikos Chrysos, Evangelos Mageiropoulos, Giannis Var-
das, Leandros Tzanakis, and Manolis Katevenis. 2018. Accurate congestion
control for RDMA transfers. In Proceedings of the Twelfth IEEE/ACM International
Symposium on Networks-on-Chip. IEEE Press, 3.

Marshall Gunnell. 2018. Samsung Begins 7nm EUV Production, Unveils Next
Generation NAND SSD & DRAM. https://www.storagereview.com/samsung_
begins_7nm_euv_production_unveils_next generation_nand_ssd_dram

Alex Hutcheson and Vincent Natoli. 2011. Memory bound vs. compute bound:
A quantitative study of cache and memory bandwidth in high performance
applications. In Technical report, Stone Ridge Technology.

Bruce Jacob. 2015. The 2 petaFLOP, 3 petabyte, 9 TB/s, 90 kw cabinet: a system
architecture for exascale and big data. IEEE Computer Architecture Letters 15, 2
(2015), 125-128.

Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Shang
Li, Mehdi Asnaashari, Sylvain Dubois, Bruce Jacob, and Donald Yeung. 2018.

https:


http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf
http://www.computinghistory.org.uk/det/8312/Silicon-Graphics-SGI
http://www.computinghistory.org.uk/det/8312/Silicon-Graphics-SGI
http://cordis.europa.eu/project/rcn/210095{_}en.html
http://cordis.europa.eu/project/rcn/210095{_}en.html
https://en.wikichip.org/wiki/cavium/microarchitectures/vulcan
https://en.wikichip.org/wiki/cavium/microarchitectures/vulcan
https://www.marvell.com/documents/cmvd78bk8mesogdusz6t/
https://www.marvell.com/documents/cmvd78bk8mesogdusz6t/
http://www.techdesignforums.com/blog/2013/03/22/date-arm-unit-of-compute-energy-efficient-systems/
http://www.techdesignforums.com/blog/2013/03/22/date-arm-unit-of-compute-energy-efficient-systems/
https://docs.wixstatic.com/ugd/0c1418_c6d7ec2210ae47f99f58042df0006c3d.pdf
https://docs.wixstatic.com/ugd/0c1418_c6d7ec2210ae47f99f58042df0006c3d.pdf
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview-V1.pdf
https://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview-V1.pdf
https://www.eetimes.com/document.asp?doc_id=1280577
https://www.storagereview.com/samsung_begins_7nm_euv_production_unveils_next_generation_nand_ssd_dram
https://www.storagereview.com/samsung_begins_7nm_euv_production_unveils_next_generation_nand_ssd_dram

Memory-systems challenges in realizing monolithic computers. In Proceedings of
the International Symposium on Memory Systems. ACM, 98-104.

Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho
Jin, and Keith Kim. 2017. Hbm (high bandwidth memory) dram technology and
architecture. In 2017 IEEE International Memory Workshop (IMW). IEEE, 1-4.

A Kagi, James R Goodman, and Doug Burger. 1996. Memory bandwidth limi-
tations of future microprocessors. In 23rd Annual International Symposium on
Computer Architecture (ISCA’96). IEEE, 78-78.

Manolis Katevenis, Nikolaos Chrysos, Manolis Marazakis, Iakovos Mavroidis,
Fabien Chaix, N Kallimanis, Javier Navaridas, John Goodacre, Piero Vicini, Andrea
Biagioni, et al. 2016. The exanest project: Interconnects, storage, and packaging
for exascale systems. In 2016 Euromicro Conference on Digital System Design (DSD).
IEEE, 60-67.

Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros, and Kon-
stantinos Sagonas. 2015. Turning centralized coherence and distributed critical-
section execution on their head: A new approach for scalable distributed shared
memory. In Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 3-14.

Peter J Keleher, Alan L Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. 1994.
TreadMarks: Distributed Shared Memory on Standard Workstations and Operat-
ing Systems.. In USENIX Winter, Vol. 1994. 23-36.

Seong Keun Kim, Sang Woon Lee, Jeong Hwan Han, Bora Lee, Seungwu Han,
and Cheol Seong Hwang. 2010. Capacitors with an equivalent oxide thickness
of< 0.5 nm for nanoscale electronic semiconductor memory. Advanced Functional
Materials 20, 18 (2010), 2989-3003.

Seong Keun Kim and Mihaela Popovici. 2018. Future of dynamic random-access
memory as main memory. MRS Bulletin 43, 5 (2018), 334-339.

Christoph Lameter et al. 2013. NUMA (Non-Uniform Memory Access): An
Overview. Acm Queue 11, 7 (2013), 40.

[44] Joshua Lant, Andrew Attwood, Javier Navaridas, Mikel Lujan, and John Goodacre.

2019. Receive-Side Notification for Enhanced RDMA in FPGA Based Networks. In
International Conference on Architecture of Computing Systems. Springer, 224-235.

[45] Joshua Lant, Caroline Concatto, Andrew Attwood, Jose A Pascual, Mike Ash-

worth, Javier Navaridas, Mikel Lujan, and John Goodacre. [n. d.]. Enabling shared
memory communication in networks of MPSoCs. Concurrency and Computation:
Practice and Experience ([n. d.]), e4774.

Daniel Lenoski. 1998. Multiprocessor design options and the Silicon Graphics
S2MP architecture. Computer physics communications 110, 1-3 (1998), 59-68.
Shang Li, Dhiraj Reddy, and Bruce Jacob. 2018. A performance & power compari-
son of modern high-speed DRAM architectures. In Proceedings of the International
Symposium on Memory Systems. ACM, 341-353.

Marios Asiminakis Nikos Chrysos Vassilis Papaeustathiou Pantelis Xirouchakis
Michalis Gianoudis Nikolaos Dimou Antonis Psistakis Panagiotis Peristerakis
Giorgos Kalokairinos Manolis Ploumidis, Nikolaos D. Kallimanis and Manolis
Katevenis. 2019. Software and Hardware co-design for low-power HPC platforms.
Milo Martin, Mark D Hill, and Daniel J Sorin. 2012. Why on-chip cache coherence
is here to stay. (2012).

Collin McCurdy and Jeffrey Vetter. 2010. Mempbhis: Finding and fixing NUMA-
related performance problems on multi-core platforms. In 2010 IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS). IEEE, 87-96.
Sparsh Mittal, Jeffrey S Vetter, and Dong Li. 2015. A survey of architectural
approaches for managing embedded DRAM and non-volatile on-chip caches.
IEEE Transactions on Parallel and Distributed Systems 26, 6 (2015), 1524-1537.
Constance Moreau-Luchaire, C Moutafis, Nicolas Reyren, Jodo Sampaio, CAF
Vaz, N Van Horne, Karim Bouzehouane, K Garcia, C Deranlot, P Warnicke, et al.
2016. Additive interfacial chiral interaction in multilayers for stabilization of
small individual skyrmions at room temperature. Nature nanotechnology 11, 5
(2016), 444.

David Mulnix. 2017. Intel® Xeon® Processor Scalable Family Technical Overview
| Intel® Software. Technical Report. https://software.intel.com/en-us/articles/
intel-xeon-processor-scalable-family-technical-overview

Richard Murphy, Arun Rodrigues, Peter Kogge, and Keith Underwood. 2005. The
implications of working set analysis on supercomputing memory hierarchy de-
sign. In Proceedings of the 19th annual international conference on Supercomputing.
ACM, 332-340.

Tke Nassi. 2017. Scaling the Computer to the Problem: Application Programming
with Unlimited Memory. Computer 50, 8 (2017), 46-51.

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. 2015. Latency-tolerant software distributed shared
memory. In 2015 {USENIX} Annual Technical Conference ({USENIX} {ATC} 15).
291-305.

Robert W Numrich and John Reid. 1998. Co-Array Fortran for parallel program-
ming. In ACM Sigplan Fortran Forum, Vol. 17. ACM, 1-31.

Mike O4AZConnor. 2014. Highlights of the high-bandwidth memory (hbm)
standard. In Memory Forum Workshop.

[59

[60

[61

[62

o
=

[64

[65

=
S

[67

[68

[69

[70

(71

[72

[73

=
=)

[75]

[76

MEMSYS *19, September 30-October 3, 2019, Washington, DC, USA

Kyriakos Paraskevas, Nikolaos Chrysos, Vassilis Papaefstathiou, Pantelis
Xirouchakis, Panagiotis Peristerakis, Michalis Giannioudis, and Manolis Kateve-
nis. 2018. Virtualized Multi-Channel RDMAwith Software-Defined Scheduling.
Procedia Computer Science 136 (2018), 82-90.

J Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In 2011 IEEE Hot chips
23 symposium (HCS). IEEE, 1-24.

Gerald J Popek and Robert P Goldberg. 1974. Formal requirements for virtualizable
third generation architectures. Commun. ACM 17, 7 (1974), 412-421.

Milan Radulovic, Darko Zivanovic, Daniel Ruiz, Bronis R de Supinski, Sally A
McKee, Petar Radojkovi¢, and Eduard Ayguadé. 2015. Another trip to the wall:
How much will stacked dram benefit hpc?. In Proceedings of the 2015 International
Symposium on Memory Systems. ACM, 31-36.

Simone Raoux, Geoffrey W Burr, Matthew J Breitwisch, Charles T Rettner, Yi-
Chou Chen, Robert M Shelby, Martin Salinga, Daniel Krebs, Shih-Hung Chen,
Hsiang-Lan Lung, et al. 2008. Phase-change random access memory: A scalable
technology. IBM Journal of Research and Development 52, 4/5 (2008), 465.
Alvise Rigo, Christian Pinto, Kevin Pouget, Daniel Raho, Denis Dutoit, Pierre-
Yves Martinez, Chris Doran, Luca Benini, lakovos Mavroidis, Manolis Marazakis,
et al. 2017. Paving the way towards a highly energy-efficient and highly inte-
grated compute node for the Exascale revolution: the ExaNoDe approach. In 2017
Euromicro Conference on Digital System Design (DSD). IEEE, 486-493.

Josep Rius. 2013. IR-drop in on-chip power distribution networks of ICs with
nonuniform power consumption. IEEE transactions on very large scale integration
(VLSI) systems 21, 3 (2013), 512-522.

Paul Rosenfeld, Elliott Cooper-Balis, Todd Farrell, Dave Resnick, and Bruce Jacob.
2012. Peering over the memory wall: Design space and performance analysis of
the Hybrid Memory Cube. Technical Report UMD-SCA-2012-10-01 (2012).

Einar Rustad. 2007. A high level technical overview of the NumaConnect tech-
nology and products. (2007).

ScaleMP. 2018. The Versatile SMPaDé (vSMP)Architecture. Techni-
cal Report. https://www.scalemp.com/wp-content/uploads/2018/10/
vSMP-Foundation- White-Paper{_}2012-08-1.pdf

SGL 2006. Press release, , SGI Altix Again Crushes World Record for Memory
Bandwidth. Technical Report.

Pankaj Sharma, Qi Zhang, Daniel Sando, Chi Hou Lei, Yunya Liu, Jiangyu Li,
Valanoor Nagarajan, and Jan Seidel. 2017. Nonvolatile ferroelectric domain wall
memory. Science advances 3, 6 (2017), e1700512.

Shyh-Shyuan Sheu, Meng-Fan Chang, Ku-Feng Lin, Che-Wei Wu, Yu-Sheng Chen,
Pi-Feng Chiu, Chia-Chen Kuo, Yih-Shan Yang, Pei-Chia Chiang, Wen-Pin Lin,
etal 2011. A 4Mb embedded SLC resistive-RAM macro with 7.2 ns read-write
random-access time and 160ns MLC-access capability. In 2011 IEEE International
Solid-State Circuits Conference. IEEE, 200-202.

Sayantan Sur, Matthew ] Koop, and Dhabaleswar K Panda. 2006. High-
performance and scalable MPI over InfiniBand with reduced memory usage:
an in-depth performance analysis. In Proceedings of the 2006 ACM/IEEE conference
on Supercomputing. ACM, 105.

Sayantan Sur, Matthew J Koop, Dhabaleswar K Panda, et al. 2007. Performance
analysis and evaluation of Mellanox ConnectX InfiniBand architecture with multi-
core platforms. In 15th Annual IEEE Symposium on High-Performance Interconnects
(HOTI 2007). IEEE, 125-134.

Brian Van Essen, Roger Pearce, Sasha Ames, and Maya Gokhale. 2012. On the
role of NVRAM in data-intensive architectures: an evaluation. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium. IEEE, 703-714.
Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: implications of
the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20-24.
Yiying Zhang and Steven Swanson. 2015. A study of application performance
with non-volatile main memory. In 2015 31st Symposium on Mass Storage Systems
and Technologies (MSST). IEEE, 1-10.

ACKNOWLEDGMENTS

This work is supported by the European Commission under the
Horizon 2020 Framework Programme for Research and Innovation
through the EuroEXA project (grant agreement 754337)


https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://www.scalemp.com/wp-content/uploads/2018/10/vSMP-Foundation-White-Paper{_}2012-08-1.pdf
https://www.scalemp.com/wp-content/uploads/2018/10/vSMP-Foundation-White-Paper{_}2012-08-1.pdf

	Abstract
	1 Introduction
	2 Constraints on single socket memory capacity
	2.1 Die size limitations
	2.2 Packaging design limitations
	2.3 Interface and chip placement and routing
	2.4 Limitations in increasing the capacity of a DRAM chip
	2.5 Bypassing the limitations

	3 Non Uniform Memory Access
	3.1 Emergence of NUMA
	3.2 Multi-node systems
	3.3 System scalability effort and the memory coherence problem

	4 Introduction to Distributed Shared Memory systems
	4.1 Evolution of Interconnects
	4.2 Advancement of language extensions and libraries
	4.3 Virtualization of the memory system

	5 Emerging technologies
	5.1 Multi-chip modules
	5.2 Non Volatile Memory technologies
	5.3 Memory Interfaces
	5.4 Stacked memory technologies
	5.5 Compute units, Chiplets and Unimem

	6 Overview of the Unimem architecture
	6.1 An evolved compute architecture
	6.2 Features of Unimem
	6.3 Implementation of Unimem

	7 Conclusions - Vision of the future
	References
	Acknowledgments

