
Improving Storage Performance with
Non-Volatile Memory-based Caching Systems

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Ziqi Fan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Prof. David H.C. Du

April, 2017



c© Ziqi Fan 2017

ALL RIGHTS RESERVED



Acknowledgements

I would like to express my sincere appreciation to my advisor, Prof. David H.C. Du. He

taught me how to become an independent thinker with critical thinking. I learned from

him how to identify valuable research issues and attack them directly and elegantly. His

five-year mentorship leads my way into a deep understanding of the computer science

field, invokes my tremendous interest in doing research, and will have long lasting impact

on my future career.

I would also like to thank Prof. Tian He, Prof. Zhi-li Zhang, and Prof. David

Lilja for serving as my committee members and for their invaluable comments and

suggestions.

It is an honor for me to be a member of the Center for Research in Intelligent

Storage (CRIS). I would like to thank my CRIS mentor, Doug Voigt (currently with

HP Enterprise), for his great efforts in collaborating with me to conquer each research

project. I also want to thank CRIS members and friends: Xiang Cao, Zhichao Cao,

Jim Diehl, Hebatalla Eldakiky, Xiongzi Ge, Alireza Haghdoost, Weiping He, Bingzhe

Li, Peng Li, Manas Minglani, Dongchul Park, Yaobin Qin, Fenggang Wu, Hao Wen,

Jinfeng Yang, Ming-hong Yang, Baoquan Zhang, and Meng Zou. I learned so much

through the discussion and collaboration. Thanks for their help and support.

Finally, I would like to thank NSF and CRIS sponsor companies for funding my

projects as well as the Minnesota Supercomputing Institute for providing access to

their research facilities and offering timely support.

i



Dedication

• To my paternal grandfather, who is always missed. May he rest in peace.

• To my family and my friends, who are always there for me. Especially to my mom

(Shuang Qiu), my dad (Lilu Fan), and my wife (Yingxu Liu), whose love, support

and understanding give me the strength to make it this far.

ii



Abstract

With the rapid development of new types of non-volatile memory (NVRAM), e.g., 3D

Xpoint, NVDIMM, and STT-MRAM, these technologies have been or will be integrated

into current computer systems to work together with traditional DRAM. Compared with

DRAM, which can cause data loss when the power fails or the system crashes, NVRAM’s

non-volatile nature makes it a better candidate as caching material. In the meantime,

storage performance needs to keep up to process and accommodate the rapidly generated

amounts of data around the world (a.k.a the big data problem). Throughout my Ph.D.

research, I have been focusing on building novel NVRAM-based caching systems to

provide cost-effective ways to improve storage system performance. To show the benefits

of designing novel NVRAM-based caching systems, I target four representative storage

devices and systems: solid state drives (SSDs), hard disk drives (HDDs), disk arrays,

and high-performance computing (HPC) parallel file systems (PFSs).

For SSDs, to mitigate their wear out problem and extend their lifespan, we propose

two NVRAM-based buffer cache policies which can work together in different layers

to maximally reduce SSD write traffic: a main memory buffer cache design named

Hierarchical Adaptive Replacement Cache (H-ARC) and an internal SSD write buffer

design named Write Traffic Reduction Buffer (WRB). H-ARC considers four factors

(dirty, clean, recency, and frequency) to reduce write traffic and improve cache hit

ratios in the host. WRB reduces block erasures and write traffic further inside an SSD

by effectively exploiting temporal and spatial localities.

For HDDs, to exploit their fast sequential access speed to improve I/O throughput,

we propose a buffer cache policy, named I/O-Cache, that regroups and synchronizes

long sets of consecutive dirty pages to take advantage of HDDs’ fast sequential access

speed and the non-volatile property of NVRAM. In addition, our new policy can dy-

namically separate the whole cache into a dirty cache and a clean cache, according to

the characteristics of the workload, to decrease storage writes.

For disk arrays, although numerous cache policies have been proposed, most are

either targeted at main memory buffer caches or manage NVRAM as write buffers and

separately manage DRAM as read caches. To the best of our knowledge, cooperative

iii



hybrid volatile and non-volatile memory buffer cache policies specifically designed for

storage systems using newer NVRAM technologies have not been well studied. Based on

our elaborate study of storage server block I/O traces, we propose a novel cooperative

HybrId NVRAM and DRAM Buffer cACHe polIcy for storage arrays, named Hibachi.

Hibachi treats read cache hits and write cache hits differently to maximize cache hit

rates and judiciously adjusts the clean and the dirty cache sizes to capture workloads’

tendencies. In addition, it converts random writes to sequential writes for high disk

write throughput and further exploits storage server I/O workload characteristics to

improve read performance.

For modern complex HPC systems (e.g., supercomputers), data generated during

checkpointing are bursty and so dominate HPC I/O traffic that relying solely on PFSs

will slow down the whole HPC system. In order to increase HPC checkpointing speed,

we propose an NVRAM-based burst buffer coordination system for PFSs, named col-

laborative distributed burst buffer (CDBB). Inspired by our observations of HPC ap-

plication execution patterns and experimentations on HPC clusters, we design CDBB

to coordinate all the available burst buffers, based on their priorities and states, to help

overburdened burst buffers and maximize resource utilization.

iv



Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables viii

List of Figures ix

1 Introduction 1

2 Cooperative NVRAM-based Write Buffers for SSDs 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Proposed Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Host Write Buffer Cache: H-ARC . . . . . . . . . . . . . . . . . 14

2.4.2 Internal SSD Write Buffer: WRB . . . . . . . . . . . . . . . . . . 21

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Evaluation Results and Analysis . . . . . . . . . . . . . . . . . . 26

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 An NVRAM-based Buffer Cache Policy for HDDs 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Our Proposed Approach: I/O-Cache . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Real Cache Hit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Real Cache Miss, Ghost Cache Hit . . . . . . . . . . . . . . . . . 41

3.3.4 Both Real and Ghost Cache Misses . . . . . . . . . . . . . . . . . 43

3.3.5 Cache Eviction & Balance Algorithm . . . . . . . . . . . . . . . . 45

3.3.6 Sequential List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.7 System Consistency and Crash Recovery . . . . . . . . . . . . . . 46

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 System I/O Performance . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Cache Hit Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 A Cooperative Hybrid Caching System for Storage Arrays 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Storage System Workload Properties . . . . . . . . . . . . . . . . . . . . 58

4.3 Insight and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Hibachi: A Hybrid Buffer Cache . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Right Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.3 Right Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.4 Right Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.5 Right Transformation . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.6 Put Them All Together: Overall Workflow . . . . . . . . . . . . 66

4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



5 An NVRAM-based Burst Buffer Coordination System for PFSs 76

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Checkpoint/Restart . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.2 HPC Application Characteristics . . . . . . . . . . . . . . . . . . 79

5.2.3 Non-volatile Memory . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Our Proposed Approach: CDBB . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 CDBB Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 BB Coordinator . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.3 BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.4 CKPT Writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.2 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.3 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusion 92

References 94

vii



List of Tables

2.1 Trace Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Trace Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Trace Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



List of Figures

1.1 Memory and Storage Technologies . . . . . . . . . . . . . . . . . . . . . 2

2.1 Overall System Architecture and Design . . . . . . . . . . . . . . . . . . 8

2.2 H-ARC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 H-ARC Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 WRB Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Block-level LRU Policy and Victim Selection Example . . . . . . . . . . 23

2.6 A Combination of Six Comprehensive Schemes and the Proposed Scheme 25

2.7 Total Write Traffics (block counts) From Host to NAND Flash (lower is

better). The memory size in X-axis represents the number of 4K page.

For example, 1K means 1024 × 4K pages. . . . . . . . . . . . . . . . . . 27

2.8 Total Write Page Count Reduction by Different Layers (higher is better).

Here, LB-C and LRU-W stand for LB-CLOCK and LRU-WSR respectively. 28

2.9 Host-side Main Write Buffer Cache Performance (lower is better). Each

chart shows total SSD write traffic (i.e., write page count) after each

scheme processes write requests in main memory. . . . . . . . . . . . . . 29

2.10 Cache Hit Ratios of Both Reads and Writes. . . . . . . . . . . . . . . . . 31

2.11 Cache Hit Ratios of Trace mds with Cache Size of 16K Pages. The read

cache hit ratio and the write cache hit are separated. . . . . . . . . . . . 32

2.12 Cache Hit ratios of Trace fio zipf under Cache Size of 32K Pages. The

read cache hit ratio and the write cache hit are separated. . . . . . . . . 33

3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Sequential list update operations. Key is the beginning page number of

consecutive dirty pages. Value is the length of the consecutive dirty pages. 44

3.3 I/O completion time including both storage reads and storage writes. . 48

ix



3.4 Storage write count in pages. . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Storage write count in I/Os. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Cache hit ratio of both reads and writes. . . . . . . . . . . . . . . . . . . 51

4.1 Overall System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Temporal distance histograms of a storage server I/O workload. Four

figures represent temporal distance in terms of a read request after the

same read request, write after write, read after write, and write after read. 57

4.3 Access and block distributions for various frequencies. Three figures show

frequency in terms of combined read and write requests, read requests

only, and write requests only. For a given frequency, the blocks curve

shows the percentage of the total number of blocks that are accessed at

least that many times, and the accesses curve shows the percentage of the

total number of accesses that are to blocks accessed at least that many

times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 NVRAM impact on storage write traffic. . . . . . . . . . . . . . . . . . . 60

4.5 Hibachi Architecture and Algorithm. . . . . . . . . . . . . . . . . . . . . 63

4.6 Average read hit rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Hibachi’s NVRAM and DRAM contribution to total read hit rates . . . 70

4.8 Normalized read cache latency for Hibachi. LatD stands for average

DRAM access latency. LatN is average NVRAM access latency. . . . . . 71

4.9 Total write hit rate comparison . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 Average write throughput with disk arrays . . . . . . . . . . . . . . . . . 73

5.1 An example of HPC application execution patterns . . . . . . . . . . . . 79

5.2 An overview of the CDBB coordination system . . . . . . . . . . . . . . 80

5.3 A high-level illustration of CDBB checkpointing workflow . . . . . . . . 82

5.4 The BB coordinator checkpointing workflow . . . . . . . . . . . . . . . . 83

5.5 Applications used for Light, Medium, and Heavy experiments . . . . . . 87

5.6 Combined total CKPT completion time for each experiment . . . . . . . 88

5.7 Total CKPT completion time for each application. Note that y-axes are

in different scales for the three figures. . . . . . . . . . . . . . . . . . . . 89

x



5.8 CKPT completion time of each CKPT operation for application NAMD,

phylobayes, and pBWA. Note that y-axes are in different scales for the

three figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi



Chapter 1

Introduction

With the rapid development of new types of non-volatile memory (NVRAM), e.g., 3D

Xpoint, NVDIMM, and STT-MRAM, these technologies have been or will be integrated

into current computer systems to work together with traditional DRAM. Figure 1.1

is a summary of current memory and storage technologies. Compared with DRAM,

which can cause data loss when the power fails or the system crashes, NVRAM’s non-

volatile nature makes it a better candidate as caching material. In the meantime,

storage performance needs to keep up to process and accommodate the rapidly generated

amounts of data around the world (a.k.a the big data problem). Throughout my Ph.D.

research, I have been focusing on building novel NVRAM-based caching systems to

provide cost-effective ways to improve storage system performance. To show the benefits

of designing novel NVRAM-based caching systems, I target four representative storage

devices and systems: solid state drives (SSDs), hard disk drives (HDDs), disk arrays,

and high-performance computing (HPC) parallel file systems (PFSs).

NAND Flash-based SSDs achieve much faster random access speed than traditional

HDDs (up to 100×) and are widely deployed in computer storage systems [1, 2]. NAND

Flash consists of data blocks, each of which contains a fixed number of pages (typically

64 or 128 pages). Flash supports page read and write operations and block erasure

operations. Data are only written to clean pages because Flash does not support in-

place updates. Due to slow erase operation speed (around 2 ms), Flash Translation

Layer (FTL) firmware instead writes data to clean pages first and marks the original

page as invalid. Later, a periodically triggered or on-demand garbage collection (GC)

1



2

Volatile Non-volatile 

DRAM 

SRAM 

Production Early 
Production Emerging 

NAND 
Flash 

MRAM 

STT 
RAM 

PRAM 

3D 
Xpoint 

RRAM 

Storage 

NAND 
Flash 

HDD 

Magnetic 
tape 

Optical 

Memory 

Figure 1.1: Memory and Storage Technologies

mechanism reclaims the (invalid) blocks containing invalid pages, thereby reclaiming

previously invalid blocks. However, Flash, by nature, allows a limited number of block

cell erasures (about 1K for TLC and 10K for MLC). Thus, Flash-based SSDs cannot

avoid low endurance problems (particularly MLC/TLC Flash-based SSDs). Moreover,

SSD write speed (around 200 µs) is much slower than SSD read speed (around 25 µs).

Since many SSD write operations eventually cause many SSD erase operations, reducing

SSD write traffic plays a crucial SSD reliability role.

To bypass this limitation, many write buffer cache schemes have been proposed [3,

4, 5, 6, 7]. All existing schemes belong to either a main memory buffer cache design (i.e.,

host-side) or an SSD write buffer design (i.e., inside SSDs). Thus, they only address

only one facet. However, for better (optimal) performance, we must simultaneously

consider two facets. Therefore, as our first work, we propose two cooperative buffer

cache schemes within different layers: a main memory buffer cache (named H-ARC)

and an internal SSD write buffer (named WRB). To the best of our knowledge, this is

the first work simultaneously addressing both mechanisms. This comprehensive write

buffer mechanism can provide a holistic SSD system view for write traffic reduction (i.e.,

combine each scheme’s write traffic reduction contribution).

Today hard disk drives (HDDs) are still the most common storage devices despite

the rapid evolution and expansion of SSDs. As spinning devices, HDDs’ sequential



3

access speed for both read and write (on the order of 100MB/s) is orders of magnitude

faster than random access speed (roughly 1MB/s) [8]. The slow random access speed

is always a bottleneck constraining HDDs’ I/O performance. In order to solve the slow

random write problem, two major approaches can be followed: (1) decreasing storage

write traffic and (2) changing random write I/Os to sequential write I/Os. For the

first approach, using NVRAM as main memory gives us opportunities to delay writes

to storage. Using this delayed write property, many buffer cache polices have been

designed for SSDs to increase their lifespan [9] [10]. Our evaluation results show that

minimizing storage writes alone will not significantly improve performance. For the

second approach, several buffer cache polices try to group many random writes to fewer

sequential writes before issuing them to storage [11] [12]. However, these cache policies

are designed for write buffers and deal with dirty pages only.

To solve the aforementioned HDDs’ random access problem, as our second work,

we present a novel NVRAM-based buffer cache policy, termed I/O-Cache. I/O-Cache

dynamically separates the whole buffer cache into a clean cache caching all the clean

pages and a dirty cache caching all the dirty pages. To decrease storage writes, we

prioritize the dirty cache more than the clean cache when dynamically resizing these

caches. The dynamic separation enables our cache policy to suit various workloads: read

intensive or write intensive. To improve storage performance when evicting from the

dirty cache, instead of only synchronizing and evicting a single dirty page, I/O-Cache

will try to synchronize the longest set of consecutive dirty pages (according to their page

numbers) as long as the length of this longest set of consecutive dirty pages is above

a threshold. Then one of the pages will be evicted and the rest will be migrated to

the clean cache. If the length of the longest set of consecutive dirty pages is below the

threshold, I/O-Cache will synchronize and evict the least recently used dirty page. The

threshold is very necessary; without it, always choosing the longest set of consecutive

dirty pages from the dirty cache will lead to a low cache hit ratio and bad storage

performance. When evicting from the clean cache, I/O-Cache will always choose the

least recently used page. We evaluate our proposed schemes with various traces. The

experimental results show that I/O-Cache shortens I/O completion time, decreases write

I/Os, and improves the cache hit ratio compared with existing cache policies.

Traditional disk arrays are still playing an important role, especially for large data



4

centers, since their capacity per dollar cost is much lower than the “high-end” all-

flash arrays [13]. Disk arrays consist of HDDs which are rotational devices. To gain

hybrid buffer cache design insights, we make an in-depth study of storage system I/O

workloads. These storage system level I/O workloads are very different from server-

side I/O workloads due to server-side buffer/cache effects. We evaluate and analyze

the impact of different NVRAM sizes, access latencies, and cache design choices on

storage performance. Based on these key observations, as our third work, we propose

a novel cooperative HybrId NVRAM and DRAM Buffer cACHe polIcy for storage disk

arrays, named Hibachi. Hibachi transcends conventional buffer cache policies by 1)

distinguishing read cache hits from write cache hits to improve both read and write hit

rates; 2) learning workload tendencies to adjust the page caching priorities dynamically

to shorten page access latencies; 3) regrouping cached dirty pages to transform random

writes to sequential writes to maximize I/O throughput; and 4) using accurate and

low-overhead page reuse prediction metrics customized for storage system workloads.

Parallel file systems (PFSs) are the centerpieces used to satisfy the storage needs

of supercomputers. Supercomputers need to host high-performance computing (HPC)

applications which can run days or even months. However, failures (hardware failures

and software bugs) happen at many time and places that can cause the unexpected

termination of HPC applications [14]. To prevent the restart of these time consuming

applications, checkpoint/restart techniques were invented and are utilized to provide

fault tolerance such that intermediate results are saved for data recovery and applica-

tion resumption. As the HPC scale grows bigger and bigger, checkpointing has become

a bottleneck that constrains its performance [15, 16, 17]. To improve checkpointing

speed, an intermediate layer, called a burst buffer (BB), is often used to alleviate the

burden on PFSs. BBs consist of fast storage media and/or dedicated software and net-

work stacks that can absorb checkpoint data orders of magnitude faster than PFSs.

Then the buffered data will be drained to PFSs in the background if necessary. Tradi-

tional burst buffers mostly consist of solid state drives, but newly developed NVRAM

technologies (e.g., 3D Xpoint, PCM, and NVDIMM) are better candidates due to their

better performance.

There are two types of burst buffer architectures: centralized BB or distributed BB.



5

In a centralized BB architecture, a big BB appliance or multiple BB appliances will ab-

sorb checkpoint data from all the compute nodes [18, 19, 20, 21]. The checkpoint data

must be transmitted through a network to reach the centralized BB. On the contrary,

in the more popular distributed BB architecture, each BB is smaller capacity and put

closer, or even attached directly, to each compute node [17, 16, 22]. Under the dis-

tributed BB architecture, the absorption of checkpoint data is much quicker than using

networks since BBs are closer to the data origin. It is also more scalable and flexible to

add/remove distributed BBs to/from compute nodes as needed. However, the downside

of the distributed BB architecture is potentially low BB resource utilization; without

proper scheduling and coordination, some BBs are overburdened while others might be

idle.

As mentioned above, while the distributed BB architecture has plenty of advan-

tages it can suffer low resource utilization. This problem is particularly severe for

NVRAM-based BBs since NVRAM is much more expensive than other storage media

(e.g., SSD), which makes NVRAM much more valuable and scarce. Based on our obser-

vations of HPC application execution patterns and experimentations on HPC systems,

as our fourth work, we propose a novel BB coordination system, named collaborative

distributed burst buffer (CDBB), to improve resource utilization and further increase

HPC checkpointing speed. Specifically, we design a BB coordinator to monitor and

control all BBs to make them work collaboratively. When an application performs

checkpointing, instead of only relying on local BBs, the BB coordinator will globally

select available remote BBs (based on their priority and on-the-fly status) in nodes

running other applications to contribute and alleviate the burden of those local BBs.

The rest of this thesis is organized as follows. Chapter 2 provides two cache policies,

H-ARC and WRB, to reduce SSD writes to extend their lifespan. Chapter 3 describes

the proposed I/O-Cache to take advantage of HDD’s fast sequential write speed. Chap-

ter 4 presents the proposed Hibachi as a second level hybrid cache to boost disk arrays’

performance. Chapter 5 shows the proposed CDBB coordination system to increase

checkpointing speed for HPC parallel file systems. Finally, Chapter 6 concludes the

dissertation.



Chapter 2

Cooperative NVRAM-based

Write Buffers for SSDs

2.1 Introduction

DRAM is the most common main memory technology. Despite DRAM’s high endurance

and fast read/write access speed advantages, it suffers data loss in the event of power

failures or system crashes [23]. To solve this problem, combining DRAM’s fast access

speed and Flash’s persistence in non-volatile DIMMs [24] has recently occurred and

proven to provide reliable main memory systems. In addition, new non-volatile memory

(NVRAM) technologies, such as phase change memory (PCM), Memristor, and STT-

RAM, have rapidly developed and are expected to replace computer system DRAMs in

the near future. These emerging NVRAM technologies offer other advantages beyond

non-volatility. For example, compared to DRAM, Memristor and PCM can achieve

higher density, and Memristor and STT-RAM can provide faster read access and lower

energy consumption [25, 26]. Therefore, we assume a computer system has a CPU,

NVRAM as main memory, and SSDs as storage devices [27]. The SSD also contains

an NVRAM write buffer. Figure 2.1 depicts an architecture we employ throughout this

chapter.

NAND Flash-based solid state drives (SSDs) achieve much faster random access

speed than the traditional hard disk drives (up to 100×) and are widely deployed in

computer storage systems [1, 2]. NAND Flash consists of data blocks, each of which

6



7

contains a fixed number of pages (typically 64 or 128 pages). Flash supports page read

and write operations and block erasure operations. Data are only written to clean pages

because Flash does not support in-place updates. Due to slow erase operation speed

(around 2 ms), Flash Translation Layer (FTL) firmware alternatively writes data to

clean pages first and marks the original page as invalid. Later, a periodically triggered or

on-demand garbage collection (GC) mechanism reclaims the (invalid) blocks containing

invalid pages, thereby reclaiming previously invalid blocks. However, Flash, by nature,

allows a limited number of block cell erasures (about 1K for TLC and 10K for MLC).

Thus, Flash-based SSDs cannot avoid low endurance problems (particularly MLC/TLC

Flash-based SSDs). Moreover, SSD write speed (around 200 µs) is much slower than

SSD read speed (around 25 µs). Since many SSD write operations eventually cause

many SSD erase operations, reducing SSD write traffic plays a crucial SSD reliability

role.

To bypass this limitation, many write buffer cache schemes have been proposed [3, 4,

5, 6, 7, 28]. All existing schemes belong to either a main memory buffer cache design (i.e.,

host-side) or an SSD write buffer design (i.e., inside SSDs). Thus, they only address

only one facet. However, for better (optimal) performance, we must simultaneously

consider two facets. Therefore, in this chapter we propose two cooperative buffer cache

schemes within different layers: a main memory buffer cache (named H-ARC) and an

internal SSD write buffer (named WRB). To the best of our knowledge, this is the first

work simultaneously addressing both mechanisms. This comprehensive write buffer

mechanism can provide a holistic SSD system view for write traffic reduction (i.e., each

scheme’s write traffic reduction contribution).

Most exiting DRAM-based main memory cache designs mainly focus on improving

read cache hit ratios for clean pages because newly written or dirty pages (i.e., updated

pages) must be frequently flushed to underlying storage for reliability. However, if

NVRAM is a main memory, dirty pages can still safely remain, even across power failures

or system crashes. As a result, main memory and dirty page storage synchronization

can dramatically decrease without sacrificing data consistency [29]. This provides an

opportunity to decrease SSD write traffic. A part of main memory must be reserved for

the read cache (clean pages) whenever system performance is critical.

To decrease storage write traffic, one possible approach is to keep dirty pages in



8

CPU 

Host Buffer Cache 

Flash Translation Layer SSD 

File System 

NAND Flash Memory 

Host 

Write 

Write Buffer Cache 

Read 

Figure 2.1: Overall System Architecture and Design

memory as long as possible. However, this hurts a read cache hit ratio. It is very

challenging to determine a proper cache size for both dirty pages and clean pages.

Solving this problem requires designing a dynamic split-cache mechanism for dirty pages

and clean pages that effectively accommodates unpredictable workloads. With hits on

such a split-cache, dirty page write requests reduce storage write traffic and read request

hits on either clean or dirty pages improve read performance. This implies the overall

hit ratio is also an important factor. That is, when memory is full, a victim page must

be judiciously selected to improve overall performance.

To meet all these challenges, we propose a novel main memory buffer cache algo-

rithm named a Hierarchical Adaptive Cache Replacement (H-ARC). H-ARC is basi-

cally inspired by the existing Adaptive Cache Replacement (ARC) cache algorithm [30].

However, unlike ARC that considers only recency and frequency, H-ARC considers four

factors: dirty and clean as well as recency and frequency. H-ARC first determines the

desired dirty and clean page cache size ratios by splitting the total cache space into a

dirty page cache portion and a clean page cache portion. This split dynamically adjusts

based on workload access patterns. For this, H-ARC maintains two ghost caches for

each dirty page cache and clean page cache. A ghost cache is a data structure only

storing recently evicted page metadata. Each cache can grow or shrink according to

workloads. For example, if a cache hits in the ghost cache of the dirty page cache, the

desired dirty page cache size increases. Similarly, if a cache hits in the ghost cache of the

clean page cache, the desired clean page cache size increases. Note that due to a fixed



9

total cache size, the other cache size must decrease accordingly. To keep dirty pages in

the cache longer, we prioritize enlarging the dirty page cache faster than enlarging the

clean page cache.

Once the desired dirty (or clean) page cache size is determined, to select a victim,

each page cache space is subdivided into a recency cache and a frequency cache. Similar

to ARC, the recency cache stores pages recently referenced once. The frequency cache

stores pages recently referenced at least twice. Both the recency cache and frequency

cache in each dirty and clean page cache also have a correspondingly maintained ghost

cache. Thus, if a cache hits in a ghost cache, the corresponding real cache size grows.

Unlike dirty and clean caches, no priority is given to both recency and frequency caches.

That is, both cache sizes symmetrically grow and shrink. When a cache fills, a page is

evicted from one of the four real cache sections based on LRU policy.

The proposed H-ARC notably reduces SSD write traffic and increases cache hit

ratios at the host-side main memory layer (i.e., outside SSDs). Now, these initially

‘filtered’ write traffics can be further reduced inside SSDs using an internal SSD write

buffer mechanism. We propose a novel SSD write buffer scheme named Write Traffic

Reduction Buffer (WRB). For SSD scalability, WRB employs hash tables for a fast

block search (O(1) complexity), which is more appropriate than a sequential search

(O(n) complexity). WRB effectively reduces Flash block erase operations by selecting

a victim block with the highest block utilization to exploit spatial localities. Moreover,

to exploit temporal localities, WRB first checks whether the number of cache pages

belonging to the block is greater than a predefined threshold. WRB evicts the block

with highest block utilization only if the number exceeds the threshold value. Otherwise,

it chooses a victim block containing the LRU page based on a block-level LRU policy

because this can help increase a write cache hit ratio and consequently reduces SSD

write traffic.

The main contributions of this work are as follows:

• A novel host buffer cache scheme : This work proposes a novel main buffer

cache mechanism named H-ARC with dynamic features effectively adaptive to

various workloads. Consequently, it significantly reduces SSD write traffic and

improves cache hit ratios.



10

• A novel internal SSD write buffer scheme : In addition to the host buffer

cache algorithm, this work proposes another internal SSD mechanism to further

reduce SSD write traffic, named WRB. WRB is an internal SSD write buffer

algorithm that reduces Flash block erasures as well as write traffic by exploiting

both temporal and spatial localities.

• Implementation for a comprehensive mechanism : Since this is the first

work simultaneously addressing both host and internal SSD buffers, relevant

schemes do not exist for fair evaluation. Thus, we select several representative

algorithms at different layers and implement several holistic write buffer cache

mechanisms by combining them.

The structure of this chapter is as follows. Section 2.2 provides background knowl-

edge of current memory technologies and Section 2.3 discusses related studies on existing

buffer cache policies. Section 2.4 describes the proposed write buffer cache design and

operations. In Section 2.5, extensive evaluations and analyses demonstrate the proposed

design’s effectiveness. Finally, Section 2.6 concludes this work.

2.2 Background

Current memory technologies such as DRAM and SRAM face technological limitations

for continued improvement [31]. NAND Flash memory, unlike DRAM and SRAM,

is a non-volatile memory and retains a variety of merits including light weight, lower

power consumption, fast random access, and shock resistance [32, 33, 34, 2]. Thus, it is

widely adopted in enterprise applications as well as personal mobile devices [35, 36, 37].

However, Flash memory has a longer access latency (about 50–100x) than DRAM, and

cannot avoid a shortened lifespan due to its inborn physical limitation [38, 39, 40, 41].

Though there have been recent NAND Flash technical breakthroughs such as Samsung’s

3D V-NAND technology [42] and Micron’s NVDIMM [43], NAND Flash is unlikely to

replace DRAM as main memory. Instead, it is expected to be used as a wholesale

swap-out of entire disk-based enterprise data infrastructures [2].

As a result, there are intense efforts to develop new DRAM alternative memory

technologies as well as a NAND Flash alternative. Most of these new technologies are



11

non-volatile memories because non-volatility can provide additional advantages such

as new power saving modes for quick wakeup as well as faster power-off recovery and

restart for HPC applications [31]. These new technologies include PRAM (or PCM),

STT-RAM, MRAM, RRAM, and 3D XPoint. Phase Change Memory (PRAM or PCM)

is one of the most promising new NVRAM technologies and can provide higher scalabil-

ity and storage density than DRAM [44, 45]. In general, PCM still has a 5–10× longer

latency than DRAM. To overcome PCM’s speed deficiency, various system architec-

tures have been designed to integrate PCM into current systems without performance

degradation [25, 46, 47, 48, 49, 50, 51].

Magnetic RAM (MRAM) and Spin Torque Transfer RAM (STT-RAM) are expected

to replace SRAM and DRAM within the next few years [52, 53, 54]. The attractiveness

of replacing those volatile memories with high speed and high endurance non-volatile

memory makes these new technologies very competitive [31]. STT-RAM reduces the

transistor count and, consequently, provides a low cost, high-density solution. Many

enterprise and personal devices use MRAM for an embedded cache memory. Due to

MRAM and STT-RAM process compatibility with conventional CMOS processes, they

can be built directly on top of CMOS logic wafers, unlike NAND Flash memory [31].

Resistive RAM (RRAM) is considered a potential candidate to replace NAND Flash

memory [55]. SanDisk and HP (inventor of the memristor RRAM) are actively devel-

oping next generation RRAM technology. However, technical breakthroughs have con-

tinuously evolved NAND Flash memory technology for the last several generations and

it has been industrially wide-spread. Thus, transitioning to RRAM, as a NAND flash

replacement, is not expected within a decade [31].

Micron and Intel recently introduced 3D XPoint non-volatile memory technology and

this technology is presently considered another DRAM alternative [56]. The companies

claim that this technology is a resistive memory technology, but many researchers believe

it is an existing type of Phase Change Memory (PCM) technology [31]. 3D Xpoint

technology has high endurance, high density, and promising performance that is much

better than NAND Flash, but slightly slower than DRAM. Thus, it is expected to target

high performance in-memory processing applications [57].



12

2.3 Related work

Most DRAM-based cache algorithms primarily focus on improving read cache hit ratios

because all dirty pages are frequently flushed to underlying storage [58]. Both recency

and frequency are two main factors to improve cache hit ratios. Least Recently Used

(LRU) [59] and Least Frequently Used (LFU) [60] consider only one factor and ignore the

other one. To bypass this limitation, Megiddo et al. proposed Adaptive Replacement

Cache (ARC) [30]. ARC divides the total cache space into two sections: recency cache

and frequency cache. The recency cache stores pages referenced once and the frequency

cache stores pages recently referenced at least twice. ARC maintains two ghost caches

for each recency cache and frequency cache. The ghost cache is a data structure keeping

only metadata of recently evicted pages. Due to a fixed total cache size, each ghost cache

hit triggers enlarging the corresponding real cache size and shrinking the other real cache

size. Consequently, each real cache dynamically grows or shrinks according to workload

characteristics.

Unlike the aforementioned DRAM-based cache algorithms, existing NVRAM-based

cache algorithms primarily concentrate on SSD write traffic reduction to extend flash-

based SSD lifetimes. Existing caching algorithms for NAND flash memory can be largely

classified into two main categories: a main memory buffer cache algorithm (i.e., external

to an SSD) and an internal SSD write buffer algorithm. The main memory buffer cache

algorithms operate in host NVRAM-based main memory systems and there are several

existing studies examining them. Park et al. proposed a Clean First LRU (CFLRU)

algorithm [61]. CFLRU splits the total cache space into a working region and a clean-

first region. The clean-first region is a cache area near the LRU end position. Clean

pages are first evicted from the clean-first region with LRU policy. If there is no clean

page in the clean-first region, dirty pages are evicted. However, CFLRU does not

consider frequency and must pre-configure the clean-first region size. Thus, if the size is

too large, the cache hit ratio suffers due to early hot clean page eviction. On the other

hand, if the size is too small, dirty pages are evicted early. Qiu et al. proposed a cache

policy in NVMFS [29]. NVMFS splits the whole cache into two smaller caches: a dirty

page cache and a clean page cache. Each cache grows and shrinks based on page hits.

However, it ignores frequency. Jung et al. improved the LRU algorithm with an add-on



13

page replacement strategy, named LRU Write Sequence Reordering (LRU-WSR) [5].

LRU-WSR provides dirty pages with a second chance before eviction to decrease write

traffic. For each dirty page, it adds a hot/cold page indicator bit. LRU-WSR initially

assumes all dirty pages are hot pages. If a victim is dirty and hot, LRU-WSR marks

it as a cold page and migrates it to the MRU position. If a victim is clean, or dirty

and cold, LRU-WSR evicts it right away. If a dirty page hits, it considers the page hot.

However, giving a second chance may hurt a cache hit ratio. As an example, giving a

second chance to some cold dirty pages causes some hot clean page evictions.

Unlike using NVRAM as main memory, some studies have investigated an internal

SSD write buffer cache algorithm. Jo et al. proposed the Flash Aware Buffer man-

agement (FAB) scheme. FAB considers block space utilization. It groups the pages

belonging to the same block and evicts those pages with the largest number [6]. In

case of a tie, FAB follows LRU order. However, FAB only considers block utilization

and ignores temporal locality. Moreover, FAB is not scalable for SSD capacity be-

cause it sequentially looks up all indexes. Kim et al. proposed Block Padding LRU

(BPLRU) [3] that is also rooted in the grouping-based management. BPLRU is funda-

mentally based on the LRU policy to select victims in a write buffer. Whenever any

page in a block hits, the corresponding block moves to the Most Recently Used (MRU)

position. When a buffer fills, a block in the LRU position is evicted. Since BPLRU

only considers temporal locality (i.e., LRU) for victim block selection, for completely

random workloads, it incurs a large number of additional reads for page padding, which

significantly degrades overall performance. Debnath et al. proposed another SSD write

buffer algorithm named Large Block CLOCK (LB-CLOCK) [62]. LB-CLOCK considers

both recency and block utilization to select a victim. It dynamically varies a priority

between these two metrics to adapt to workload characteristics. Kang et al. proposed

a Coldest and Largest Cluster (CLC) algorithm [7]. CLC combines FAB and LRU. It

maintains two lists: a size-independent cluster list and a size-dependent cluster list.

The size-independent list is sorted with LRU policy to exploit temporal locality for hot

clusters. The size-dependent list is sorted by a cluster size to exploit spatial locality

for cold clusters. Initially, CLC inserts pages in the size-independent list. When the

size-independent list is full, CLC moves clusters from the LRU position of the size-

independent list to the size-dependent list. When the size-dependent list is full, CLC



14

Dirty cache Clean cache Dirty ghost cache Clean ghost cache 

Cache 

Cache directory 

Dirty  
frequency 

Dirty  
recency 

Recency 
ghost 

Frequency 
ghost 

Clean  
frequency 

Clean  
recency 

Recency 
ghost 

Frequency 
ghost 

Figure 2.2: H-ARC Architecture

evicts the largest cluster from its tail. Wu et al. proposed a Block-Page Adaptive Cache

(BPAC) [4]. BPAC is based on the CLC algorithm and tries to dynamically adjust each

list size according to workloads.

2.4 Proposed Design

This section presents two NVRAM-based buffer cache policies: a host-side write buffer

cache design (named H-ARC) and an internal SSD write buffer design (named WRB).

2.4.1 Host Write Buffer Cache: H-ARC

Architecture

The proposed Hierarchical Adaptive Replacement Cache (H-ARC) is an NVRAM-based

main memory write buffer cache algorithm. Primary H-ARC design goals are to reduce

SSD write traffic and to increase cache hit ratios for both reads and writes. Unlike

existing DRAM-based algorithms that only consider recency and/or frequency, H-ARC

considers four factors–dirty, clean, recency, and frequency–to exploit NVRAM non-

volatility. H-ARC is fundamentally inspired by the learning process of the existing

Adaptive Replacement Cache (ARC). It adopts a ghost cache concept [30]. However,

the proposed H-ARC hierarchically applies the learning process. That is, at a higher

level, H-ARC first divides a whole cache space into two sections to determine a desired

cache size for both dirty pages and clean pages. At the next level, for each dirty page



15

cache and clean page cache, H-ARC further subdivides these two cache spaces into

two respective subsections to determine a desired size for both a recency cache and a

frequency cache. Now, the whole main cache space is split into four subsections (dirty-

recency, dirty-frequency, clean-recency, and clean-frequency). H-ARC also adopts a

ghost cache for four respective real caches to dynamically adjust each cache size (please

refer to Figure 2.2). Each ghost cache maintains only evicted data page metadata from

each corresponding real cache. Each real cache stores data pages and their metadata.

Operations

This section describes H-ARC operations. A dirty page cache and a clean page cache

are denoted by D and C respectively. The aforementioned four real cache regions are

denoted as follows: a dirty-recency cache (D1i), a dirty-frequency cache (D2i), a clean-

recency cache (C1i), and a clean frequency cache (C2i).

Four ghost caches are maintained: D1o, D2o, C1o, and C2o which are the ghost caches

of the corresponding real caches D1i, D2i, C1i, and C2i. For convenience, this section

follows the notation convention: D denotes dirty, C denotes clean, subscript 1 denotes

one time reference (to capture recency), subscript 2 describes at least two times reference

(to capture frequency), subscript i describes cached pages in real caches, subscript o

presents cached pages in the ghost caches. A ghost cache only stores metadata of the

recently evicted pages from corresponding real caches. Each cache size is the number of

pages stored. Assuming the maximum physical cache size (i.e., memory size) is L, the

summation of all four real cache sizes cannot be greater than L. The summation of all

the real caches and ghost caches cannot be greater than 2∗L. Conceptually D1i and D2i

can be grouped as dirty real cache denoted by Di, and C1i and C2i can be grouped as a

clean real cache denoted by Ci. Similarly, each corresponding ghost caches are grouped

together denoted by Do and Co.

All the real caches and ghost caches are initially empty. For each read/write request

r from workloads, one of the following three cases happens: (1) Real cache hit, (2) Real

cache miss, but ghost cache hit, (3) Both real and ghost cache misses.

(1) Real Cache Hit

If a read or write request r hits in any real cache (C1i, C2i, D1i, or D2i), H-ARC



16

migrates the referenced data page from its original location to the most recently used

(MRU) position to either C2i or D2i according to the original state of the referenced

data page in the cache. This is because the page is now referenced at least twice in the

real cache.

If a request r is a read request and hits in C1i or C2i, the referenced page state

does not change (i.e., still remains a clean page). H-ARC migrates it from its original

location in either C1i or C2i to MRU position in C2i. Similarly, if the r hits in D1i or

D2i, this also does not change the referenced page state (i.e., remains a dirty page).

H-ARC migrates it from its original location either in D1i or D2i to MRU position in

D2i.

Unlike a read request, a write request changes the referenced page state. If a write

request r hits in either C1i or C2i, it changes the page state from a clean page to a dirty

page. H-ARC migrates it from its original location to the MRU position in D2i. If the

write request r hits in D1i or D2i, this page still remains a dirty page. H-ARC migrates

it from its original location to the MRU position in D2i. Note that we consider both

reads and writes for a reference count.

(2) Real Cache Miss, Ghost Cache Hit

When a request r hits in a ghost cache and misses in the real caches, H-ARC follows

three steps. First, H-ARC adjusts the real cache size to capture the current workload

tendency (writes vs. reads, frequency vs. recency). Second, if the cache is full, a page

must be evicted from a real cache. Third, the new page is inserted into its corresponding

real cache. Figure 2.3 illustrates these steps.

To determine a real cache size, H-ARC dynamically adjusts the cache size hierarchi-

cally. At the higher level, H-ARC first decides the desired size for Di (denoted by D̂i)

and the desired size for Ci (denoted by Ĉi). We assume P represents the size of Ĉi and

L represents the total physical memory size. Thus,

Ĉi = P (2.1)

D̂i = L− P (2.2)

Once the desired sizes for both Di and Ci are determined, H-ARC must decide the



17

desired size for D1i (denoted by D̂1i) and D2i (denoted by D̂2i) for a dirty cache region.

Similarly, for a clean cache region, both the desired size for C1i (denoted by Ĉ1i) and C2i

(denoted by Ĉ2i) must be determined at the same time. Here, two fractions PC and PD

are adopted to denote the desired ratio for Ĉ1i and D̂1i inside Ci and Di respectively.

The equations are shown below:

Ĉ1i = PC ∗ Ĉi (2.3)

Ĉ2i = Ĉi − Ĉ1i (2.4)

D̂1i = PD ∗ D̂i (2.5)

D̂2i = D̂i − D̂1i (2.6)

At the higher level, if a page hits in Co (clean ghost cache), it implies the clean

page should not have been evicted from the clean cache. To compensate for this, H-

ARC enlarges the clean cache size (Ĉi). Every time a ghost hit occurs in Co, Ĉi (or P )

increases by 1. According to Equation (2.2), D̂i decreases by the same size. Please note

that P cannot be larger than L. The equation of P adjustment is described as follows:

P = min{P + 1, L} (2.7)

If, on the other hand, a page hits in Do (dirty ghost cache), it implies the dirty

page should not have been evicted from the dirty cache. Thus, H-ARC must enlarge

the dirty cache size (Di). To meet our goal of write traffic reduction, H-ARC tries to

keep dirty pages in the cache longer. Unlike the aforementioned Ĉi increment policy,

H-ARC enlarges D̂i much faster than Ĉi. If the clean ghost cache size (Co) is smaller

than the dirty ghost cache size (Do), D̂i increases by two. If the size of Co is greater

than or equal to Do, D̂i increases by two times the quotient of Co and Do. That is,

if the Do size is smaller, D̂i increases faster. According to Equation (2.1), Ĉi must be

decreased by the same size. Again, the total size of Ci and Di cannot be larger than L,

and P cannot be smaller than 0. The equation of P adjustment is shown as follows:



18

P =

{
max{P − 2, 0} if |Co| < |Do|
max{P − 2 ∗ |Co|

|Do| , 0} if |Co| ≥ |Do|
(2.8)

After H-ARC determines both the dirty cache size and the clean cache size, H-ARC

determines both a recency cache size and a frequency cache size for each dirty cache and

clean cache. If a ghost page hits in either a clean-recency ghost cache (C1o) or a dirty-

recency ghost cache (D1o), it implies this recency page should not have been evicted

from the cache. So, H-ARC enlarges the corresponding clean-recency cache size (Ĉ1i)

or the dirty-recency cache size (D̂1i) by increasing PC or PD accordingly. Similarly, if a

page hits in either a clean-frequency ghost cache (C2o) or a dirty-frequency ghost cache

(D2o), H-ARC enlarges the corresponding real cache sizes (Ĉ2i or D̂2i) by decreasing PC

or PD accordingly. Unlike the dirty and clean cache region adjustment, the frequency

and recency cache size adjustment is symmetric since H-ARC does not provide any

priority for these two factors. After the adjustment of PC (or PD), all four region sizes

(Ĉ1i, Ĉ2i, D̂1i and D̂2i) are recalculated with Equations (2.3)-(2.6). The equations of

PC and PD adjustments are presented below:

• A clean-recency ghost cache hit in C1o: H-ARC enlarges Ĉ1i. Thus, PC increases.

PC =

 min{PC + 1
P , 1} if |C2o| < |C1o|

min{PC +
|C2o|
|C1o|
P , 1} if |C2o| ≥ |C1o|

(2.9)

• A clean-frequency ghost cache hit in C2o: H-ARC enlarges Ĉ2i. Thus, PC in-

creases.

PC =

 max{PC − 1
P , 0} if |C1o| < |C2o|

max{PC −
|C1o|
|C2o|
P , 0} if |C1o| ≥ |C2o|

(2.10)

• A dirty-recency ghost cache hit in D1o: H-ARC enlarges D̂1i. Thus, PD increases.

PD =

 min{PD + 1
L−P , 1} if |D2o| < |D1o|

min{PD +
|D2o|
|D1o|
L−P , 1} if |D2o| ≥ |D1o|

(2.11)



19

• A dirty-frequency ghost cache hit in D2o: H-ARC enlarges D̂2i. Thus, PD in-

creases.

PD =

 max{PD − 1
L−P , 0} if |D1o| < |D2o|

max{PD −
|D1o|
|D2o|
L−P , 0} if |D1o| ≥ |D2o|

(2.12)

Now, all desired cache sizes are determined. Please note that a desired cache size

does not mean a real cache size, but a targeting cache size. That is, the real cache

size is not adjusted until H-ARC performs the eviction and balance procedures. The

eviction and balance procedures are as follows: After obtaining all the desired sizes,

H-ARC compares them to each current real cache size. H-ARC gradually changes the

real cache size until their desired size by evicting a page from a real cache that is larger

than its desired size.

Specifically, at the higher level, if the size of Ci is greater than or equal to Ĉi and

the request r is in Do, H-ARC evicts a page from Ci. Otherwise, H-ARC evicts a page

from Di. At the lower level, assuming H-ARC is evicting from Ci, if the size of C1i is

larger than Ĉ1i, H-ARC evicts the LRU page from C1i and inserts its metadata into

the MRU position in C1o. Otherwise, H-ARC evicts the LRU page out from C2i and

inserts its metadata into the MRU position in C2o. Similar operations are applied to

Di if H-ARC evicts a page from Di.

Figure 2.3 illustrates this operation. Assuming a page hits in the dirty ghost cache,

H-ARC must increase the dirty cache size and decrease the clean cache size accordingly

following H-ARC policies. For this, H-ARC first evicts the page located in the clean

cache LRU position and its page metadata is inserted in the clean ghost cache MRU

position. Then, H-ARC increases the dirty cache size and shrinks the clean cache size

accordingly. Finally, it stores the referenced page data into the MRU position of the

dirty cache and removes the corresponding page metadata from the dirty ghost cache.

(3) Both Real and Ghost Cache Misses

When the real caches are not full, H-ARC simply inserts the page into the MRU

position of C1i if r is a read request, or into the MRU position of D1i if r is a write

request.

When the real caches are full, H-ARC must evict a page from a real cache to secure a

space for the new page insertion. In addition, H-ARC tries to equalize the size of D and



20

Dirty cache Clean cache Dirty ghost Clean ghost 

Cache hit! 

(3) Insert data to a cache (1) Evict LRU data to a ghost cache 

(2) Increase a desired dirty cache size and decrease a desired clean cache size 

Figure 2.3: H-ARC Operation

C. For D, as an example, H-ARC makes an attempt to equalize the size of D1 and D2.

Specifically, D includes D1i, D2i, D1o and D2o. D1 includes D1i and D1o. D2 includes

D2i and D2o. This equalization process is required to avoid cache starvation. H-ARC

can cause this cache starvation if one real cache size and its corresponding ghost cache

size are both very large. Since the total cache size is fixed, the other real cache size

and its corresponding ghost cache size are very small. Therefore, the small cache has

difficulty growing quickly due to low cache hit probabilities even if the current workload

favors it.

To solve this problem, H-ARC checks a C size. If the size of C is greater than L

(this means it already takes more than half of the total cache space including both real

and ghost caches), H-ARC evicts a page from C. Otherwise, H-ARC evicts a page from

D. Assuming H-ARC decides to evict a page from C, H-ARC checks the C1 size. If the

C1 size is greater than L/2 (this means it already takes half of the total cache space for

C), H-ARC evicts a page from C1. Otherwise, it evicts a page from C2. The eviction

process in D is similar to the process in C.

When H-ARC actually performs an eviction from a region (e.g., C1), H-ARC first

evicts the LRU page in C1o and executes the aforementioned eviction and balance pro-

cedures. This is because a ghost page space for an evicted page from the real cache

region must be secured first. If C1o is empty, H-ARC simply evicts the LRU page in

C1i.

Finally, after a real page eviction, H-ARC inserts a new page into the MRU position



21

BLK#1 
Count:4 

BLK#2 
Count:3 

BLK#N-3 
Count:1 

BLK#N-1 
Count:2 

Bucket  
0 

Bucket  
1 

Bucket  
2 

Bucket  
3 … Bucket 

N-3 
Bucket 

N-2 
Bucket 

N-1 

BLK#3 
Count:6 

NULL NULL 

LRU 
Tail 

LRU 
Head 

… 

Cache 

Hash 
table 
array 

Block 
node 
lists 

Figure 2.4: WRB Architecture

of C1i if r is a read request, or into the MRU position of D1i if r is a write request.

• Eviction&Balance (EB) Algorithm

In the last two cases, a new page needs to be inserted into the real cache. In case

the real caches are full, we need to evict a page out of cache to reclaim space for this

new page. We design an Eviction&Balance (EB) algorithm to identify a real page to be

evicted and to balance the real cache sizes towards their desired sizes. With the defined

P , PD and PC , we can easily calculate the desired size of Ci, Di, C1i, C2i, D1i, D2i

though Equations (2.1)-(2.6). After obtaining all the desired sizes, we compare them

with the current size of each real cache. We will evict from one real cache that is larger

than its desired size.

Specifically, at the higher level, if the size of Ci is larger than or equal to Ĉi and the

request r is in Do, we will evict a page from Ci. Otherwise, we will evict a page from

Di. At the lower level assuming we are evicting from Ci, if the size of C1i is larger than

Ĉ1i, we will evict the LRU page out from C1i and insert its page number into the MRU

position in C1o. Otherwise, we will evict the LRU page out from C2i and insert its page

number into the MRU position in C2o. Similar operation will happen in Di if we need

to evict a page out from this side.

2.4.2 Internal SSD Write Buffer: WRB

The proposed H-ARC significantly reduces write traffic to SSDs and increases cache hit

ratios at the host main memory layer. These initially ‘filtered’ write traffic can be further

reduced inside SSDs by an internal SSD write buffer mechanism. This section proposes



22

a novel SSD write buffer algorithm named Write Traffic Reduction Buffer (WRB).

Architecture

Figure 2.4 shows WRB architecture. For each write request, WRB checks whether the

request page exists in the buffer and then groups the page into a relevant block. Thus,

an efficient data structure is important to minimize search overhead. Unlike personal

mobile devices or small capacity SSDs that typically adopt a simple sequential search

(O(n) complexity) [6], WRB uses hash tables for a fast block search (O(1) complexity).

Block node lists are composed of double linked list of blocks to implement a block-level

LRU policy (please refer to Figure 2.5). Each block node contains a block number,

a page counter, two pointers for previous and next blocks, and a pointer array for

data pages in the buffer cache. All block nodes are sorted by recency (i.e., block-

level LRU policy). The block number represents a unique block number in NAND

flash-based SSDs. The page counter shows the number of page allocated to the block.

Two pointers are adopted to implement double linked list of blocks (i.e., forward and

backward pointers). In addition, each block maintains a pointer array to indicate each

data page in the buffer cache.

Operations

WRB is a write buffer inside SSDs and considers only write requests. WRB can take

advantage of internal SSD knowledge. NAND Flash-based SSDs perform block unit

erasures, each of which contains a fixed number of pages (e.g. 64). A single page update

may shortly trigger a whole block erasure for garbage collection (GC) [32]. Moreover,

if a GC block contains many valid pages, it causes a very low GC efficiency. Thus,

to minimize block erase counts and to improve GC efficiency, judicious batch eviction

of dirty pages without sacrificing a cache hit ratio is important. WRB considers the

following three main operations: (1) search, (2) insertion, and (3) eviction.

(1) Search

When an SSD write page request arrives, it contains a page number in addition to a

request operation type. WRB feeds this page number to a hash function to get a hash

value. This hash value enables WRB to directly search for the relevant block the page



23

BLK#0 
Count:4 

14 15 18 3 8 12 13 4 6 0 7 16 17 5 

BLK#1 
Count:3 

BLK#3 
Count:1 

BLK#4 
Count:2 

BLK#2 
Count:6 

24 25 

LRU MRU 

Cache 
(full) 

Block 
node 
lists 

Hit! 

BLK#0 
Count:4 

14 15 18 3 8 12 13 4 6 0 7 16 17 5 

BLK#1 
Count:3 

BLK#3 
Count:1 

BLK#4 
Count:2 

BLK#2 
Count:6 

24 25 

LRU MRU 

Victim 

(a) Before Referenced.

BLK#0 
Count:4 

14 15 18 3 8 12 13 4 6 0 7 16 17 5 

BLK#1 
Count:3 

BLK#3 
Count:1 

BLK#4 
Count:2 

BLK#2 
Count:6 

24 25 

LRU MRU 

Cache 
(full) 

Block 
node 
lists 

Hit! 

BLK#0 
Count:4 

14 15 18 3 8 12 13 4 6 0 7 16 17 5 

BLK#1 
Count:3 

BLK#3 
Count:1 

BLK#4 
Count:2 

BLK#2 
Count:6 

24 25 

LRU MRU 

Victim candidate: LRU block Victim candidate: largest count 

(b) After Referenced and Victim Selection.

Figure 2.5: Block-level LRU Policy and Victim Selection Example

belongs to. WRB harnesses this hash table data structure to achieve a fast block search.

This efficient and fast search capability is a crucial factor when a buffer size increases.

If WRB finds a relevant block node, it searches whether or not the page already

exists in the write buffer. If the page hits the buffer, WRB changes the page status

from clean to dirty and updates the page. If the page does not hit the buffer, WRB

inserts the new page into the buffer and updates pointer information in the block node.

Both cases (hit or miss) require the corresponding block node to move to the MRU

position in the block node lists. This implies WRB follows a block-level LRU policy.

Figure 2.5 provides a simple block-level LRU example. As in Figure 2.5 (a), when a

page 13 hits in the buffer, unlike a typical page-level LRU policy, all pages (page 12, 13,

14, 15, 16, and 17) belonging to the same block (Block #2) move to the MRU position

even though all the other pages are not referenced (Figure 2.5 (b)).

(2) Insertion

After a search operation, if the proposed scheme does not find a relevant block node

(i.e., a hash table returns ‘null’) or the request page does not exist in the buffer, the

page must be inserted in the buffer. If a block node does not exist, the proposed scheme

first allocates a new corresponding block node to a head position (i.e., MRU position)



24

of the block node lists and sets a page counter value to 1. At the same time, it links

the new block node to the hash table and inserts the new page into the buffer. Finally,

the scheme sets the page pointer in the block node in order to link to the new page

inserted. Although the block node exists, if the page does not exist in the buffer, WRB

moves the block node to MRU position of the lists and increases the page counter by 1.

Similarly, it sets the page pointer to the new page in the buffer.

(3) Victim selection and eviction

If the buffer is full and a new data page needs to be inserted, the proposed scheme

must evict some pages from the buffer to make a room for the new page. To utilize

spatial locality, WRB evicts all relevant pages belonging to the same block at once. This

can reduce the number of block erasures. Thus, WRB first tries to choose a victim block

with the largest page count. However, this simple policy overlooks temporal locality.

Consequently, it may hurt a cache hit rate. As mentioned, the cache hit rate is also an

important factor to reduce SSD write traffic. Therefore, we must consider the temporal

locality as well as the spatial locality.

A more complicated algorithm and data structure may be able to help a little bit

increase performance. However, the write buffer is very quickly filled with data and

whenever a new data page comes into the buffer, this eviction operation must be per-

formed every time. Considering the much lower computing capabilities of an embedded

CPU (about 10× less than a typical host CPU) and resources inside SSDs, it may not

be a practical solution [2, 1, 63]. Based on this observation, WRB adopts a simple and

effective solution for temporal locality: a threshold value. That is, when the buffer is

full, instead of always choosing a victim block node with the largest page count value,

WRB first checks whether the page count is greater than a predefined threshold value.

If the count is over than the threshold value, WRB chooses the block as a victim and

evicts all the pages belonging to the block. If the count value is not greater than the

threshold, WRB chooses the LRU block node and evicts all the pages in the block at

once.

Figure 2.5 (b) shows this victim selection example. For a simple example, let’s

assume the buffer is full, the block size is 6 pages, and the threshold value is 3. WRB

can choose either a block node with a largest page count (Block #2) or LRU block



25

ARC LRU-WSR H-ARC 

FAB BPLRU LB-CLOCK WRB 

Host buffer  
cache design 

SSD write 
buffer design 

Six combination schemes Proposed  

Figure 2.6: A Combination of Six Comprehensive Schemes and the Proposed Scheme

node (Block #4) as a victim block. In this example, since the Block #2 has a greater

page count (i.e., 6) than the threshold value (3), WRB chooses Block #2 as a victim.

Assuming the Block #2 had a smaller page count (e.g., 2) than the threshold, WRB

would choose the LRU block node (Block #4) and evict all the pages (page 24 and 25)

at once.

2.5 Experiments

We propose two cooperative buffer cache schemes at different layers: a host-side buffer

cache (named H-ARC) and an internal SSD write buffer (named WRB). Since this work

is, to our knowledge, the first comprehensive write buffer mechanism simultaneously

addressing both layers, relevant schemes do not exist for fair comparison. Thus, we

implement six comprehensive schemes by selecting representative buffer algorithms for

each layer and combining them. Both ARC [30] and LRU-WSR [5] are selected for a

host-side buffer cache algorithm. FAB [6], BPLRU [3], and LB-CLOCK [62] are chosen

for an internal SSD write buffer algorithm. As in Figure 2.6, a combination of six

comprehensive schemes are implemented and evaluated.

2.5.1 Evaluation Setup

The proposed scheme is implemented on the basis of the Sim-ideal [64] simulator. Sim-

ideal configures cache schemes (e.g., cache size, page size, etc.) based on a given config-

uration file. Then, it loads a trace file into an internal data structure (i.e., queue) and

processes each trace requests from the queue according to the time stamp information.

All experiments assume a 4KB memory page size.

The evaluation adopts six traces (please refer to Table 2.1) from real workloads and



26

Table 2.1: Trace Characteristics
Trace Name Total Requests Unique Pages R/W Ratio

mds 0 11,921,428 741,522 1:2.56
wdev 0 2,368,194 128,870 1:3.73
web 0 7,129,953 1,724,201 1:0.76
fio zipf 524,411 291,812 1:0.25
fio pareto 524,345 331,137 1:0.25
File server 1,417,814 406,214 1:0.35

synthetic workloads. Real workloads use MSR Cambridge traces [65]. MSR Cambridge

traces consist of 36 volumes containing 179 disks from 13 Microsoft enterprise servers

with different purposes for one week. They are classified into 13 categories based on

server types. Each category consists of 2 or 3 traces. These traces represent data

accesses from a typical enterprise data center. We simply adopt the first volume of

traces from 3 categories (mds, wdev, and web) because the other traces in the same

category show similar characteristics. All selected traces are relatively write-intensive.

We generate synthetic workloads using two benchmarks: fio [66] and Filebench [67].

Since MSR Cambridge traces are block I/O traces that can be observed by a block

device layer, we enable direct I/O option for fio and Filebench. Then, the traces are

collected by using Linux blkrace. This direct I/O enables the read/write requests to

bypass the virtual file system layer (mainly a page cache in main memory) and to go to

the block layer directly. In this way, we can collect the block layer traces and their actual

access patterns are close to the access patterns of main memory. For fio benchmarks,

we configure 80% read requests and 20% write requests because this is a common access

ratio. In addition, the fio benchmark uses two different distribution types (zipf and

pareto). For Filebench, we select a popular file server model. Table 2.1 describes these

traces in detail.

2.5.2 Evaluation Results and Analysis

Overall performance

All write page requests first buffer in the host write buffer cache and then, these ‘filtered’

write requests are buffered again in the internal SSD write buffer to minimize SSD write

traffic. Figure 2.7 presents total write traffics (i.e., write block counts) of each scheme



27

 0

 20

 40

 60

 80

 100

 120

 140

 160

1k 2k 4k 8k 16k

W
ri

te
 B

lo
ck

 C
ou

nt
 (

U
ni

t:1
00

)

Cache Size (Pages)

ARC+FAB
ARC+BPLRU

ARC+LB-CLOCK
LRU-WSR+FAB

LRU-WSR+BPLRU
LRU-WSR+LB-CLOCK

Proposed

(a) mds

 0

 20

 40

 60

 80

 100

 120

 140

 160

1k 2k 4k 8k 16k 32k

W
ri

te
 B

lo
ck

 C
ou

nt
 (

U
ni

t:1
00

)

Cache Size (Pages)

ARC+FAB
ARC+BPLRU

ARC+LB-CLOCK
LRU-WSR+FAB

LRU-WSR+BPLRU
LRU-WSR+LB-CLOCK

Proposed

(b) wdev

 0

 50

 100

 150

 200

 250

1k 2k 4k 8k 16k 32k

W
ri

te
 B

lo
ck

 C
ou

nt
 (

U
ni

t:1
00

0)

Cache Size (Pages)

ARC+FAB
ARC+BPLRU

ARC+LB-CLOCK
LRU-WSR+FAB

LRU-WSR+BPLRU
LRU-WSR+LB-CLOCK

Proposed

(c) web

 0

 100

 200

 300

 400

 500

 600

 700

1k 2k 4k 8k 16k 32k
W

ri
te

 B
lo

ck
 C

ou
nt

 (
U

ni
t:1

00
)

Cache Size (Pages)

ARC+FAB
ARC+BPLRU

ARC+LB-CLOCK
LRU-WSR+FAB

LRU-WSR+BPLRU
LRU-WSR+LB-CLOCK

Proposed

(d) fio zipf

 0

 100

 200

 300

 400

 500

 600

 700

 800

1k 2k 4k 8k 16k 32k

W
ri

te
 B

lo
ck

 C
ou

nt
 (

U
ni

t:1
00

)

Cache Size (Pages)

ARC+FAB
ARC+BPLRU

ARC+LB-CLOCK
LRU-WSR+FAB

LRU-WSR+BPLRU
LRU-WSR+LB-CLOCK

Proposed

(e) fio pareto

 0

 20

 40

 60

 80

 100

 120

1k 2k 4k 8k 16k 32k

W
ri

te
 B

lo
ck

 C
ou

nt
 (

U
ni

t:1
00

0)

Cache Size (Pages)

ARC+FAB
ARC+BPLRU

ARC+LB-CLOCK
LRU-WSR+FAB

LRU-WSR+BPLRU
LRU-WSR+LB-CLOCK

Proposed

(f) file server

Figure 2.7: Total Write Traffics (block counts) From Host to NAND Flash (lower is
better). The memory size in X-axis represents the number of 4K page. For example,
1K means 1024 × 4K pages.

after those two write buffer schemes (i.e., host-side and SSD-side) process the write

traffics. As in the Figure 2.7, the proposed scheme outperforms the other schemes by

up to 3× particularly in the fio zipf and pareto workloads. In addition to the proposed

scheme, both LRU-WSR + BPLRU and LRU-WSR + LB-CLOCK schemes also show

good overall performance compared to other combinations. Specifically, in web and

file server workloads with small cache sizes of 1K through 4K, they exhibit slightly

better performance than the proposed scheme by an average of 10.1% (1K), 9.6% (2K)

and 9% (4K). However, as the memory size grows, the proposed scheme shows better

performance than both schemes by an average of 17.8% (16K) and 51.4% (32K).



28

 8460

 8480

 8500

 8520

 8540

 8560

 8580

ARC+FAB

ARC+BPLRU

ARC+LB-C

LRU-W
+FAB

LRU-W
+BPLRU

LRU-W
+LB-C

Proposed

W
ri

te
 P

ag
e 

R
ed

uc
tio

n(
U

ni
t:1

00
0)

Comprehensive Schemes

Host SSD

(a) mds

 1740

 1760

 1780

 1800

 1820

 1840

ARC+FAB

ARC+BPLRU

ARC+LB-C

LRU-W
+FAB

LRU-W
+BPLRU

LRU-W
+LB-C

Proposed

W
ri

te
 P

ag
e 

R
ed

uc
tio

n(
U

ni
t:1

00
0)

Comprehensive Schemes

Host SSD

(b) wdev

 2400

 2450

 2500

 2550

 2600

 2650

 2700

 2750

ARC+FAB

ARC+BPLRU

ARC+LB-C

LRU-W
+FAB

LRU-W
+BPLRU

LRU-W
+LB-C

Proposed

W
ri

te
 P

ag
e 

R
ed

uc
tio

n(
U

ni
t:1

00
0)

Comprehensive Schemes

Host SSD

(c) web

 0

 20

 40

 60

 80

 100

ARC+FAB

ARC+BPLRU

ARC+LB-C

LRU-W
+FAB

LRU-W
+BPLRU

LRU-W
+LB-C

Proposed
W

ri
te

 P
ag

e 
R

ed
uc

tio
n(

U
ni

t:1
00

0)

Comprehensive Schemes

Host SSD

(d) fio zipf

 0

 20

 40

 60

 80

 100

ARC+FAB

ARC+BPLRU

ARC+LB-C

LRU-W
+FAB

LRU-W
+BPLRU

LRU-W
+LB-C

Proposed

W
ri

te
 P

ag
e 

R
ed

uc
tio

n(
U

ni
t:1

00
0)

Comprehensive Schemes

Host SSD

(e) fio pareto

 0

 20

 40

 60

 80

 100

 120

ARC+FAB

ARC+BPLRU

ARC+LB-C

LRU-W
+FAB

LRU-W
+BPLRU

LRU-W
+LB-C

Proposed

W
ri

te
 P

ag
e 

R
ed

uc
tio

n(
U

ni
t:1

00
0)

Comprehensive Schemes

Host SSD

(f) file server

Figure 2.8: Total Write Page Count Reduction by Different Layers (higher is better).
Here, LB-C and LRU-W stand for LB-CLOCK and LRU-WSR respectively.

Both ARC + FAB and LRU-WSR + FAB schemes tend to show lower performance

than others. They exhibit significantly lower performance than the others, particularly

in wdev, web, and file server workloads. To analyze this, we performed another extensive

experiment to compare FAB with other write buffer schemes: FAB vs. BP-LRU, LB-

CLOCK, and WRB. Unlike other workloads where FAB shows decent (2.1% and 1.9%

better in fio zipf and fio pareto workloads) or slightly lower (16.7% lower in the mds

workload) performance, it exhibits remarkably lower performance in wdev, web, and

file server workloads. Specifically, FAB shows 2.1× (wdev), 4.2× (web), and 3.3× (file



29

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

1K 2K 4K 8K 16K 32K 64K

W
ri

te
 P

ag
e 

C
ou

nt
 (

U
ni

t:1
00

0)

Cache Size (Pages)

LRU
CFLRU

LRU-WSR
ARC

H-ARC

(a) mds

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

1K 2K 4K 8K 16K 32K 64K

W
ri

te
 P

ag
e 

C
ou

nt
 (

U
ni

t:1
00

0)

Cache Size (Pages)

LRU
CFLRU

LRU-WSR
ARC

H-ARC

(b) wdev

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1K 2K 4K 8K 16K 32K 64K

W
ri

te
 P

ag
e 

C
ou

nt
 (

U
ni

t:1
00

0)

Cache Size (Pages)

LRU
CFLRU

LRU-WSR
ARC

H-ARC

(c) web

 0

 20

 40

 60

 80

 100

 120

1K 2K 4K 8K 16K 32K 64K
W

ri
te

 P
ag

e 
C

ou
nt

 (
U

ni
t:1

00
0)

Cache Size (Pages)

LRU
CFLRU

LRU-WSR
ARC

H-ARC

(d) fio zipf

 0

 20

 40

 60

 80

 100

 120

1K 2K 4K 8K 16K 32K 64K

W
ri

te
 P

ag
e 

C
ou

nt
 (

U
ni

t:1
00

0)

Cache Size (Pages)

LRU
CFLRU

LRU-WSR
ARC

H-ARC

(e) fio pareto

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K 8K 16K 32K 64K 128K 256K

W
ri

te
 P

ag
e 

C
ou

nt
 (

U
ni

t:1
00

0)

Cache Size (Pages)

LRU
CFLRU

LRU-WSR
ARC

H-ARC

(f) file server

Figure 2.9: Host-side Main Write Buffer Cache Performance (lower is better). Each
chart shows total SSD write traffic (i.e., write page count) after each scheme processes
write requests in main memory.

server) lower performance than the others when configured with a 1K page buffer size.

This is the root cause for both ARC + FAB and LRU-WSR + FAB schemes showing

significantly lower performance than other schemes for those workloads, especially with

a smaller buffer size.

Even though each scheme in each different layer cooperatively reduces total SSD

write traffic, investigating respective contributions is also meaningful because there

were no studies exploring it. Figure 2.8 displays total write page count reduction for

each scheme. This stacked column chart presents each scheme’s contribution to total

write traffic reduction in each different layer. As in Figure 2.8, all host-side main buffer



30

cache schemes make a dominant contribution to total write traffic reduction compared

to inside-SSD write buffer schemes: 99.7% (mds), 99.4% (wdev), 99.3% (web), 83.3%

(fio zipf), 79.5% (fio pareto), and 83% (file server) (please note mds, wdev, and web

workloads do not start from 0).

Figure 2.8 also provides performance comparison among inside-SSD write buffer

schemes with the following configurations: 64K numbers of 4K pages host buffer size and

4K numbers of 4K pages SSD buffer size. Since an SSD write buffer cache’s contribution

is not significant, especially in mds, wdev, and web workloads, their Y-axis values do

not begin with 0 in order to magnify SSD write buffer effects. As in Figure 2.8, each

performance gap is not notably as much different as the host-side buffer schemes are.

Moreover, as described before, since the host-side contribution is a dominant factor, in

the following Subsection 2.5.2, we perform deeper experiments and analysis, particularly

for host-side main buffer cache schemes.

Host-side Write Buffer Cache Effect

Figure 2.9 presents host-side write buffer cache performance in main memory. For

more extensive and informative experiments, two more representative schemes are added

in addition to the aforementioned three schemes: LRU [59] and CFLRU [61]. Least

Recently Used (LRU) cache policy is the most representative and widely adopted cache

policy, and Clean First LRU (CFLRU) can be referred to the related work section

(Section 2.3). For objective comparison, the same configurations in [5] are employed.

Among these five schemes, both LRU and ARC focus on cache hit ratio improvement,

and the other three (CFLRU, LRU-WSR, and the proposed H-ARC) concentrate more

on write traffic reduction. Thus, this experiment addresses not only cache hit ratio, but

also write traffic for fairness.

(1) Write traffic

Each chart in Figure 2.9 shows total SSD write traffic (i.e., write page count) after

each scheme processes write requests in main memory. Intuitively, all policies exhibit

better performance as a cache size grows. For instance, H-ARC with 64K pages memory

size in fio pareto workload (Figure 2.9 (e)) generates only 26.9% of write traffic compared

to H-ARC with 1K pages memory size. This is because a larger cache enables each



31

 40

 45

 50

 55

 60

 65

 70

 75

1K 2K 4K 8K 16K 32K 64K

C
ac

he
 H

it 
R

at
io

 (
%

)

Cache Size (Pages)

MIN
LRU

CFLRU
LRU-WSR

ARC
H-ARC

(a) mds

 50

 60

 70

 80

 90

1K 2K 4K 8K 16K 32K 64K

C
ac

he
 H

it 
R

at
io

 (
%

)

Cache Size (Pages)

MIN
LRU

CFLRU
LRU-WSR

ARC
H-ARC

(b) wdev

 20

 25

 30

 35

 40

 45

 50

 55

1K 2K 4K 8K 16K 32K 64K

C
ac

he
 H

it 
R

at
io

 (
%

)

Cache Size (Pages)

MIN
LRU

CFLRU
LRU-WSR

ARC
H-ARC

(c) web

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1K 2K 4K 8K 16K 32K 64K

C
ac

he
 H

it 
R

at
io

 (
%

)

Cache Size (Pages)

MIN
LRU

CFLRU
LRU-WSR

ARC
H-ARC

(d) fio zipf

 0

 5

 10

 15

 20

 25

 30

 35

 40

1K 2K 4K 8K 16K 32K 64K

C
ac

he
 H

it 
R

at
io

 (
%

)

Cache Size (Pages)

MIN
LRU

CFLRU
LRU-WSR

ARC
H-ARC

(e) fio pareto

 0

 10

 20

 30

 40

 50

 60

 70

 80

4K 8K 16K 32K 64K 128K 256K

C
ac

he
 H

it 
R

at
io

 (
%

)

Cache Size (Pages)

MIN
LRU

CFLRU
LRU-WSR

ARC
H-ARC

(f) file server

Figure 2.10: Cache Hit Ratios of Both Reads and Writes.

scheme to hold more pages in the cache for a longer time. In addition, a larger cache can

provide each scheme with better eviction policy opportunities based on each algorithm,

resulting in a high cache hit ratio as well as low write traffic.

On the contrary, as the cache size decreases, the performance gap among these cache

policies decreases. In fact, with small cache sizes, all cache policies show performance

similar to an LRU scheme. Due to a limited cache space, it is difficult for each scheme to

capture enough information to improve victim choices. However, the proposed H-ARC

exhibits slightly better performance than others, even with the smallest memory size



32

 0

 10

 20

 30

 40

 50

 60

 70

MIN LRU CFLRULRU-WSR ARC H-ARC

C
ac

he
 H

it 
R

at
io

 (
%

)

Cache Policies

Read Write

Figure 2.11: Cache Hit Ratios of Trace mds with Cache Size of 16K Pages. The read
cache hit ratio and the write cache hit are separated.

configurations: by an average of 1.9% (mds), 0.08% (wdev), 3.9% (web), 2.3% (fio fipf),

0.7% (fio pareto), and 0.7% (file server) respectively.

As the cache size increases (e.g., 16K pages to 64K pages), the performance discrep-

ancy among each scheme increases. Especially, H-ARC significantly reduces SSD write

traffic. For example, in fio zipf and fio pareto workloads, H-ARC with a cache size of

128K pages generates no write traffic (i.e., zero write page count), which implies all

dirty pages are kept in the cache and no dirty page is consequently evicted. Please note

we omit the plots with 128K pages memory size in fio zipf and pareto worklods for plot

space efficiency.

For the three write intensive traces (mds, wdev, and web), with cache size of 16K

pages, for instance, H-ARC shows better performance than other schemes by an average

of 73.8% (LRU), 74.4% (CFLRU), 80.8% (ARC), and 76.2% (LRU-WSR) respectively.

For the three read intensive traces (fio zipf, fio pareto, and file server), with cache size

of 32K pages, for another example, the proposed scheme decreases storage write traffics

by an average of 80.9% (LRU), 82.8% (CFLRU), 83.7% (ARC), and 87.1% (LRU-WSR)

respectively.

(2) Cache hit ratio

This paper considers both reads and writes for cache hit ratio. Figure 2.10 presents

cache hit ratios of each scheme. For reference, MIN algorithm [68] is added. MIN is an

optimal offline cache policy and discards a victim page that will not be referenced for

the longest time in the future. Since looking all future references ahead is impossible,



33

 0

 5

 10

 15

 20

 25

 30

 35

 40

MIN LRU CFLRULRU-WSR ARC H-ARC

C
ac

he
 H

it 
R

at
io

 (
%

)

Cache Policies

Read Write

Figure 2.12: Cache Hit ratios of Trace fio zipf under Cache Size of 32K Pages. The read
cache hit ratio and the write cache hit are separated.

MIN algorithm is not practical. However, it can provide the highest theoretical cache

hit ratio as an optimal offline policy. For better understanding, to magnify performance

effect, Figure 2.10 (a), (b), and (c) do not begin with 0 at Y-axis. As in Figure 2.10, both

H-ARC and ARC achieve the highest cache hit ratios. Unlike other cache policies that

only consider recency information, both H-ARC and ARC consider both frequency and

recency factors. Consequently, they can detect hot pages and cold pages more effectively.

For LRU, CFLRU, and LRU-WSR, their cache hit ratios are almost identical because

they are all fundamentally based on LRU which only considers recency.

Interestingly, in some cases, the proposed H-ARC achieves higher cache hit ratios

than ARC whose main goal is cache hit ratio maximization, not write traffic reduction.

To investigate this, we chose one write intensive workload (i.e., mds with 16K pages)

and made a deeper analysis. Figure 2.11 splits the total cache hit ratio into read and

write cache hit ratio in detail. Although H-ARC shows slightly lower read cache hit

ratio than ARC (2.0% vs. 2.2%), its write cache hit ratio is higher than ARC (54.6%

vs. 50.4%). Consequently, overall cache hit ratio of H-ARC is higher than ARC. On the

other hand, for read intensive workload (e.g., fio zipf), overall cache hit ratio of ARC

is higher than H-ARC because fio zipf workload is read intensive and ARC can achieve

higher read cache hit ratio than H-ARC as shown in Figure 2.12 (12.4% vs. 11.4%)



34

2.6 Conclusion

This paper proposed two novel cooperative buffer cache schemes in different layers (host-

side and SSD-side) for computer systems utilizing Non-Volatile Memories (NVRAM) for

the purpose of SSD write traffic reduction. The main goal of the proposed design is

to extend SSD lifetimes by reducing total SSD write traffic. To meet the goal, we

first propose a novel host-side buffer cache mechanism named Hierarchical Adaptive

Replacement Cache (H-ARC). Unlike existing DRAM-based schemes whose main goal

is to improve cache hit ratios , H-ARC focuses on write traffic reduction as well as

cache hit ratio improvement, thereby considering four factors: dirty, clean, recency, and

frequency. Moreover, H-ARC dynamic features enable H-ARC to effectively adapt to

various workloads.

In addition to the proposed main buffer cache mechanism, we propose an interal

SSD write buffer scheme named WRB. WRB reduced Flash block erasures and write

traffic by exploiting temporal locality and spatial locality. WRB first selected a victim

with the highest block utilization and, only if the page count is over than a predefined

threshold, it evicted the block with highest block utilization. Otherwise, it evicted a

block on the basis of a block-level LRU policy.

To our knowledge, this comprehensive design for SSD lifetime extension is the first

work to simultaneously address both layer. These two cooperative write buffer cache

mechanisms can provide a holistic view of SSD write traffic reduction for NVRAM-based

computer systems. Thus, for fair comparison, we implemented several comprehensive

designs by selecting representative schemes in each layer and combining them. Exper-

imental results with various workloads demonstrated that the proposed design showed

significantly better performance, thereby reducing SSD write traffic by up to 3×.



Chapter 3

An NVRAM-based Buffer Cache

Policy for HDDs

3.1 Introduction

Dynamic random-access memory (DRAM) is the most common technology used for

caching purposes. It is widely deployed in small devices such as laptops, cameras,

cellular phones as well as in large disk arrays. Despite DRAM’s advantages of high

endurance and fast read/write access speed, due to its volatile nature, DRAM suffers

from data loss in the event of power failures or system crashes.

In the last several years, new types of non-volatile memory, such as phase change

memory (PCM), Memristor and STT-MRAM, have rapidly developed into possible

candidates for main memory in future computer systems. The emerging non-volatile

memory technologies may offer other advantages in addition to their non-volatile nature.

For examples, Memristor and PCM can achieve higher density, while Memristor [69] and

STT-MRAM [70] can provide faster read accesses and consume less energy [71] [72].

A typical computer system consists of one or several multi-core CPUs, DRAM as

main memory and hard disk drives (HDDs) as storage. Figure 3.1 shows a promising

system architecture that replaces DRAM with NVRAM as main memory [73]. With

NVRAM as main memory, dirty pages in the buffer cache can be retrievable after power

failures or system crashes. As a result, the frequency of dirty page synchronization from

the buffer cache to storage can be cut down dramatically without jeopardizing data

35



36

consistency [9].

Today HDDs are still the most common storage devices despite the rapid evolution

and expansion of solid state drives. As spinning devices, HDDs’ sequential access speed

for both read and write (on the order of 100MB/s) is orders of magnitude faster than

random access speed (roughly 1MB/s) [8]. The slow random access speed is always a

bottleneck constraining HDDs’ I/O performance. In order to solve the slow random

write problem, two major approaches can be followed: (1) decreasing storage write traf-

fic, and (2) changing random write I/Os to sequential write I/Os. For the first approach,

using NVRAM as main memory gives us opportunities to delay writes to storage. Using

this delayed write property, many buffer cache polices have been designed for SSDs to

increase their lifespan [9] [10]. Our evaluation results show that minimizing storage

writes alone will not significantly improve performance. For the second approach, sev-

eral buffer cache polices try to group many random writes to fewer sequential writes

before issuing them to storage [11] [12]. However, these cache policies are designed for

write buffers and deal with dirty pages only. In this chapter, we develop a buffer cache

policy dealing with both clean pages and dirty pages since our NVRAM will work as

main memory.

To solve the aforementioned HDDs’ random access problem, we present a novel

NVRAM based buffer cache policy, termed I/O-Cache. I/O-Cache dynamically sepa-

rates the whole buffer cache into a clean cache caching all the clean pages and a dirty

cache caching all the dirty pages. To decrease storage writes, we prioritize the dirty

cache more than the clean cache when dynamically resizing these caches. The dynamic

separation enables our cache policy to suit various workloads: read intensive or write

intensive. To improve storage performance when evicting from the dirty cache, instead

of only synchronizing and evicting a single dirty page, I/O-Cache will try to synchro-

nize the longest set of consecutive dirty pages (according to their page numbers) as long

as the length of this longest set of consecutive dirty pages is above a threshold (e.g.,

10). Then one of the pages will be evicted and the rest will be migrated to the clean

cache. If the length of the longest set of consecutive dirty pages is below the threshold,

I/O-Cache will synchronize and evict the least recently used dirty page. The threshold

is very necessary; without it, always choosing the longest set of consecutive dirty pages

from the dirty cache will lead to a low cache hit ratio and bad storage performance.



37

14 Center for Research in 
Intelligent Storage Confidential:  CRIS Member Companies Only 

CPU 

Non-volatile 

Memory 

 

Hard Disk 

Drive 

Main Memory 

Storage 

Figure 3.1: System Architecture

When evicting from the clean cache, I/O-Cache will always choose the least recently

used page. We evaluate our proposed schemes with various traces. The experimental

results show that I/O-Cache shortens I/O completion time, decreases write I/Os, and

improves the cache hit ratio compared with existing cache policies.

The structure of this chapter is as follows. In the next section we describe the related

work about cache policies. Section 3.3 gives a detailed description of our proposed buffer

cache policy along with some discussion about system crash recovery. In Section 3.4, we

evaluate the effectiveness of I/O-Cache and discuss the experimental results. Finally,

Section 3.5 provides our conclusions.

3.2 Related Work

Buffer cache policies can be categorized into two types: storage independent cache

policies that try to maximize the cache hit ratio and storage dependent cache policies

that try to improve system performance based on the type of storage devices.

For the first category, storage independent cache policies, Belady’s optimal page

replacement policy leads to the highest cache hit ratio [74]. This algorithm always

discards pages that will not be needed for the longest time into the future. However, due

to the impossibility of predicting an infinite future access pattern, Belady’s algorithm



38

can never be fully implemented. Many proposed cache policies try to increase their

cache hit ratio towards Belady’s theoretical optimal hit ratio.

Recency and frequency are two major parameters to help predict a page’s future

access pattern. The most well-known cache policy depending on recency is the Least

Recently Used (LRU) algorithm, which always evicts the least recently used page. LRU

takes advantage of recency but overlooks frequency. On the other hand, the Least

Frequently Used (LFU) algorithm only depends on frequency, which keeps counting

how many times a page has been accessed and evicts the page with the lowest access

count [75]. Many policies combine frequency and recency together to take advantage of

both methods. For example, Adaptive Replacement Cache (ARC ) [76] splits the whole

cache into two smaller real caches: a recency cache storing pages being accessed once

recently and a frequency cache storing pages being accessed at least twice recently. In

addition, two ghost caches are maintained, one for each real cache. A ghost cache is

a data structure storing only the metadata of recently evicted pages. As a learning

process, each real cache can grow or shrink along with the workload’s tendency to

recency or frequency based on the ghost cache hits.

The second category, storage dependent cache policies, can be further split into

DRAM based, NVRAM based, HDD based and SSD based policies. For DRAM based

policies, due to its volatile nature, in the current Linux operating system, background

threads called “pdflush” automatically synchronize dirty pages periodically to prevent

data loss [77]. To evaluate the impact of this auto synchronization mechanism, we create

a buffer cache policy, named LRU-DRAM, that utilizes basic LRU policy and forces

each dirty page to flush back every thirty seconds (default configuration for pdflush).

With DRAM as main memory, it is difficult to optimize storage writes since dirty pages

are forced to write back, but some work has been done by exploiting storage reads.

Jiang et al. propose a cache policy named DUal LOcality (DULO) taking advantage

of HDDs’ fast sequential read speed and prefetching mechanism to increase system

throughput [78].

NVRAM based cache policies are usually co-designed with either HDDs or SSDs

as storage. With NVRAM as main memory and SSDs as storage, to mitigate SSDs’

wear-out problem and extend their lifespan, many cache policies have been designed to

minimize storage writes by delaying dirty page eviction from NVRAM. For example,



39

Park et al. propose a Clean First LRU (CFLRU ) algorithm which splits the whole cache

into a working region and a clean-first region [10]. The clean-first region is one portion

of the cache near the end of the LRU position. Clean pages will be evicted first from

the clean-first region following an LRU order. Dirty pages will be evicted if no clean

page is left in the clean-first region. Qiu et al. propose a cache policy in NVMFS [9]

which splits the whole cache into two smaller caches: a dirty page cache and a clean

page cache. Each cache will enlarge or shrink based on page hits. Jung et al. enhanced

the LRU algorithm with an add-on page replacement strategy, called Write Sequence

Reordering (LRU-WSR) [79]. To decrease write traffic, they give dirty pages a second

chance by adding a bit to each dirty page to denote whether it is a hot page or a cold

page. Initially, they assume all the dirty pages are hot. If the current eviction candidate

is dirty and hot, they mark it as a cold page and migrate it to the most recently used

(MRU) position. If the current eviction candidate is dirty and cold, or it is clean, it

gets evicted right away. If a cache hit happens to a cold dirty page, it will upgrade to

a hot page and move to the MRU position.

Beyond NVRAM as main memory, NVRAM can also work as a write buffer. As a

dedicated write buffer, no page from read requests are cached. For an example of using

a buffer to decrease flash page writes, Jo et al. propose Flash Aware Buffer management

(FAB). This approach clusters pages in the same block and evicts the pages in a block

with the largest number of pages [80]. If there is a tie, it will evict the largest recently

used cluster. Kang et al. propose a Coldest and Largest Cluster (CLC ) algorithm which

combines FAB and LRU. CLC maintains two lists of clustered pages (sequential pages):

(1) the size-independent cluster list sorted in the LRU fashion to explore temporal

locality for hot clusters; (2) the size-dependent cluster list sorted by cluster size to

explore spatial locality for cold clusters [81]. Initially, CLC inserts pages in the size-

independent list. When the size-independent list is full, CLC moves clusters from the

LRU position of the size-independent list to the size-dependent list. When the size-

dependent list is full, CLC evicts the largest cluster from its tail. Wu et al. propose a

Block-Page Adaptive Cache (BPAC ) to improve upon the CLC approach [82]. BPAC ’s

difference is that it adaptively adjusts the size of each list based on the workload.

With NVRAM as a write buffer for disk arrays, some cache policies try to shift

random storage writes into sequential storage writes. For example, Gill et al. propose



40

two cache policies, Wise Ordering for Writes (WOW ) [11] and Spatially and Tempo-

rally Optimized Write (STOW) [12], that change the order of cached dirty pages from a

strictly CLOCK order to a monotonic CLOCK order to increase HDDs’ write through-

put. Their work is different from ours in that our work will address both clean pages

and dirty pages instead of only dirty pages.

3.3 Our Proposed Approach: I/O-Cache

3.3.1 Approach Overview

To improve HDDs’ I/O performance and increase cache hit ratio for system performance,

we present I/O-Cache. I/O-Cache dynamically separates the whole buffer cache into a

clean real cache storing all the clean pages and a dirty real cache storing all the dirty

pages. To decrease storage writes, we prioritize the dirty real cache more than the clean

real cache during dynamic cache resizing. The dynamic separation enable our cache

policy to suit both read intensive and write intensive workloads. Two ghost caches are

maintained, one for each real cache, to assist with the process of adaptively changing

its size. A ghost cache only stores the page number (metadata) of recently evicted

pages from its corresponding real cache. The size of each cache is the number of pages

stored in it. Physically, the real caches are of a larger capacity than the ghost caches

because real caches store actual data, but when we are discussing cache size we mean

the number of page entries. If we define the maximum real cache size to be L pages,

then the sum of the two real caches (one dirty and one clean) can never be larger than

L pages, and the total number of pages maintained in the two real caches (storing data

and metadata) and two ghost caches (storing only metadata) can never be larger than

2 ∗ L page entries.

To improve storage performance, when evicting from the dirty cache, instead of

only flushing and evicting a single page, I/O-Cache will try to flush the longest set of

consecutive dirty pages (according to page number) as long as the length of this set is

above a threshold (e.g., 10). Then one page will be evicted and the rest of the pages will

be migrated to the clean cache. If the length of the longest set of consecutive dirty pages

is below the threshold, I/O-Cache will flush and evict the least recently used dirty page.

When evicting from the clean cache, I/O-Cache will always choose the least recently



41

used page.

Initially, all the real caches and ghost caches are empty. For every read or write

request r from the workload, one and only one of the three cases will happen:

• Real cache hit.

• Real cache miss, but ghost cache hit.

• Both real and ghost cache misses.

Our cache name notation follows these intuitions: D means dirty, C means clean, sub-

script i means the cached pages are real pages with both data and metadata, and

subscript o means the cached pages are ghost pages with only metadata.

3.3.2 Real Cache Hit

If a page request r is a read request and a cache hit in Ci, this page remains to be a

clean page, so we migrate it from its original location to the most recently used (MRU)

position of Ci. Similarly, if the request r is a read request and a cache hit in Di, this

page remains to be a dirty page, so we migrate it from its original location to the MRU

position of Di.

If the request r is a write request and a cache hit in Ci, this page changes from

a clean page to a dirty page, so we migrate it from its original location to the MRU

position of Di. Since a new page is inserted into Di, we need to update our unique data

structure: sequential list. We will explain why we need this data structure and how it

is updated in the following sections. If the request r is a write request and a cache hit

in Di, this page remains to be a dirty page, so we migrate it from its original location

to the MRU position of Di.

3.3.3 Real Cache Miss, Ghost Cache Hit

For the real cache miss and ghost cache hit case, three steps will happen:

• Adjustment of the desired sizes of the real caches in order to capture the current

workload’s tendency to writes versus reads.



42

• If the cache is full, a page will be evicted from a real cache such that all the real

caches sizes will be balanced towards their desired sizes.

• Insert the new page into its corresponding real cache.

First, we need to decide the desired size for Di, denoted as D̂i, and the desired size

for Ci, denoted as Ĉi. Here, we use an integer P to represent the size of Ĉi. Again,

we use L to denote the maximum real cache size in terms of page entries as used in

Section 3.3.1. Thus,

Ĉi = P (3.1)

D̂i = L− P (3.2)

If a ghost page hit happens in Co, it means previously we should not have evicted this

clean page out of the real cache. To remedy this, we will enlarge Ĉi. Every time there

is a ghost hit at Co, Ĉi (or P ) will be increased by one page. According to Equation

(3.2), D̂i will be decreased by the same amount. Note that P can never be larger than

L. The equation of P adjustment is shown below:

P = min{P + 1, L} (3.3)

On the other hand, if a ghost hit happens in Do, it means previously we should not

have evicted this dirty page out of the real cache. To remedy this, we will enlarge D̂i.

In order to save write traffic and keep dirty pages in the cache longer, rather than the

increment used with Ĉi, we enlarge D̂i much faster. If the size of Co is smaller than

Do, D̂i will be increased by two. If the size of Co is greater than or equal to Do, D̂i

will be increased by two times the quotient of the cache sizes of Co and Do. Thus, the

smaller the size of Do, the larger the increment. According to Equation (3.1), Ĉi will

be decreased by the same amount. Again, the combined size of Ci and Di can never be

larger than L, and P cannot be smaller than 0. The equation of P adjustment is shown

below:



43

P =

{
max{P − 2, 0} if |Co| < |Do|
max{P − 2 ∗ |Co|

|Do| , 0} if |Co| ≥ |Do|
(3.4)

After all the desired cache size adjustments, we call the Eviction & Balance (EB)

algorithm to evict a real page out if the real caches are full. Note that if the real caches

are not full, all the ghost caches will be empty since a ghost page will be generated only

after a real page eviction. The EB algorithm will be introduced in Section 3.3.5.

Finally, we will insert the page into the MRU position of Ci if it is a read request

or Di if it is a write request. If we insert the page to Di, the sequential list needs to be

updated accordingly. Lastly, the hit ghost page will be deleted.

3.3.4 Both Real and Ghost Cache Misses

The last case is when a request r misses in both real caches and ghost caches. When

the real caches are not full, we can simply insert the page into the MRU position of Ci

if r is a read request, or into the MRU position of Di if r is a write request. For the

case of dirty page insertion to Di, the sequential list needs to be updated accordingly.

When the real caches are full, we need to evict a real page out of cache to reclaim

space for the new page insertion. At the same time, we try to equalize the size of D and

C. The reason for this equalization is that we want to avoid “cache starvation.” “Cache

starvation” can happen in I/O-Cache if one real cache size and its corresponding ghost

cache size are both very large. Then, the other real cache size must be very small as

well as its corresponding ghost cache size. In this situation, the side with the smaller

ghost cache size has difficulty enlarging in a short duration, even if the current workload

favors it, since fewer ghost cache hits can happen.

To achieve the goal of equalization, we will check the size of C (i.e., the total number

of page entries in both the clean real cache and clean ghost cache combined). If the

size of C is greater than L, which means it already takes more than half of the total

available cache entries including both real and ghost caches (i.e., 2 ∗ L), then we will

evict from this side. Otherwise, we will evict from D.

When we actually perform an eviction from a region, e.g., C, we will evict the LRU

page in its ghost cache and call the EB algorithm to evict a real page. The reason for



44

Key Value

1 3

5 4

16 7

30 20

55 32

Key Value

1 3

5 4

16 7

30 20

(a) Dirty cache flushing and evic-
tion

Key Value

1 3

5 4

16 7

30 20

55 32

Key Value

1 3

5 4

16 7

30 20

55 32

100 1

(b) Dirty page insertion with page
number 100

Key Value

1 3

5 4

16 7

30 20

55 32

Key Value

1 3

5 4

15 8

30 20

55 32

(c) Dirty page insertion with page
number 15

Key Value

1 3

5 4

16 7

30 20

55 32

Key Value

1 3

5 4

16 8

30 20

55 32

(d) Dirty page insertion with page
number 23

Key Value

1 3

5 4

16 7

30 20

55 32

Key Value

1 8

16 7

30 20

55 32

(e) Dirty page insertion with page
number 4

Figure 3.2: Sequential list update operations. Key is the beginning page number of
consecutive dirty pages. Value is the length of the consecutive dirty pages.

evicting a ghost page out first is when the EB algorithm evicts a real page, this page

needs to be inserted into its corresponding ghost cache.

Finally, after a real page eviction, a free page slot is reclaimed and we can insert the

new page into the MRU position of Ci if r is a read request, or into the MRU position

of Di if r is a write request. If we insert the page to Di, the sequential list needs to be

updated accordingly.



45

3.3.5 Cache Eviction & Balance Algorithm

In the last two cases, a new page needs to be inserted into the real cache. In case the

real caches are full, we need to evict a page out of cache to reclaim space for this new

page. We design an Eviction & Balance (EB) algorithm to evict a real page and to

balance the real cache sizes towards their desired sizes. With the defined P , we can

easily calculate the desired size of Ci and Di though Equations (3.1) and (3.2). After

obtaining Ĉi and D̂i, we compare them with each real cache’s actual size. We will evict

from the real cache whose actual size is larger than its desired size.

Specifically, if the size of Ci is larger than or equal to Ĉi and the request r is in Do,

we will evict a page from Ci. Otherwise, we will evict a page from Di. When evicting

from Ci, we will evict the LRU page out from Ci and insert its page number into the

MRU position of Co. Contrary to evicting from Ci, when evicting from Di, we will first

try to synchronize the longest set of consecutive dirty pages in Di (with the help of the

sequential list), evict the leading page out (i.e., the page with smallest page number of

these synchronized pages) and migrate the rest of them to the LRU end of Ci. However,

to execute this series of operations, we have to make sure the length of the longest set

of consecutive dirty pages is above a given threshold (e.g., 10). If its length is below the

threshold, we will evict the LRU page out from Di. In either case, we will insert the

evicted page’s page number into the MRU position of Do. Since a dirty page is evicted

out of Di, we need to update the sequential list accordingly. The sequential list is a

data structure to accelerate the process of finding the longest set of consecutive dirty

pages (detail in Section 3.3.6).

As a comparison, a similar algorithm could evict from Di without using the afore-

mentioned threshold mechanism and flush the longest set of consecutive dirty pages all

the time. We call this cache policy Longest. Intuitively, Longest should outperform I/O-

Cache since Longest could “fully utilize” HDDs’ fast sequential write speed. However,

through evaluation, Longest leads to a low cache hit ratio and bad storage performance

as shown in Figure 3.3 and Figure 3.6. We will explain the reason in Section 3.4.



46

3.3.6 Sequential List

The sequential list is designed to accelerate identification of the longest set of consecutive

dirty pages in Di. The sequential list is a key-value store where each entry’s key is the

beginning page number of some consecutive dirty pages and its value is the length (i.e.,

a count) of those consecutive dirty pages. For example, dirty pages in Di with page

numbers 3, 4, 5, 6 will be stored as (3, 4) in the sequential list. Note that the sequential

list only introduces negligible space overhead compared with real buffer cache pages.

A dirty page insertion, a dirty page synchronization, or a consecutive dirty pages

synchronization will trigger sequential list updates. For a dirty page synchronization or

consecutive dirty pages synchronization, the corresponding entry containing that page

or those pages will be deleted. For a dirty page insertion, if the dirty page has no

consecutive neighbors in Di, a new entry is created and inserted to the sequential list. If

the dirty page is consecutive to one or some cached dirty pages, the corresponding entry

will be updated accordingly. Some examples of the sequential list update operations are

shown in Figure 3.2.

3.3.7 System Consistency and Crash Recovery

System crashes are inevitable, hence it is always an important issue in designing a

consistent system that can recover quickly. Since I/O-Cache may delay dirty page

synchronization, the chance of many dirty pages staying in the cache after system crashes

will be high. Here, we propose two simple solutions facing two different kinds of system

failures.

When facing system crashes or unexpected power failures, we have to reboot the

whole system. In order to make sure the system will be consistent, all the dirty pages

will be flushed back to storage through the following steps. The boot code needs to

be modified such that the page table will be well retained regardless of the crashes.

Then, identify all the cached dirty pages from the page table, and synchronize them to

the storage immediately. Finally, reinitialize the page table and continue the regular

booting process.

When facing hardware failures, the dirty pages in NVRAM may not be recoverable.

To mitigate the risk of losing data, we add a timer to each dirty page so that a dirty



47

page must be flushed back after a certain time elapses. For example, after a page is

updated for one hour, it will be forced to be written to the storage and become a clean

page.

3.4 Evaluation

In this section, we evaluate our proposed NVRAM based buffer cache policy along with

several existing policies as listed below (detailed policy descriptions can be found in

Section 3.2):

• LRU : Least Recently Used cache policy.

• LRU-DRAM : Mimicking DRAM based Least Recently Used cache policy with

dirty page synchronization every 30 seconds.

• CFLRU : Clean First LRU cache policy. 10% of the cache space near the LRU

position is allocated as the clean-first region, same configuration as used in [79].

• LRU-WSR: Least Recently Used-Writes Sequence Reordering cache policy.

• Longest : Our proposed comparison cache policy which always flushes longest set

of consecutive dirty pages from its dirty cache (detailed algorithm description can

be found in Section 3.3.5).

• I/O-Cache: Our proposed I/O-Cache cache policy with a threshold of 10 (empir-

ical number).

3.4.1 Experimental Setup

To evaluate our proposed buffer cache policy, we compare I/O-Cache with existing work

in terms of cache hit ratio, I/O completion time, storage write number in pages and

storage write number in I/Os. A high cache hit ratio not only improves the system

performance but also reduces storage writes to HDDs. With a similar cache hit ratio,

the number of I/Os and their sizes can greatly influence the total I/O completion time.

To acquire the cache hit ratio and storage write number in pages, we have implemented

I/O-Cache along with other comparison cache policies on the Sim-ideal, a multi-level



48

16
Center for Research in 
Intelligent Storage CRIS Confidential

webproxy

0

500000

1000000

1500000

2000000

2500000

1K 2K 4K 8K 16K 32K

IO
 C

o
m

p
le

ti
o

n
 T

im
e 

(M
S

)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(a) Web Proxy

4
Center for Research in 
Intelligent Storage CRIS Confidential

Rsrch

0

2000000

4000000

6000000

8000000

10000000

12000000

1K 2K 4K 8K 16K 32K

IO
 C

o
m

p
le

ti
o

n
 T

im
e 

(M
S

)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(b) rsrch 0

8
Center for Research in 
Intelligent Storage CRIS Confidential

src2

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

1K 2K 4K 8K 16K 32K

IO
 C

o
m

p
le

ti
o

n
 T

im
e 

(M
S

)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(c) src2 0

12
Center for Research in 
Intelligent Storage CRIS Confidential

wdev

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

1K 2K 4K 8K 16K 32K 64K

IO
 C

o
m

p
le

ti
o

n
 T

im
e 

(M
S

)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(d) wdev 0

Figure 3.3: I/O completion time including both storage reads and storage writes.

caching simulator. The Sim-ideal simulator is developed within our research group with

years of efforts and we have made it available here [83] to the public. The I/O completion

time and storage write number in I/Os are acquired from the DiskSim [84] simulator.

For the experiments, we configure the size of a memory page to be 4 KB. For DiskSim,

we use a Seagate Cheetah 15K.5 hard drive as the HDD model.

We use two types of traces for evaluation. The first type is MSR Cambridge traces

shared from SNIA [85] and provided by Narayanan et al. [86]. MSR Cambridge traces

consist of 36 volumes containing 179 disks from 13 Microsoft enterprise servers with

different purposes for one week. These traces are classified into 13 categories based on

server types. Each category consists of two or three traces. These traces represent data

accesses from a typical enterprise data center. For space efficiency, we show the results



49

14
Center for Research in 
Intelligent Storage CRIS Confidential

webproxy

0

10000

20000

30000

40000

50000

60000

70000

1K 2K 4K 8K 16K 32K

W
ri

te
 C

o
u

n
t 

(P
a

g
es

)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(a) Web Proxy

2
Center for Research in 
Intelligent Storage CRIS Confidential

Rsrch

0

500000

1000000

1500000

2000000

2500000

3000000

1K 2K 4K 8K 16K 32K

W
ri

te
 C

o
u

n
t 

(P
a

g
es

)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(b) rsrch 0

6
Center for Research in 
Intelligent Storage CRIS Confidential

src2

0

500000

1000000

1500000

2000000

2500000

1K 2K 4K 8K 16K 32K

W
ri

te
 C

o
u

n
t 

(P
a

g
es

)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(c) src2 0

10
Center for Research in 
Intelligent Storage CRIS Confidential

wdev

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1K 2K 4K 8K 16K 32K 64K

W
ri

te
 C

o
u

n
t 

(P
a

g
es

)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(d) wdev 0

Figure 3.4: Storage write count in pages.

of three traces, rsrch 0, src2 0 and wdev 0, since their results have similar patterns.

The second type of trace is a synthetic workload generated by a popular benchmark:

Filebench [87]. Since MSR Cambridge traces are block I/O traces that have been seen

by storage, in order to show the effect of traces that are seen by main memory, we have

to generate them ourselves. To achieve this goal, for Filebench, we enable the directI/O

option. DirectI/O enables the read/write requests to bypass main memory and go to

storage devices directly. Then we collect the traces using Linux blktrace. In this way,

even though we collect the traces from the storage layer, their actual access pattern is

close to accessing main memory. We select a popular model, Web Proxy, as the profile

for Filebench to generate our trace. Table 3.1 describes these traces in detail.



50

15
Center for Research in 
Intelligent Storage CRIS Confidential

webproxy

0

10000

20000

30000

40000

50000

60000

70000

1K 2K 4K 8K 16K 32K

W
ri

te
 C

o
u

n
t 

(I
O

s)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(a) Web Proxy

3
Center for Research in 
Intelligent Storage CRIS Confidential

Rsrch

0

500000

1000000

1500000

2000000

2500000

1K 2K 4K 8K 16K 32K

W
ri

te
 C

o
u

n
t 

(I
O

s)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(b) rsrch 0

7
Center for Research in 
Intelligent Storage CRIS Confidential

src2

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1K 2K 4K 8K 16K 32K

W
ri

te
 C

o
u

n
t 

(I
O

s)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(c) src2 0

11
Center for Research in 
Intelligent Storage CRIS Confidential

wdev

0

200000

400000

600000

800000

1000000

1200000

1400000

1K 2K 4K 8K 16K 32K 64K

W
ri

te
 C

o
u

n
t 

(I
O

s)

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(d) wdev 0

Figure 3.5: Storage write count in I/Os.

3.4.2 System I/O Performance

In order to capture total I/O completion time including both storage reads and writes,

we need to get storage I/O traces (called TO) for DiskSim from the input traces (called

TI) that feed into Sim-ideal. We will describe how to generate TO from TI in the

following paragraphs. Each I/O request in TI includes a request type (read or write),

logical block address (LBA), size of the request, and timestamp of the request being

generated. Similar attributes are used to describe each I/O request in TO.

For LRU-DRAM policy, two conditions can trigger storage writes: periodical dirty

page synchronization and dirty page eviction. For each trace, TI , we use the first entry’s

timestamp in TI as the initial time. Cached dirty pages will be flushed to storage no



51

13
Center for Research in 
Intelligent Storage CRIS Confidential

webproxy

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1K 2K 4K 8K 16K 32K

C
a

ch
e 

H
it

 R
a

ti
o

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(a) Web Proxy

1
Center for Research in 
Intelligent Storage CRIS Confidential

Rsrch

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1K 2K 4K 8K 16K 32K

C
a

ch
e 

H
it

 R
a

ti
o

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(b) rsrch 0

5
Center for Research in 
Intelligent Storage CRIS Confidential

src2

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1K 2K 4K 8K 16K 32K

C
a

ch
e 

H
it

 R
a

ti
o

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(c) src2 0

9
Center for Research in 
Intelligent Storage CRIS Confidential

wdev

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1K 2K 4K 8K 16K 32K 64K

C
a

ch
e 

H
it

 R
a

ti
o

Cache Size (Pages)

LRU LRU-DRAM CFLRU LRU-WSR Longest I/O-CACHE

(d) wdev 0

Figure 3.6: Cache hit ratio of both reads and writes.

longer than thirty seconds after they become dirty. These storage writes are set with

the timestamp as the time being flushed and they are included in TO. Meanwhile, if a

page insertion triggers a dirty page eviction at time t, the evicted dirty page needs to

be written to storage with a new timestamp t, and this I/O request becomes part of TO.

For all the other policies, pages will only be synchronized during dirty page eviction.

Similarly, if a new page insertion triggers a dirty page (or a sequence of consecutive dirty

pages) synchronization at time t, this will create a new storage write with timestamp t

in TO. For storage reads, whenever a buffer cache miss happens, a storage read request

will be inserted into TO with the timestamp of the requested page.

After all the entries from TI have been processed and a complete trace of TO is

created, we feed TO to DiskSim to calculate the total I/O completion time. The total



52

I/O completion time is calculated as total time of run minus total disk idle time.

Figures 3.3 shows I/O completion time for different buffer cache policies under var-

ious cache sizes and traces. The x axis denotes the cache size in pages. The y axis

denotes the I/O completion time in milliseconds. Across four traces, one observation

is that for each policy, the bigger the cache size, the shorter the I/O completion time.

For example, in trace Web Proxy as shown in Figure 3.3(a), the I/O completion time

of I/O-Cache under a cache size of 32K pages is only 9.08% of that under a cache size

of 1K pages; the I/O completion time of LRU under a cache size of 32K pages is only

13.77% of that under a cache size of 1K pages. For LRU, LRU-DRAM, CFLRU and

LRU-WSR, the reason is two-fold: (1) with a larger cache size, pages can be held in

the cache for a longer time before eviction; (2) with a larger cache size, better page

eviction choices can be made to increase the cache hit ratio and decrease the storage

I/Os. For I/O-Cache, a third reason for this improved performance is a larger cache

size gives higher chances that longer sets of consecutive dirty pages can be flushed to

exploit HDDs’ fast sequential access speed. For Longest, we will discuss its “bipolar”

performance later.

Another observation is that I/O-Cache shortens I/O completion time significantly

compared with other policies. For trace rsrch 0, I/O-Cache shortens I/O completion

time to 74.3%, 73.4%, 73.8%, 74.3%, and 51.4% on average, and up to 49.1%, 49.9%,

49.3%, 49.3%, and 25.7% compared with LRU, LRU-DRAM, CFLRU, LRU-WSR, and

Longest, respectively. For trace wdev 0, I/O-Cache shortens I/O completion time to

78.3%, 69.8%, 78.2%, 78.5%, and 70.4% on average, and up to 56.1%, 52.7%, 56.2%,

56.3%, and 31.8% compared with LRU, LRU-DRAM, CFLRU, LRU-WSR, and Longest,

respectively.

To discover the reason why I/O-Cache can improve storage performance dramati-

cally, we plot two additional experimental results: storage write count in I/Os as shown

Table 3.1: Trace Characteristics
Trace Name Total Requests Unique Pages Read/Write Ratio

Web Proxy 795,462 76,915 1:0.09
rsrch 0 3,044,209 87,601 1:10.1
src2 0 2,881,834 178,582 1:7.30
wdev 0 2,368,194 128,870 1:3.73



53

in Figure 3.5 and storage write count in pages as shown in Figure 3.4. From Figure 3.4,

we can see that LRU-DRAM and Longest generate many more storage writes. For LRU-

DRAM, the reason is the periodical dirty page synchronization. For Longest, the reason

is a low cache hit ratio, which will be shown in Figure 3.6. Figure 3.4 also shows that

I/O-Cache, LRU, CFLRU, and LRU-WSR have mostly overlapping page write counts.

This indicates I/O-Cache’s great storage performance does not come from merely re-

ducing storage page writes. Figure 3.5 shows that I/O-Cache decreases storage write

I/Os dramatically. This demonstrates that I/O-Cache can successfully regroup many

short random write I/Os into fewer sequential write I/Os, which HDDs can finish much

faster.

3.4.3 Cache Hit Ratio

Cache hit ratios (in percentages) are total hit ratios including both read and write. The

cache hit ratios of these policies are shown in Figure 3.6. Obviously, with a larger cache

size, each cache policy achieves a higher cache hit ratio. For all four traces I/O-Cache

achieves the highest average cache hit ratio. In some cases, for example the Web Proxy

trace with a cache size of 8K pages, I/O-Cache can increase the cache hit ratio as

significantly as 13.21% compared with LRU.

Longest has a very low cache hit ratio. Longest always flushes the longest set of

consecutive dirty pages from the dirty cache, which leads to an inevitable situation

where there are no more consecutive dirty pages. We call the beginning of this situation

“bad time.” Following this state, if a newly inserted dirty page is consecutive with an

existing dirty page, they will become the longest set of consecutive dirty pages. Per the

policy, they will be the next to be flushed and one of them will be evicted. However,

the newly inserted dirty page is fairly hot and should not be evicted so early. To solve

this problem, I/O-Cache utilizes a threshold as mentioned in Section 3.3.5. Referring

back to Longest ’s storage performance as shown in Figure 3.3, it performs quite poorly

when the cache size is small. This is because the cache cannot accumulate too many

consecutive dirty pages before reaching “bad time.” When the cache size becomes larger,

we find that Longest can perform comparably with the others since “bad time” has not

yet been reached.

The reason that I/O-Cache’s cache hit ratio is higher than LRU ’s is due a “cache



54

de-pollution” effect. The buffer cache tends to be polluted by long sequential accesses,

such as file copying and system scanning, which might be only accessed once for a

long period of time and have poor temporal locality. Keeping this kind of pages in

the cache might end up evicting more valuable pages. As a result, the cache hit ratio

will drop. Our proposed method, by flushing long sets of consecutive dirty pages and

migrating them to the LRU end of the clean cache for future eviction, provides more

opportunities to cache random pages longer. Similarly, Yang et al. propose a cache

policy that excludes very long sets of sequential pages from being accepted into the

cache. Their approach actually prevents cache pollution in the first place and increases

cache hit ratio [88]. Note that Yang’s policy does not contradict with ours, since cached

short sets of consecutive pages can be accumulated into long sets of consecutive pages.

Our experiments show that this regrouping does happen.

3.5 Conclusion

In this chapter, we have presented a novel non-volatile memory based buffer cache policy,

I/O-Cache. Our approach uses NVRAM to cache dirty pages longer than traditional

DRAM caches, and it regroups and synchronizes long sets of consecutive dirty pages to

take advantage of HDDs’ fast sequential access speed. Additionally, to decrease storage

writes, I/O-Cache can dynamically split the whole cache into a dirty cache and a clean

cache according to the workload’s tendency for read or write requests. The performance

of I/O-Cache is evaluated with various traces. The results show that our proposed cache

policy shortens I/O completion time, decreases I/O traffic, and increases the cache hit

ratio compared with existing work.



Chapter 4

A Cooperative Hybrid Caching

System for Storage Arrays

4.1 Introduction

Due to the rapidly evolving non-volatile memory (NVRAM) technologies such as 3D

XPoint [56], NVDIMM [43], and STT-MRAM [54], hybrid memory systems that utilize

both NVRAM and DRAM technologies have become promising alternatives to DRAM-

only memory systems [89].

Storage systems can also benefit from these new hybrid memory systems. As an

example, Figure 4.1 shows the storage systems can be a storage server, storage controller,

or any part of a data storage system that contains a hybrid memory cache. Storage

systems typically rely on DRAM as a read cache due to its short access latency. To

hide lengthy I/O times, reduce write traffic to slower disk storage, and avoid data loss,

storage system write buffers can use NVRAM.

Buffer cache policies have been studied for decades. They mostly examine main

memory buffer cache strategies, e.g., LRU [90], ARC [30], and CLOCK-DWF [91]. Mul-

tilevel buffer cache studies focus on read performance, e.g., MQ [92] and Karma [93],

or separately managed NVRAM as write buffers and DRAM as read caches, e.g., Ne-

tApp ONTAP caching software [94]. However, cooperative hybrid buffer cache policies

that combine newer NVRAM technologies with DRAM targeted specifically for storage

systems have not been well studied.

55



56

Application

OS

Buffer/Cache

Storage Area 
Network (SAN)

DRAM NVRAM

Application, web or 
database servers

Application

OS

Buffer/Cache

Application

OS

Buffer/Cache

… …

Hibachi Cache

Figure 4.1: Overall System Architecture

To gain hybrid buffer cache design insights, we make an elaborate study of storage

system I/O workloads. These storage system level I/O workloads are very different

from server-side I/O workloads due to server-side buffer/cache effects. We evaluate and

analyze the impact of different NVRAM sizes, access latencies, and cache design choices

on storage performance. Based on these key observations, we propose a novel coopera-

tive HybrId NVRAM and DRAM Buffer cACHe polIcy for storage disk arrays, named

Hibachi. Hibachi transcends conventional buffer cache policies by 1) distinguishing read

cache hits from write cache hits to improve both read and write hit rates; 2) learning

workload tendencies to adjust the page caching priorities dynamically to shorten page

access latencies; 3) regrouping cached dirty pages to transform random writes to se-

quential writes to maximize I/O throughput; and 4) using accurate and low-overhead

page reuse prediction metrics customized for storage system workloads.

We evaluate Hibachi with real block I/O traces [65, 85] on both simulators and disk

arrays. Compared to traditional buffer cache policies, Hibachi substantially improves

both read and write performance under various storage server I/O workloads: up to



57

1 4 16 64 256 1K 4K 32K
0

20000

40000

60000

80000

100000

Temporal Distance

N
um

be
r 

of
 A

cc
es

se
s

(a) web 0 read after read

1 4 16 64 256 1K 4K 32K
0

50000

100000

150000

200000

250000

Temporal Distance

N
um

be
r 

of
 A

cc
es

se
s

(b) web 0 write after write

1 4 16 64 256 1K 4K 32K
0

3000

6000

9000

12000

15000

Temporal Distance

N
um

be
r 

of
 A

cc
es

se
s

(c) web 0 read after write

1 4 16 64 256 1K 4K 32K
0

40000

80000

120000

160000

200000

Temporal Distance

N
um

be
r 

of
 A

cc
es

se
s

(d) web 0 write after read

Figure 4.2: Temporal distance histograms of a storage server I/O workload. Four figures
represent temporal distance in terms of a read request after the same read request, write
after write, read after write, and write after read.

a 4× read hit rate improvement, up to an 8.4% write hit rate improvement, and up

to a 10× write throughput improvement. We believe our work shows the potential of

designing better storage system hybrid buffer cache policies and motivates future work

in this area.

The structure of this chapter is as follows. Section 4.2 provides our observations

on storage system workload studies. Section 4.3 discusses the impact of NVRAM on

cache performance and cache design choices. Section 4.4 gives a detailed description

of our proposed cooperative hybrid buffer cache policy followed by an evaluation in

Section 4.5. In Section 4.6, we present some related work about NVRAM and caching

policies. Finally, Section 4.7 concludes our work.



58

1 4 16 64 256 1K 4K 16K 64K
0

20

40

60

80

100

Frequency

Percentage of blocks Percentage of accesses

(a) web 0 read and write

1 2 4 8 32 128 512 2K 8K
0

20

40

60

80

100

Frequency

Percentage of blocks Percentage of accesses

(b) web 0 read only

1 4 16 64 256 1K 4K 16K 64K
0

20

40

60

80

100

Frequency

Percentage of blocks Percentage of accesses

(c) web 0 write only

Figure 4.3: Access and block distributions for various frequencies. Three figures show
frequency in terms of combined read and write requests, read requests only, and write
requests only. For a given frequency, the blocks curve shows the percentage of the total
number of blocks that are accessed at least that many times, and the accesses curve
shows the percentage of the total number of accesses that are to blocks accessed at least
that many times.

4.2 Storage System Workload Properties

Storage system workloads are very different from server-side workloads. Zhou et al. [92]

claimed temporal locality (recency) is notably poor in storage level (second level) work-

loads since the server-side buffer caches filter out the majority of recent same data

requests. At the storage system level, frequency, which is the total number of times the

same data is accessed over a longer period, can more accurately predict a page’s reuse

probability.

This work simultaneously considers both the read cache and write buffer by expand-

ing prior workload characterization work to examine both read access patterns and

write access patterns instead of only focusing on read patterns. The temporal distance

is measured as the number of unique page or block requests between one request and the



59

same request in the future. We examine temporal distances in terms of a read request

after the same read request, a write after write, a read after write, and a write after

read of the same data. Frequency, a different measurement, shows whether a majority

of accesses are concentrated within a small portion of blocks (which are ideal pages

to buffer) in terms of combined read and write requests, read requests only, and write

requests only. The detailed temporal distance and frequency calculation method can be

found in Zhou’s work [92].

Though we analyze many traces, we choose one representative, web 0, from the

MSR Traces to demonstrate our findings (other traces show similar patterns). web 0

is a one-week block I/O trace captured from a Microsoft enterprise web server [65, 85].

Figure 4.2 presents our workload analysis results for temporal distance. Figure 4.3

presents our workload analysis results for frequency. The majority of read after read

accesses (Figure 4.2(a)) have a large distance, which means poor temporal locality or

recency. However, in contrast to previous work that used different traces, we found that

a large number of write after write temporal distances (Figure 4.2(b)) are short, which

shows strong recency (likely due to the server-side forced synchronization). For read

after write (Figure 4.2(c)) and write after read (Figure 4.2(d)), recency properties are

no better than read after read. Note that the total number of read after write requests

is very small compared to the other types of requests.

For frequency of mixed read and write (Figure 4.3(a)), read only (Figure 4.3(b)), and

write only (Figure 4.3(c)), the wide areas between the two percentage curves indicate

that most accesses are concentrated within a few blocks. This implies both read and

write requests show good frequency and can be optimized with an appropriate caching

policy.

4.3 Insight and Discussion

Because of their non-volatility, NVRAM write buffers can minimize write traffic by

reducing and delaying dirty page synchronization. To demonstrate their effectiveness of

write traffic reduction compared to a DRAM-only buffer cache, we conduct some simple

experiments. As a baseline, we consider a fixed-size, DRAM-only buffer cache that

periodically flushes dirty pages to persistent storage (disk) similar to Linux’s “pdflush”



60

Rsrch write deduction

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 4MB 8MB 16MB 32MB 64MB 128MB 256MB

N
or
m
al
ize

d 
W
rit
e 
Ra

te

NVRAM Size

DRAM Size = 256 MB

Figure 4.4: NVRAM impact on storage write traffic.

threads functionality. Next, we add different amounts of NVRAM to work with the

DRAM. For simplicity and a fair comparison, both NVRAM and DRAM adopt the

LRU replacement policy. NVRAM caches dirty pages which are evicted only when the

NVRAM’s capacity is reached. Figure 4.4 shows one example of our experiments with

the MSR rsrch 0 trace. Compared to the DRAM-only buffer cache, adding NVRAM

that is as little as 1.56% of the amount of DRAM can reduce write traffic by 55.3%.

This huge impact is mostly caused by strong write request recency in the storage server

I/O workload.

Currently, the access latency of most NVRAM technologies is several times longer

than DRAM’s. When NVRAM is used to buffer dirty pages, a read hit on a dirty

page needs to access NVRAM. This is slower than reading the page from DRAM. This

leads to a question about the trade-off between page migration and page replication

policies. If we choose a page replication mechanism, a read hit in NVRAM could

trigger a page copy from NVRAM to DRAM. We could gain read performance if the

page is later accessed multiple times. But if not, one page of cache space in DRAM is

wasted. On the other hand, if we choose page migration (which means a single page

can never exist in both NVRAM and DRAM), no space is wasted, but there is a risk

of longer average read access latency if there are updates between reads that bring the

page back to NVRAM. We execute another experiment to compare page migration vs.

page replication performance. For storage server I/O workloads, we found that page



61

replication causes a lower cache hit ratio and does not improve read performance. As

Section 4.5.2 will show, this result is because read hits occur mostly in DRAM and

rarely in NVRAM. Therefore, we choose page migration for our storage system buffer

cache design.

4.4 Hibachi: A Hybrid Buffer Cache

Due to the different performance characteristics of NVRAM and DRAM, Hibachi utilizes

DRAM as a read cache for clean pages and NVRAM mostly as a write buffer for dirty

pages. However, our four main design factors (described in Section 4.4.2 through 4.4.5)

significantly improve Hibachi.

4.4.1 Architecture

Figure 4.5 presents our proposed Hibachi architecture. Hibachi largely consists of two

real caches and two ghost caches. The clean cache manages all the clean pages in

DRAM and NVRAM (possibly), and the dirty cache keeps track of all the dirty pages

in NVRAM. The ratio between the clean cache and the dirty cache capacity (i.e., black

arrow in the figure) dynamically adjusts according to the current workload’s tendency

assisted by the two ghost caches. For example, some NVRAM space can be borrowed

as an extension of the clean cache to cache hot clean pages. Unlike the real caches,

the clean ghost cache and the dirty ghost cache only maintain metadata (i.e., page

numbers) of recently evicted pages, not real data. A recency-based policy such as LRU

(Least Recently Used) manages the dirty cache and a frequency-based cache policy

such as LFU-Aging (Least Frequently Used with Aging) [95] manages the clean cache.

The following section (Section 4.4.2) describes the rationale for adopting these two

different policies. Each data page in both real caches maintains a counter. Clean page

counters record their access frequencies and dirty page counters are used for migration

purposes. To further improve write performance, Hibachi converts random disk writes

to sequential disk writes to exploit HDD’s superior sequential access performance. To

efficiently maintain and identify consecutive dirty pages, the dirty cache maintains two

hashmaps and a sequential list (i.e., data structures in the dashed line rectangle).



62

4.4.2 Right Prediction

To achieve a high cache hit ratio, the ultimate question is how to predict whether

a page will be reused in the near future. Our workload characterization on recency

and frequency in Section 4.2 sheds some light on this question. Note that recency and

frequency are the most effective and accurate prediction metrics [30]. For storage system

level workloads, the temporal distance of a read request after the same read request is

considerably long. Thus, recency is not so helpful to predict clean page reuse. On the

contrary, the temporal distances of write after write requests are relatively short. Thus,

recency can be useful to predict dirty page reuse. The frequency metrics for both read

and write requests are fairly good since most accesses concentrate on a small portion of

pages.

Based on the above analysis, Hibachi uses a frequency-based cache policy, i.e., LFU-

Aging [95] (Least Frequently Used with Aging), to manage the clean cache, and a

recency-based cache policy, i.e., LRU (Least Recently Used), to manage the dirty cache.

The reasons we choose LFU-Aging and LRU are twofold: they are widely adopted, and

they cause low overhead. Clearly, other fancier cache policies can be designed or applied

to each side with the potential of increasing cache hit ratio, but high algorithm overhead

can offset the overall performance gain.

LFU-Aging [95] is an improved version of the traditional LFU algorithm. LFU is

prone to cache pollution problems due to some items only being frequently accessed for

a short period of time. Without properly enforced aging, these items waste cache space

and receive no hits. To resolve this problem, LFU-Aging reduces all frequency counts by

half when the average of all the frequency counters in the cache exceeds a given average

frequency threshold. We set the average frequency threshold to 5.5 as used in [96].

4.4.3 Right Reaction

Typically, if a page gets a hit, its priority increases to delay eviction. For recency, the

page is moved to the MRU (Most Recently Used) position. For frequency, the page’s

frequency counter is increased. However, for hybrid memory, considering the limited

NVRAM space and DRAM’s shorter access latency, Hibachi distinguishes between read

hits and write hits in order to fully utilize NVRAM to improve write hit rate (i.e.,



63
DRAM Capacity = 4 Pages NVRAM Capacity = 4 Pages

Clean Cache = 5 Pages Dirty Cache = 3 PagesClean Ghost Cache Dirty Ghost Cache

Real Page

Ghost Page

1 4 2 1 2 3 0 1

LRU MRU

Keystart Value

99

20

201

…

…

Keyend Value

205

…

120

…

30

Sequential List

99‐120

…

20‐30

201‐205

…

Figure 4.5: Hibachi Architecture and Algorithm.

minimize write traffic) and to fully utilize DRAM to shorten read access latency.

Based on our observations, only write hits on dirty pages save storage write traffic.

If a page is written once or rarely, but frequently read, keeping it in NVRAM wastes

precious NVRAM space. Also, since NVRAM’s read latency is several times longer than

DRAM’s, we should quickly migrate the page from NVRAM to DRAM. Therefore, we

need to detect these kinds of pages and treat them differently. Our measurement in

Section 4.2 shows that read after write temporal locality is poor and read and write

frequency is good. Keeping this in mind, our design includes a frequency counter for

each dirty page. A dirty page’s counter increases only when a read hit happens. On

the other hand, when a write hit happens on the dirty page, its counter will not be

increased. Instead we move the page to the most recently used position, since the dirty

cache is managed by the LRU policy.

When a dirty page is selected for eviction from NVRAM, we first compare its fre-

quency with the frequency of the least frequent clean page in DRAM. If the dirty page’s

frequency is greater than the clean page’s frequency, the clean page is evicted instead

of the dirty page, and the dirty page will be migrated to DRAM. Otherwise, the dirty



64

page is evicted from NVRAM. Note that the frequency counters of dirty pages are also

aged by the LFU-Aging algorithm.

4.4.4 Right Adjustment

For higher cache hit rates, Hibachi can adjust the dirty cache size and the clean cache

size according to workloads’ tendency (e.g., read intensive versus write intensive). For

example, if the current workload is read intensive, Hibachi can detect it and borrow

NVRAM to cache hot clean pages. To decrease storage writes, we prioritize the dirty

cache over the clean cache during cache size adjustment. Two ghost caches, one for

each real cache, are maintained to assist the adaptively resizing process. A ghost cache

only stores the page number (metadata) of recently evicted pages, not the actual data.

A similar adjustment mechanism can be found in our previous work [58]. However, the

adjustment mechanism in that work is designed for an NVRAM-only buffer cache, so

we modify and extend it to fit the hybrid memory architecture as shown below.

We use D̂ to denote the desired size for the dirty cache, and Ĉ to denote the desired

size for the clean cache. We use S to denote the sum of maximum real pages that can

be stored in both NVRAM and DRAM.

If a page hits the clean ghost cache, it means we should not have evicted this clean

page. To remedy this, we will enlarge Ĉ. Every time there is a ghost hit, Ĉ increases

by one page and D̂ decreases by one page. Note that neither Ĉ nor D̂ can be larger

than S.

Similarly, a page hitting the dirty ghost cache implies we should not have evicted

this dirty page. To remedy this, we will enlarge D̂. To save write traffic and keep dirty

pages in the cache longer, we enlarge D̂ much faster. If the clean ghost cache size is

smaller than the dirty ghost cache, D̂ increases by two. If the clean ghost cache size

is greater than or equal to the dirty ghost cache size, D̂ increases by two times the

quotient of the clean ghost cache size and the dirty ghost cache size. Thus, the smaller

the dirty ghost cache size, the larger the increment.



65

4.4.5 Right Transformation

Buffer cache policies usually only evict a single page at a time when the cache needs

to reclaim space. Moreover, if the victim is a dirty page, it should be flushed before

its eviction. For Hibachi, if the victim is in the clean cache, it deals with it similarly

to the majority of buffer cache policies. However, Hibachi will do quite intelligent

and efficient judgment and operations when the victim is in the dirty cache since it is

designed for disk arrays. As spinning devices, HDD’s sequential access speed (on the

order of 100MB/s) is orders of magnitude faster than its random access speed (roughly

1MB/s) [8]. The slow random access speed is always a bottleneck constraining HDD

I/O performance. This section presents how Hibachi transforms random disk writes to

sequential disk writes to exploit the fast sequential write speed [23].

When evicting from the dirty cache, Hibachi first tries to synchronize the longest

set of consecutive dirty pages (with the help of the sequential list described later), evict

the least frequent page, and migrate the rest of the pages to the LRU end of the clean

cache. However, to execute this series of operations, we have to ensure the length of the

longest set of consecutive dirty pages is over a given threshold (e.g., 10). If its length is

below the threshold, Hibachi evicts the LRU page from the dirty cache. In either case, it

inserts the evicted page’s page number into the MRU position of the dirty ghost cache.

Since a dirty page is evicted, it must update the sequential list accordingly.

The sequential list is designed to accelerate identifying the longest set of consecutive

dirty pages in the dirty cache. If several pages have consecutive page numbers, they

constitute a sequential page list (sequential list for short). All sequential lists are stored

in a priority queue ordered by the length (page count) of the sequential list. It has

a double-HashMap structure that efficiently keeps track of the consecutiveness of the

cached dirty pages. Hibachi stores two pieces of HashMap information of both the

start and end page number into the sequential list. Every time a new dirty page is

added, Hibachi checks whether it can merge into any existing sequential lists by looking

up two Hash Tables. If the new dirty page can merge into any existing sequential lists,

Hibachi merges two sequential lists into one larger list. Then, the two HashMaps and the

sequential list information are updated accordingly. For example, assuming a sequential

list with page numbers 3, 4, 5, and 6 (represented by 3-6) already exists, Hibachi stores

3→(3-6) in the start HashMap and 6→(3-6) in the end HashMap. When a new dirty



66

page number 7 enters the dirty cache, Hibachi consults two HashMaps to see whether

there are any sequential lists starting with 8 or ending with 6. In this example, since

Hibachi finds sequential list (3-6) ends with 6, it merges the new page number 7 with

the existing sequential list (3-6) into a larger sequential list (3-7). Hibachi updates all

HashMaps and the sequential list entry accordingly.

Note that the sequential list only introduces negligible space overhead. A sequential

list update only occurs when a dirty page is inserted to the cache or a dirty page is

evicted. For a dirty page synchronization or consecutive dirty pages synchronization,

the corresponding sequential list entry containing the page(s) is deleted. For a dirty

page insertion, if the dirty page has no consecutive neighbors in the dirty cache, a new

sequential list entry is created and inserted into the HashMaps and the priority queue.

The aforementioned threshold mechanism is very important to Hibachi. Intuitively,

continuously flushing the longest dirty pages to disk arrays could “fully utilize” HDDs’

fast sequential write performance. However, based on our analysis and evaluation,

we found this approach can lead to a low cache hit ratio and poor storage performance

because always flushing the longest set of consecutive dirty pages may cause an inevitable

situation where there are no more consecutive dirty pages. We call the beginning of this

situation “bad time.” After the “bad time,” if a newly inserted dirty page can merge

with an existing dirty page, they become the longest set of consecutive dirty pages. Per

the policy, they will be the eviction candidate next time. However, this newly inserted

dirty page may be hot data and should not be evicted so early. Thus, by avoiding

this problem, the threshold mechanism provides a simple and effective way to exploit

sequential write opportunities without losing temporal locality.

4.4.6 Put Them All Together: Overall Workflow

Now, we integrate all these four approaches together and describe an overall workflow.

A cache hit triggers one of the following three cases: 1) if it is a read hit on a clean page

or a dirty page, we increase its frequency counter; 2) if it is a write hit on a clean page,

we migrate the page to NVRAM and insert it to the MRU position; or 3) if it is a write

hit on a dirty page, we keep it in NVRAM and move it from the current position to

the MRU position. When a page hits a ghost cache, we enlarge the desired size for its

corresponding cache. Note that the dirty cache can only grow up to the capacity of the



67

Table 4.1: Trace Characteristics
Trace Name Total Requests Unique Pages R/W Ratio

rsrch 0 3,044,209 87,601 1:10.10
wdev 0 2,368,194 128,870 1:3.73
stg 0 5,644,682 1,507,247 1:2.28
ts 0 3,779,371 222,267 1:3.79

NVRAM, while the clean cache can grow up to the sum of the capacity of the DRAM

and NVRAM.

For cache misses, when both the DRAM and NVRAM are not full, missed pages

are fetched from storage and inserted into DRAM for read misses and into NVRAM for

write misses. When the cache space is full, if the clean cache size is larger than its desired

size, Hibachi evicts the least frequent clean page. Otherwise, Hibachi evicts a victim

from the dirty cache side. Before eviction, the length of the longest consecutive dirty

pages is checked. If the length is above the threshold, Hibachi evicts a dirty page with

the least frequency among these consecutive dirty pages and migrates the remaining

pages to the clean cache. However, if the length is equal to or below the threshold,

Hibachi favors temporal locality more. Thus, Hibachi checks the LRU page of the dirty

cache. If its frequency is greater than the least frequently used page in the clean cache,

it evicts the clean page and moves the dirty page to the clean cache. Otherwise, the

dirty LRU page is evicted. Please note: before migrating a dirty page from NVRAM to

DRAM, or evicting a dirty page, the page must be first synchronized to storage.

4.5 Performance Evaluation

4.5.1 Evaluation Setup

To evaluate our proposed buffer cache policy, we compare Hibachi with two pop-

ular cache policies: LRU (Least Recently Used) and ARC (Adaptive Replacement

Cache) [30]. We modified both policies to fit into hybrid memory systems as follows;

• Hybrid-LRU : DRAM is a clean cache for clean pages, and NVRAM is a write

buffer for dirty pages. Both caches use the LRU policy.



68

• Hybrid-ARC : An ARC-like algorithm to dynamically split NVRAM to cache both

clean pages and dirty pages, while DRAM is a clean cache for clean pages.

Hibachi and these two policies are implemented on Sim-ideal, a public, open-source,

multi-level caching simulator [64]. For evaluations, we configure a 4KB cache block

size and employ the popular MSR Cambridge enterprise server traces [65, 85]. As in

Table 4.4.6, four MSR traces (rsrch 0, wdev 0, stg 0 and ts 0) are adopted because the

experimental results of the rest of the MSR traces show similar patterns. Cache size

refers to the total size of both DRAM (half of the total) and NVRAM (the other half).

The cache sizes vary from 8MB (2,048 of 4KB blocks) to 256MB (65,536 of 4KB blocks),

which spans a small to large percentage of the workload footprint (i.e., unique pages for

each trace in Table 4.4.6).

For performance metrics, both read and write hit rates are employed to evaluate

caching policy performance. In addition to these hit rates, we evaluate cache latency

with various DRAM and NVRAM latency configurations to consider diverse NVRAM

and DRAM performance disparities. Lastly, real disk array write throughput is also

evaluated. To observe Hibachi ’s performance impact on disk arrays, whenever a dirty

page(s) needs to synchronize with storage, Sim-ideal logs the I/O requests to a file.

We make these I/O requests compatible to the Fio [66] tool, which will later replay

these requests on a disk array for Hibachi, Hybrid-LRU, and Hybrid-ARC evaluation.

Fio is a flexible tool that can both produce synthetic I/O traces and replay I/O traces.

To avoid host interference, we set Fio with “direct=1” and “ioengine=sync,” which

bypasses the host page cache. For the disk array, we use mdadm [97] – a Linux Software

RAID array management tool to create a RAID 5 with six Seagate SAS disk drives

(ST6000NM0034-MS2A, SAS 12Gbps, 6TB, 7200rpm).

4.5.2 Evaluation Results

Read Performance

Figure 4.6 presents average read hit rates of Hibachi under different cache sizes with

different workloads. Compared to Hybrid-LRU, Hibachi significantly improves the read

hit ratio by an average of 3× (8MB total cache size), 2.9× (16MB), 1.8× (32MB), and



69

1
Center for Research in 
Intelligent Storage CRIS Confidential

Rsrch

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

8MB 16MB 32MB 64MB 128MB 256MB

R
ea

d
 H

it
 R

a
te

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(a) rsrch 0

6
Center for Research in 
Intelligent Storage CRIS Confidential

wdev

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

8MB 16MB 32MB 64MB 128MB 256MB

R
ea

d
 H

it
 R

a
te

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(b) wdev 0

11
Center for Research in 
Intelligent Storage CRIS Confidential

stg

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

8MB 16MB 32MB 64MB 128MB 256MB

R
ea

d
 H

it
 R

a
te

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(c) stg 0

16
Center for Research in 
Intelligent Storage CRIS Confidential

ts

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

8MB 16MB 32MB 64MB 128MB 256MB

R
ea

d
 H

it
 R

a
te

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(d) ts 0

Figure 4.6: Average read hit rates

1.1× (64MB), respectively. It improves up to approximately 4× (2.41% in Hybrid-

LRU vs. 9.87% in Hibachi with a 16MB cache size, ts 0 workload). Hibachi also

outperforms Hybrid-ARC by an average of 2.7× (8MB), 1.9× (16MB), 1.2× (32MB),

1.1× (64MB), respectively. As Figure 4.6 illustrates, the performance improvement

generally increases with smaller cache sizes. This improvement results from Hibachi ’s

Right Prediction, Right Reaction, and Right Adjustment. Considering these storage

server I/O workloads are typically write-intensive and the total read hit rate percent is

quite low, these are substantial improvements.

Figure 4.7 is a stacked column chart displaying both NVRAM and DRAM contribu-

tions to Hibachi total read hit rates. Thus, Figure 4.7 decomposes Hibachi ’s total read



70

2
Center for Research in 
Intelligent Storage CRIS Confidential

Rsrch

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

8MB 16MB 32MB 64MB 128MB 256MB

H
it

 R
a
te

Total Cache Size

Read hit on DRAM Read hit on NVRAM

(a) rsrch 0

7
Center for Research in 
Intelligent Storage CRIS Confidential

wdev

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

8MB 16MB 32MB 64MB 128MB 256MB

H
it

 R
a
te

Total Cache Size

Read hit on DRAM Read hit on NVRAM

(b) wdev 0

12
Center for Research in 
Intelligent Storage CRIS Confidential

stg

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

8MB 16MB 32MB 64MB 128MB 256MB

H
it

 R
a
te

Total Cache Size

Read hit on DRAM Read hit on NVRAM

(c) stg 0

17
Center for Research in 
Intelligent Storage CRIS Confidential

ts

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

8MB 16MB 32MB 64MB 128MB 256MB

H
it

 R
a
te

Total Cache Size

Read hit on DRAM Read hit on NVRAM

(d) ts 0

Figure 4.7: Hibachi’s NVRAM and DRAM contribution to total read hit rates

hit rates into NVRAM hit rates and DRAM hit rates for better understanding. As ex-

pected, a dominant portion of read hits occurs in DRAM because DRAM is configured

as a read cache (i.e., the clean cache). Even though NVRAM is primarily configured as

a write buffer (i.e., the dirty cache), Hibachi dynamically adjusts the dirty cache size

and the clean cache size according to workload characteristics. Thus, for read-intensive

periods in each workload, Hibachi dynamically borrows NVRAM space to cache hot

clean pages to increase cache hit ratios. Consequently, NVRAM read hit rate contri-

butions are clearly visible in Figure 4.7, which verifies Hibachi ’s dynamic adjustment

feature (i.e., Right Adjustment described in Section 4.4.4).

In general, average read cache latency is more important than average write cache

latency because read operations are more response-time critical than write operations.



71

3
Center for Research in 
Intelligent Storage CRIS Confidential

Rsrch

0

0.5

1

1.5

2

2.5

3

8MB 16MB 32MB 64MB 128MB 256MB

N
o
rm

a
li

ze
d

 C
a
ch

e 
L

a
te

n
cy

Total Cache Size

LatD:LatN=1:1 LatD:LatN=1:5 LatD:LatN=1:10

(a) rsrch 0

8
Center for Research in 
Intelligent Storage CRIS Confidential

wdev

0

0.5

1

1.5

2

2.5

3

8MB 16MB 32MB 64MB 128MB 256MB

N
o
rm

a
li

ze
d

 C
a
ch

e 
L

a
te

n
cy

Total Cache Size

LatD:LatN=1:1 LatD:LatN=1:5 LatD:LatN=1:10

(b) wdev 0

13
Center for Research in 
Intelligent Storage CRIS Confidential

stg

0

0.5

1

1.5

2

2.5

3

8MB 16MB 32MB 64MB 128MB 256MB

N
o
rm

a
li

ze
d

 C
a

ch
e 

L
a

te
n

cy

Total Cache Size

LatD:LatN=1:1 LatD:LatN=1:5 LatD:LatN=1:10

(c) stg 0

18
Center for Research in 
Intelligent Storage CRIS Confidential

ts

0

0.5

1

1.5

2

2.5

3

3.5

8MB 16MB 32MB 64MB 128MB 256MB

N
o
rm

a
li

ze
d

 C
a

ch
e 

L
a

te
n

cy

Total Cache Size

LatD:LatN=1:1 LatD:LatN=1:5 LatD:LatN=1:10

(d) ts 0

Figure 4.8: Normalized read cache latency for Hibachi. LatD stands for average DRAM
access latency. LatN is average NVRAM access latency.

Different NVRAM technologies have very different read latencies. Compared to DRAM,

their read access latency can range from similar (e.g., NVDIMM) to 10× longer (e.g.,

PCM). To explore the impact of NVRAM’s access latency on read performance, the

following formula can calculate the average read cache latency:

ARCL = LatN ∗RateN + LatD ∗RateD

ARCL is the average read cache latency, LatN is average NVRAM read Latency, LatD

is average DRAM read Latency, RateN is Read hit rate at NVRAM, and RateD is Read

hit rate at DRAM. We assume average DRAM access latency is 50 ns. Our experiments



72

4
Center for Research in 
Intelligent Storage CRIS Confidential

Rsrch

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

8MB 16MB 32MB 64MB 128MB 256MB

W
ri

te
 H

it
 R

a
te

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(a) rsrch 0

9
Center for Research in 
Intelligent Storage CRIS Confidential

wdev

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

8MB 16MB 32MB 64MB 128MB 256MB

W
ri

te
 H

it
 R

a
te

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(b) wdev 0

14
Center for Research in 
Intelligent Storage CRIS Confidential

stg

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

8MB 16MB 32MB 64MB 128MB 256MB

W
ri

te
 H

it
 R

a
te

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(c) stg 0

19
Center for Research in 
Intelligent Storage CRIS Confidential

ts

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

8MB 16MB 32MB 64MB 128MB 256MB

W
ri

te
 H

it
 R

a
te

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(d) ts 0

Figure 4.9: Total write hit rate comparison

vary the average NVRAM access latency to 1, 5, and 10× longer than DRAM’s.

As a Hibachi example, RateN and RateD are presented in Figure 4.7 and the cor-

responding normalized ARCL is plotted in Figure 4.8. As in Figure 4.8, even for the

case that assumes NVRAM read latency is 10× longer than DRAM, the largest ARCL

performance disparity is just 3.16× the case where we assume NVRAM read latency is

the same as DRAM. However, in most cases, there is not such performance degradation.

A meaningful takeaway is that even though some NVRAM’s read latency is far from

DRAM’s, an intelligent hybrid scheme (such as Hibachi ’s Right Reaction to identify

hot read pages and migrate them to DRAM quickly) can minimize overall performance

degradation.



73

5
Center for Research in 
Intelligent Storage CRIS Confidential

Rsrch

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8MB 16MB 32MB 64MB 128MB 256MB

T
h

ro
u

g
h

p
u

t 
in

 K
B

/s

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(a) rsrch 0

10
Center for Research in 
Intelligent Storage CRIS Confidential

wdev

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8MB 16MB 32MB 64MB 128MB 256MB

T
h

ro
u

g
h

p
u

t 
in

 K
B

/s

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(b) wdev 0

15
Center for Research in 
Intelligent Storage CRIS Confidential

stg

0

1000

2000

3000

4000

5000

6000

8MB 16MB 32MB 64MB 128MB 256MB

T
h

ro
u

g
h

p
u

t 
in

 K
B

/s

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(c) stg 0

20
Center for Research in 
Intelligent Storage CRIS Confidential

ts

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

8MB 16MB 32MB 64MB 128MB 256MB

T
h

ro
u

g
h

p
u

t 
in

 K
B

/s

Total Cache Size

Hybrid-LRU Hybrid-ARC Hibachi

(d) ts 0

Figure 4.10: Average write throughput with disk arrays

Write Performance

Figure 4.9 presents average write hit rates of all three cache policies under different

cache sizes with different workloads. Compared to Hybrid-LRU, Hibachi improves write

hit ratios by an average of 2.2% (8MB total cache size), 2.5% (16MB), 4.7% (32MB),

4.8% (64MB), 8.4% (128MB), and 3.4% (256MB), respectively. Similarly, compared to

Hybrid-ARC, performance improves by an average of 2.7%, 3.4%, 5.7%, 5.0%, 8.4%,

and 3.4%, respectively. A higher hit rate results in write response time improvement

and reduced write traffic to storage arrays.

Figure 4.10 plots average write throughput on the real disk array. Hibachi improves

average write throughput across all cases and up to more than 10× Hybrid-LRU and



74

Hybrid-ARC when the cache size is large. This is because a large NVRAM cache space

enables Hibachi to accumulate more consecutive dirty pages with the help of Hibachi ’s

Right transformation. On the other hand, both Hybrid-LRU and Hybrid-ARC do not

have a strong correlation between the cache size and write throughput. This implies

that write traffic in the larger write buffer cache is not necessarily more friendly to

disk storage arrays if the cache scheme is not equipped with an intelligent write buffer

management mechanism like Hibachi.

4.6 Related Work

DRAM-based cache policies (i.e., page replacement policies) have been studied for

decades. Belady’s cache policy is well-known for an offline optimal algorithm [68]. A

primary goal of traditional inline cache policies is to improve a cache hit rate towards

the optimal rate. Most cache policies utilize recency and frequency to predict a page’s

future access. The most representative recency-based cache policy is the Least Recently

Used (LRU) algorithm. However, this overlooks frequency factor. Many LRU vari-

ants have been proposed for different use cases [61, 5]. Similarly, the Least Frequently

Used (LFU) algorithm only considers frequency, and many variants have been devel-

oped [92, 95]. To take advantage of both frequency and recency, some cache policies

(e.g., ARC ) are designed by adapting to workload characteristics [30, 58].

With the advancement of new NVRAM technologies, replacing DRAM with NVRAM,

or using DRAM and NVRAM hybrid systems, is recently drawing more attention.

New NVRAM technologies include STT-RAM [54, 53], MRAM [52], NVDIMM [24],

PCM [44, 45], RRAM [55], and 3D XPoint [56, 57]. Among them, STT-RAM, MRAM,

and NVDIMM have potential to replace DRAM, while the other are still several times

slower than DRAM.

NVRAM-based cache policies are generally co-designed with storage devices such as

HDDs or SSDs. Hierarchical ARC (H-ARC ) employs NVRAM as main memory and

SSDs as storage to extend SSD lifespan. H-ARC is designed to minimize storage write

traffic by dynamically splitting the cache space into four subspaces: dirty/clean caches

and frequency/recency caches [58]. I/O-Cache adopts NVRAM as main memory and

HDDs as storage to maximize I/O throughput [23]. I/O-Cache intelligently regroups



75

many small random write requests into fewer and longer sequential write requests to

exploit HDDs’ fast sequential write performance.

DRAM and NVRAM hybrid memory systems are another approach to integrate

NVRAM into computer systems. PDRAM [98] is a heterogeneous architecture for main

memory composed of DRAM and NVRAM memories with a unified address. A page

manager is utilized to allocate and migrate pages across DRAM and NVRAM. Qureshi

et al. [46] discuss a design of NVRAM-based primary main memory with DRAM as a

faster cache. Our proposed Hibachi policy belongs to this category. However, Hibachi

is designed for storage arrays instead of main memory. Moreover, it manages NVRAM

and DRAM cooperatively instead of individually.

4.7 Conclusion

Based on our in-depth study of storage server I/O workloads and our insightful analysis

of hybrid memory properties, we propose Hibachi – a novel cooperative hybrid cache ex-

ploiting the synergy of NVRAM and DRAM for storage arrays. Hibachi utilizes DRAM

as a read cache for clean pages and NVRAM mostly as a write buffer for dirty pages.

In addition, it judiciously integrates the proposed four main design factors: Right Pre-

diction, Right Reaction, Right Adjustment, and Right Transformation. Consequently,

Hibachi outperforms popular conventional cache policies in terms of both read perfor-

mance and write performance. This work shows the potential of designing better cache

policies to improve storage system performance and motivates us to put more effort into

this area of research.



Chapter 5

An NVRAM-based Burst Buffer

Coordination System for PFSs

5.1 Introduction

For high-performance computing (HPC), with its countless hardware components and

complex software stacks, failures become the norm rather than exceptions. For a super-

computer with tens of thousands of nodes, the mean time between failures (MTBF) can

be in the order of hours [14]. However, many scientific HPC applications (e.g., simula-

tions, modeling, and mathematical calculations) need to run days or even months before

completion. As one of the most popular fault tolerance techniques, checkpoint/restart

(C/R) is used to periodically store the intermediate application states (usually some

files) into parallel file systems (PFSs). Then, if failures do happen, the application can

be restarted by reading back those intermediate files and resuming from there instead

of starting from scratch.

Many studies show that checkpoint (CKPT) activity is the dominating contributer

to total HPC I/O traffic and application run time [15, 16, 17]. Even though PFSs are

designed to provide high aggregate I/O throughput, the large amount of bursty writes

generated during checkpointing means that PFSs alone are not sufficient and become

the bottleneck of the whole HPC system.

To improve checkpointing speed, an intermediate layer, called a burst buffer (BB),

is often used to alleviate the burden on PFSs. BBs consist of fast storage media and/or

76



77

dedicated software and network stacks that can absorb checkpoint data orders of mag-

nitude faster than PFSs. Then the buffered data will be drained to PFSs in the back-

ground if necessary. Traditional burst buffers mostly consist of solid state drives, but

newly developed NVRAM technologies (e.g., 3D Xpoint, PCM, and NVDIMM) are bet-

ter candidates due to their better performance. In this work, we will focus on these

emerging NVRAM-based BBs.

There are two types of burst buffer architectures: centralized BB or distributed BB.

In a centralized BB architecture, a big BB appliance or multiple BB appliances will ab-

sorb checkpoint data from all the compute nodes [18, 19, 20, 21]. The checkpoint data

must be transmitted through a network to reach the centralized BB. On the contrary,

in the more popular distributed BB architecture, each BB is smaller capacity and put

closer, or even attached directly, to each compute node [17, 16, 22]. Under the dis-

tributed BB architecture, the absorption of checkpoint data is much quicker than using

networks since BBs are closer to the data origin. It is also more scalable and flexible to

add/remove distributed BBs to/from compute nodes as needed. However, the downside

of the distributed BB architecture is potentially low BB resource utilization; without

proper scheduling and coordination, some BBs are overburdened while others might be

idle.

By observing HPC application execution patterns and experimenting on the Itasca

HPC cluster (described in Section 5.4.2), we find there are opportunities to optimize

the distributed BB architecture to improve BB resource utilization. Here is a summary

of our observations: 1) Multiple HPC applications are running concurrently instead

of few; 2) Compute nodes running the same application are at the same HPC phase

(e.g., reading data, computation, checkpointing); 3) Compute nodes running different

applications could be in distinct HPC phases; 4) Some applications (hence their compute

nodes) do not perform checkpointing; 5) Write throughput to peer compute nodes (1.83

GB/s) is much higher than write throughput to the PFS (0.52 GB/s).

As mentioned above, while the distributed BB architecture has plenty of advantages

it can suffer low resource utilization. This problem is particularly severe for NVRAM-

based BBs since NVRAM is much more expensive than other storage media (e.g., SSD),

which makes NVRAM much more valuable and scarce. Based on our observations of

HPC application execution patterns and experimentations on HPC systems, we propose



78

a novel BB coordination system, named collaborative distributed burst buffer (CDBB),

to improve resource utilization and further increase HPC checkpointing speed. Specif-

ically, we design a BB coordinator to monitor and control all BBs to make them work

collaboratively. When an application performs checkpointing, instead of only relying

on local BBs, the BB coordinator will globally select available remote BBs (based on

their priority and on-the-fly status) in nodes running other applications to contribute

and alleviate the burden of those local BBs. We have built a proof-of-concept CDBB

prototype and evaluated it on the Itasca HPC cluster at the Minnesota Supercomputing

Institute. Compared with a traditional distributed burst buffer system using local BBs

only, the results show that under a light workload, CDBB only introduces negligible

overhead, and under medium and heavy workloads, CDBB can improve CKPT speed

by up to 8.4×.

The structure of this chapter is as follows. In Section 5.2, we present some back-

ground and related work about checkpoint/restart tools, HPC application characteris-

tics, and NVRAM technologies. Section 5.3 gives a detailed description of our proposed

CDBB coordination system followed by evaluations in Section 5.4. Finally, Section 5.5

concludes our work.

5.2 Background and Related Work

5.2.1 Checkpoint/Restart

There are two types of C/R tools: application-level C/R tools and system-level C/R

tools. Application-level C/R tools come with applications themselves; only data needed

for restart are stored, so the checkpoint data size could be very small. System-level

C/R tools are transparent to applications and usually checkpoint the whole memory

space touched by the applications; thus, the checkpoint data size could be much larger.

System-level C/R tools are used to checkpoint applications without innate C/R func-

tionalities.

Here, we use a very popular system-level C/R tool, DMTCP (Distributed Multi-

Threaded CheckPointing) [99], as a reference to explain how C/R tools work. DMTCP is

in user space, does not require root privilege, and is independent from system kernel ver-

sion, which makes it very flexible and user-friendly. DMTCP has a dmtcp coordinator



79

CRIS Confidential

Compute node 1

Compute node 2

Compute node x

…

Application A

Application N

Reading Computation Checkpointing

Compute node 3

Compute node 4Application B

Compute node 5

Time

Figure 5.1: An example of HPC application execution patterns

process which must be started before operating dmtcp checkpoint or dmtcp restart.

Checkpoints can be performed automatically on an interval, or they can be initiated

manually on the command line of the dmtcp coordinator. Once issued a checkpoint

request, the dmtcp coordinator will inform all the corresponding processes to halt, and

each process will generate a checkpoint image individually. At the same time, a script

is created for restart purposes.

5.2.2 HPC Application Characteristics

In a typical HPC cluster with hundreds or thousands of compute nodes, usually there

are tens or hundreds of applications running concurrently. We used the showq command

to show the job queue of the Mesabi cluster at the Minnesota Supercomputing Institute

and found that 636 active jobs were running [100]. Also, the online real-time job queue

report of the Stampede supercomputer at the Texas Advanced Computing Center showed

699 active jobs were running [101].

Figure 5.1 is a high-level simplified illustration of HPC application execution pat-

terns. As shown in the figure, many applications, which start at different times, are

running in the cluster. These applications need to read data (usually from PFSs) and

perform computation. Applications with C/R requirements will perform checkpointing

with frequencies set by the applications or users. After one checkpointing operation



80

BB 

Coordinator

…Compute 

Node

Compute 

Node
…

HPC Application I

BB

CKPT Coordinator

BB

…

Parallel File System

Storage Servers Metadata Servers

…

…Compute 

Node

Compute 

Node
…

HPC Application II

BB

CKPT Coordinator

BB

Compute 

Node

Compute 

Node
…

HPC Application N

BB

CKPT Coordinator

BB

Control Path

Data Path

Compute 

Node

BB

Figure 5.2: An overview of the CDBB coordination system

is done, the computation resumes. This pattern repeats until either the application

is finished or any failures happen, in which case the applications will restart from the

latest checkpointing image.

Figure 5.1 clearly shows that the execution patterns of compute nodes assigned

to the same application are quite similar to each other whereas that of the compute

nodes assigned to different applications could be quite distinct. For example, when

the compute nodes running Application A are performing checkpointing, the compute

nodes running Application B are doing computation. In addition, some applications do

not perform checkpointing at all, so they will continuously do computation until the

end (Figure 5.1 Application N ). These insights give CDBB opportunities to perform

optimization on BB utilization. If there is only one application running in the whole

cluster or all the applications in the cluster happen to have the exact same execution

patterns, then CDBB would not contribute too much since all the BBs are either being

used or idle at the same time.



81

5.2.3 Non-volatile Memory

Current memory technologies such as DRAM and SRAM face technological limita-

tions to continued improvement [31]. As a result, there are intense efforts to develop

new DRAM-alternative memory technologies. Most of these new technologies are non-

volatile memories, because non-volatility can provide additional advantages such as new

power saving modes for quick wakeup as well as faster power-off recovery and restart

for HPC applications [31]. These new technologies include PCM, STT-RAM, MRAM,

RRAM, and 3D XPoint.

Phase Change Memory (PCM) is one of the most promising new NVM technologies

and can provide higher scalability and storage density than DRAM [44, 45]. In general,

PCM still has a 5–10× longer latency than DRAM. To overcome PCM’s speed defi-

ciency, various system architectures have been designed to integrate PCM into current

systems without performance degradation [25, 46, 47, 48, 49, 50, 51]. Magnetic RAM

(MRAM) and Spin-Torque Transfer RAM (STT-RAM) are expected to replace SRAM

and DRAM within the next few years [52, 53, 54]. STT-RAM reduces the transistor

count and, consequently, provides a low-cost, high-density solution. Many enterprise and

personal devices use MRAM for an embedded cache memory. Resistive RAM (RRAM)

is considered a potential candidate to replace NAND Flash memory [55]. SanDisk and

Hewlett Packard Enterprise are actively developing next generation RRAM technology.

Micron and Intel recently introduced 3D XPoint non-volatile memory technology that

is presently considered another DRAM alternative [56]. 3D Xpoint technology has high

endurance, high density, and promising performance that is much better than NAND

Flash but slightly slower than DRAM. Thus, it is expected to target high-performance

in-memory processing [57].

5.3 Our Proposed Approach: CDBB

Collaborative distributed burst buffer (CDBB) is a coordination system to maximize

the utilization of all available burst buffers and increase checkpointing speed. We will

use some concepts in DMTCP (introduced in Section 5.2.1) as assistance to describe

our design, but CDBB is designed as a general framework that does not have any

dependencies on the particular implementation or design of any C/R tools.



82

Node 1 

CKPT WriterBBBB Coordinator

Node 2 

Control Path Data Path

…

PFS

Node x 

2.a

1
2.b

2.c
3

4

Figure 5.3: A high-level illustration of CDBB checkpointing workflow

5.3.1 CDBB Overview

Figure 5.2 is an overview of our proposed CDBB coordination system. It depicts a

typical HPC cluster with hundreds or thousands of compute nodes running various

types of HPC applications. CKPT coordinators (e.g., dmtcp coordinator) will control

compute nodes running applications with C/R needs. Each compute node is equipped

with a small NVRAM-based BB. All the BBs are communicating with, and coordinated

by, a BB coordinator. CKPT data are either written to BBs and drained to PFSs in the

background or written to PFSs directly. The PFS usually consists of multiple storage

servers controlled by one or more metadata servers.

To illustrate the checkpointing workflow of CDBB, we simplify the whole system

into Figure 5.3. As shown in the figure, there is one BB coordinator monitoring and

coordinating all the BBs. Each BB (one per compute node) will absorb CKPT data

generated by CKPT writers. A CKPT writer represents a CKPT process which gen-

erates CKPT data periodically and writes to either a BB or the PFS. Before a CKPT

writer sends the real CKPT data (e.g., the CKPT writer in Figure 5.3 Node 1), it will

first negotiate with the BB coordinator (Figure 5.3 Path 1) to determine the best place



83

Start

Receive
Control Data

Control Data from
BB or Writer?

Check
StatusStore

Writer

Local BB have
enough space?

Let writer
write to local

BB
Yes

No

Remote BB with largest
space left have enough

space?

Let writer
write to

remote BB
Yes

Let writer
write to PFS

No

Update
StatusStore BB

Figure 5.4: The BB coordinator checkpointing workflow

to write. There are three possible places: the local BB (through Figure 5.3 path 2.a), a

remote BB (through Figure 5.3 path 2.b), and the PFS (through Figure 5.3 path 2.c).

Note that the local BB refers to the BB located in the same compute node as the CKPT

writer. BBs will drain their buffered data to the PFS in the background (Figure 5.3

path 3) and report their latest status to the BB coordinator (Figure 5.3 path 4). Details

about the BB coordinator, BBs, and CKPT writers will be presented in the following

sections.



84

5.3.2 BB Coordinator

The BB coordinator is the brain behind CDBB. It coordinates every individual BB to

make globally optimized decisions about where the CKPT data should go. A process

flowchart of the BB coordinator is shown in Figure 5.4.

A work cycle of the BB coordinator starts with the arrival of control data. The

control data could be sent from either a BB or a CKPT writer. If it is from a BB,

the BB coordinator will update its StatusStore with the latest status of the sending

BB. The StatusStore stores the status of all BBs. For the current design, only the

space utilization is stored, since it is the only metric the BB coordinator uses to make

decisions. As our future work, more metrics such as compute nodes’ CPU utilization

and data sharing information between processes will be added into the StatusStore to

make CDBB smarter.

If the control data is from a CKPT writer, the BB coordinator will be notified of

how much data the CKPT writer wants to write. Then the BB coordinator will check

the StatusStore and reply to the CKPT writer with the best place to write. To make a

decision, the BB coordinator will check the availability in the following priority order:

the local BB→remote BBs→the PFS. Specifically, the status of the local BB will be

checked first. If the local BB’s remaining space is larger than the incoming CKPT data

size, the BB coordinator will reply to the CKPT writer and let it write to the local BB.

If the local BB does not have enough space, then the BB coordinator will check whether

the remote BB with the most space left has enough space. If so, the remote BB will be

selected as the destination. Note that whenever a BB is chosen to absorb the incoming

CKPT data, the StatusStore will be updated accordingly to reflect that BB’s increased

space utilization. Finally, if none of the BBs have enough space, the CKPT writer will

be notified to write to the PFS directly. Some corresponding location information of

the CKPT data will be stored in a LocationStore, which will be used if the CKPT data

is needed for restart purposes (not shown in the flowchart).

5.3.3 BB

Individual BBs are the building blocks of CDBB. We design and implement each BB

instance using a classic producer-consumer model. We create two data structures to



85

assist the management of each BB: a DataStore is the space storing CKPT data, and

a MetaStore stores the corresponding metadata (e.g., data size, offset, CKPT data

ID, and writing location) of the CKPT data for data draining and application restart

purposes. For the producer of a BB, as long as the DataStore has enough space to

accommodate the incoming CKPT data, it will insert the data into the DataStore and

the MetaStore. For the consumer, as long as there are any CKPT data needing to

be drained, it will use the information from the MetaStore to write the data in the

DataStore to the PFS. Note that the CKPT data in the DataStore will be drained in a

first-in-first-out (FIFO) manner controlled by the MetaStore. As long as one batch of

CKPT data has been written to the PFS successfully, the BB will send its latest status

(e.g., space utilization) to the BB coordinator to let it know more space is available in

this BB.

5.3.4 CKPT Writer

Each CKPT writer represents an HPC checkpointing process. Once the CKPT writers

receive a checkpoint request from their CKPT coordinator, they will generate CKPT

data by collecting the corresponding data associated with the application processes.

Then CKPT writers will contact the BB coordinator to get directions about where to

send the CKPT data. Each CKPT coordinator might have different CKPT frequency

as specified by the application or the system administrator. CKPT tools, application

types, and CKPT frequencies might affect the size of CKPT data.

5.4 Performance Evaluation

5.4.1 Implementation

To evaluate the performance of CDBB, we built a proof-of-concept prototype using C

with the Message Passing Interface (MPI). Rank 0 is dedicated as the BB coordinator.

Rank is an MPI term to denote each process. The last rank in each compute node acts

as the local BB. The rest of the ranks in each compute node are CKPT writers. For each

BB rank, it spawns two threads: one as the producer and the other as the consumer.

Each application could have a different number of CKPT writers, which will be awoken



86

at the same time to generate CKPT data.

As the baseline comparison, we implement a traditional burst buffer prototype sys-

tem in which each CKPT writer will only utilize its local BB. If the local BB is full,

CKPT writers will write to the PFS directly. We call this prototype system the local

distributed burst buffer (LDBB). For LDBB, similar to CDBB, one compute node has

one BB and several CKPT writers. But LDBB does not have the BB coordinator.

LDBB is implemented with C and MPI as well.

5.4.2 Testbed

We evaluate the performance of CDBB on the Itasca cluster located at the Minnesota

Supercomputing Institute [102]. Itasca is an HP Linux cluster with 1091 compute nodes,

8728 total cores, and 26 TB of aggregated RAM space. Each compute node is equipped

with two quad-core 2.8 GHz Intel Nehalem processors and 24 GB of memory. It can

achieve 3 GB/s node-to-node communication through a QDR InfiniBand interconnec-

tion. The back end storage is a Panasas ActiveStor 14 data-storage system with 1.281

PB of usable storage capacity and peak performance of 30 GB/s read/write and 270,000

IOPS [103].

Note that since there is no real NVRAM in our testbed system, we reserve 4 GB of

memory on each compute node to emulate NVRAM-based burst buffers.

5.4.3 Evaluation Setup

We use the statistics collected by Kaiser et al. [104], as shown in Figure 5.5, to emulate

multiple HPC applications running concurrently in an HPC cluster. These CKPT data

were generated using the DMTCP tool (introduced in Section 5.2.1) with a frequency

of every ten minutes. When creating CKPT data, DMTCP’s compression feature was

disabled. Almost all these applications were run for two hours with the exception

that bowtie (after 50 minutes) and pBWA (after 110 minutes) finished earlier. Each

application was distributed among 64 cores. A detailed description of all the applications

can be found in [104]. We design three representative experiments from the statistics to

emulate scenarios under a light workload, a medium workload, and a heavy workload.

We use the “Avg. CKPT Size” as the metric to describe applications listed in Figure 5.5.



87

CRIS Confidential

Experiment Setup

Application Avg. CKPT Size

NAMD 10GB

Espresso++ 17GB

openfoam 17GB

echam 18GB

mpiblast 33GB

gromacs 34GB

eulag 35GB

phylobayes 39GB

nwchem 42GB

CP2K 43GB

LAMMPS 52GB

ray 75GB

bowtie 94GB

QE 99GB

pBWA 132GB

Light

Heavy

Medium

Figure 5.5: Applications used for Light, Medium, and Heavy experiments

The Light experiment consists of the five smallest applications. The Medium experiment

consists of the two smallest applications, one in the middle, and the two largest. The

Heavy experiment consists of the five largest applications.

We run each experiment, Light, Medium, and Heavy, using 46 nodes (368 cores in

total) from the cluster. Among them, 320 cores will act as CKPT writers, 46 cores will

act as BBs (one BB per node), and one core will act as the BB coordinator (on rank

0). There is one core left doing nothing. Among the 320 CKPT writers, every 64 of

them will represent one application, which is the same configuration as the statistics

collected in [104]. For each experiment, there are five emulated applications. Each

application is started randomly within the first ten minutes and runs for one hour.

Once an application is started, it will perform CKPT every ten minutes. For each

CKPT operation, 64 CKPT writers running the same application will each write the

same amount of data such that their sum is equal to the “Avg. CKPT size” of that

application as listed in Figure 5.5.

5.4.4 Evaluation Results

We measure each application’s CKPT completion time for each CKPT operation. This

time is measured as the difference between the ending time of the application’s slowest



88

1
Center for Research in 
Intelligent Storage CRIS Confidential

Summary

26.76 

74.10 

160.08 

23.04 

621.32 

730.71 

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

Light Medium Heavy

T
o

ta
l 

C
K

P
T

 C
o

m
p

le
ti

o
n

 T
im

e 
(S

)

Experiment Type

CDBB LDBB

Figure 5.6: Combined total CKPT completion time for each experiment

finishing CKPT writer (among 64 CKPT writers) and the starting time of the CKPT

operation. A CKPT writer finishes when its CKPT data are written completely, either

to a BB or the PFS.

Figure 5.6 shows the combined total CKPT completion time for the three experi-

ments. The total CKPT completion time is the sum of the CKPT completion times of

all the applications’ CKPT operations. In the Light experiment, CDBB, surprisingly

at first look, takes 3.72 seconds longer than LDBB. However, this result is expected,

since under the light workload, all CKPT data could be absorbed by local BBs, and

CDBB’s coordination capabilities do not help yet cause some overhead. Note that each

application ran for one hour, so the overhead of 3.72 seconds is negligible (∼0.1%).

In the Medium and Heavy experiments, compared with LDBB, the results show

that CDBB significantly shortens total CKPT completion time by 8.4× and 4.6×, re-

spectively. For CDBB, the total CKPT completion times of the three experiments are

almost proportional to the total amount of CKPT data needing to be checkpointed.

This relationship is ascribed to CDBB’s ability to coordinate all available BBs to help

absorb CKPT data. On the contrary, for LDBB, we find that when the local BBs are

insufficient to accommodate all the incoming CKPT data, its CKPT speed becomes

much slower since it has to wait until all the PFS writes are finished.



89

2
Center for Research in 
Intelligent Storage CRIS Confidential

Small

2.79 

4.74 4.95 5.19 

9.09 

2.39 

4.05 4.01 4.25 

8.35 

0.00

2.00

4.00

6.00

8.00

10.00

NAMD Espresso++ openfoam echam mpiblast

T
o

ta
l 

C
K

P
T

 C
o

m
p

le
ti

n
o

 T
im

e 
(S

)

Application Type

CDBB LDBB

(a) The Light experiment

3
Center for Research in 
Intelligent Storage CRIS Confidential

Mix

2.58 

8.14 
8.70 

23.55 31.12 
2.85 

4.74 

50.54 

230.39 

332.80 

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

NAMD Espresso++ phylobayes QE pBWA

T
o

ta
l 

C
K

P
T

 C
o

m
p

le
ti

n
o

 T
im

e 
(S

)

Application Type

CDBB LDBB

(b) The Medium experiment

4
Center for Research in 
Intelligent Storage CRIS Confidential

Large

10.46 
17.23 

41.45 44.39 46.55 
58.20 

113.03 

155.78 
161.94 

241.76 

0.00

50.00

100.00

150.00

200.00

250.00

LAMMPS ray bowtie QE pBWA

T
o

ta
l 

C
K

P
T

 C
o

m
p

le
ti

n
o
 T

im
e 

(S
)

Application Type

CDBB LDBB

(c) The Heavy experiment

Figure 5.7: Total CKPT completion time for each application. Note that y-axes are in
different scales for the three figures.

In addition, we plot total CKPT time by application (i.e., the sum of all of one appli-

cation’s CKPT operations) in Figure 5.7. For CDBB, similar to the above observation,

each application’s total CKPT time is proportional to its CKPT data size. For LDBB,

an interesting finding is that the total CKPT times of the same application, QE, in the

Medium (230.39 s) and Heavy (161.94 s) experiments are quite different. It is the same

case for application pBWA (332.80 s versus 241.76). One possible reason is that the

throughput of the PFS is quite unstable due to I/O contention caused by other running

jobs in the Itasca cluster. In LDBB, application QE and pBWA need to write to the

PFS, so their CKPT completion time will be affected. We further plot the CKPT com-

pletion time for each CKPT operation (CKPT run) in Figure 5.8. Here we select three

representative applications to plot: the smallest application, NAMD, from the Light



90

5
Center for Research in 
Intelligent Storage CRIS Confidential

Small NAMD

0.64 

0.56 

0.46 

0.57 0.56 
0.54 

0.46 
0.46 

0.47 0.46 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Run 1 Run 2 Run 3 Run 4 Run 5

C
K

P
T

 C
o

m
p

le
ti

n
o
 T

im
e 

(S
)

CKPT Run No.

CDBB LDBB

(a) Application NAMD

6
Center for Research in 
Intelligent Storage CRIS Confidential

Mix phylobayes

2.31 
1.76 1.52 1.56 1.55 

9.21 

14.28 
13.46 

7.06 
6.53 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Run 1 Run 2 Run 3 Run 4 Run 5

C
K

P
T

 C
o

m
p

le
ti

n
o
 T

im
e 

(S
)

CKPT Run No.

CDBB LDBB

(b) Application phylobayes

7
Center for Research in 
Intelligent Storage CRIS Confidential

Large pBWA

9.77 10.85 10.94 

7.09 7.89 

46.11 

40.85 

46.83 

53.33 54.64 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Run 1 Run 2 Run 3 Run 4 Run 5

C
K

P
T

 C
o

m
p

le
ti

n
o
 T

im
e 

(S
)

CKPT Run No.

CDBB LDBB

(c) Application pBWA

Figure 5.8: CKPT completion time of each CKPT operation for application NAMD,
phylobayes, and pBWA. Note that y-axes are in different scales for the three figures.

experiment; the middle application, phylobayes, from the Medium experiment; and the

largest application, pBWA, from the Heavy experiment. From Figure 5.8, we can see

that for each run, CDBB’s completion time variation for the same application is small

whereas LDBB’s completion time variation is larger due to the PFS I/O contention as

mentioned above.

5.5 Conclusion

Slow checkpointing speed is the Achilles’ heel of HPC systems due to the limited band-

width of parallel file systems. To increase checkpointing speed, adding NVRAM into

compute nodes as burst buffers has been previously proposed and studied. However,



91

current HPC systems relying only on local burst buffers could waste precious NVRAM

resources. By maximizing burst buffer utilization, our newly proposed burst buffer co-

ordination system, named collaborative distributed burst buffer (CDBB), can further

speed up checkpointing. By building a proof-of-concept prototype, we demonstrate the

potential of CDBB. Under a light workload, CDBB only introduces negligible overhead,

and under medium and heavy workloads, CDBB can improve CKPT speed by up to

8.4×.



Chapter 6

Conclusion

This thesis focuses on using new NVRAM technologies (e.g., 3D Xpoint, STT-MRAM,

and NVDIMM) to build novel caching systems to improve the performance of various

types of storage devices and storage systems.

In Chapter 2, we propose two novel cooperative buffer cache schemes in different

layers (host-side and SSD-side) for computer systems utilizing Non-Volatile Memories

(NVM) for the purpose of SSD write traffic reduction. The main goal of the proposed

design is to extend SSD lifetimes by reducing total SSD write traffic. To meet the goal,

we first propose a novel host-side buffer cache mechanism named Hierarchical Adaptive

Replacement Cache (H-ARC). Unlike existing DRAM-based schemes whose main goal

is to improve cache hit ratios, H-ARC focuses on write traffic reduction as well as

cache hit ratio improvement, thereby considering four factors: dirty, clean, recency, and

frequency. Moreover, H-ARC’s dynamic features enable H-ARC to effectively adapt to

various workloads.

In addition to the proposed main buffer cache mechanism, we propose an internal

SSD write buffer scheme named WRB. WRB reduces Flash block erasures and write

traffic by exploiting temporal locality and spatial locality. WRB first selects a victim

with the highest block utilization and, only if the page count is over a predefined thresh-

old, it evicts the block with highest block utilization. Otherwise, it evicts a block on

the basis of a block-level LRU policy. To our knowledge, this comprehensive design for

SSD lifetime extension is the first work to simultaneously address both layers. These

two cooperative write buffer cache mechanisms can be combined to provide a holistic

92



93

view of SSD write traffic reduction for NVRAM-based computer systems.

In Chapter 3, we present a novel non-volatile memory based buffer cache policy,

I/O-Cache. Our approach uses NVRAM to cache dirty pages longer than traditional

DRAM caches, and it regroups and synchronizes long sets of consecutive dirty pages to

take advantage of HDDs’ fast sequential access speed. Additionally, to decrease storage

writes, I/O-Cache can dynamically split the whole cache into a dirty cache and a clean

cache according to the workload’s tendency for read or write requests. The performance

of I/O-Cache is evaluated with various traces. The results show that our proposed cache

policy shortens I/O completion time, decreases I/O traffic, and increases the cache hit

ratio compared with existing work.

In Chapter 4, based on our in-depth study of storage server I/O workloads and our

insightful analysis of hybrid memory properties, we propose Hibachi – a novel cooper-

ative hybrid cache exploiting the synergy of NVRAM and DRAM for storage arrays.

Hibachi utilizes DRAM as a read cache for clean pages and NVRAM mostly as a write

buffer for dirty pages. In addition, it judiciously integrates the proposed four main

design factors: Right Prediction, Right Reaction, Right Adjustment, and Right Trans-

formation. Consequently, Hibachi outperforms popular conventional cache policies in

terms of both read performance and write performance. This work shows the potential

of designing better cache policies to improve storage system performance and motivates

us to put more effort into this area of research.

In Chapter 5, we consider that slow checkpointing speed is the Achilles’ heel of HPC

systems due to the limited bandwidth of parallel file systems. To increase checkpointing

speed, adding NVRAM into compute nodes as burst buffers has been previously pro-

posed and studied. However, current HPC systems relying only on local burst buffers

could waste precious NVRAM resources. To maximize burst buffer utilization, we pro-

pose a burst buffer coordination system, named collaborative distributed burst buffer

(CDBB), which can further speed up checkpointing. By building a proof-of-concept

prototype, we demonstrate the potential of CDBB. Under a light workload, CDBB only

introduces negligible overhead, and under medium and heavy workloads, CDBB can

improve checkpoint speed by up to 8.4×.



References

[1] Jianguo Wang, Dongchul Park, Yannis Papakonstantinou, and Steven Swanson.

SSD In-Storage Computing for Search Engines. IEEE Transactions on Computers,

PP(4):1–14, 2016.

[2] Dongchul Park, Jianguo Wang, and Yang-Suk Kee. In-Storage Computing for

Hadoop MapReduce Framework: Challenges and Possibilities. IEEE Transactions

on Computers, PP(4):1–14, 2016.

[3] Hyojun Kim and Seongjun Ahn. BPLRU: A Buffer Management Scheme for

Improving Random Writes in Flash Storage. In FAST, 2008.

[4] G. Wu, X. He, and B. Eckart. An Adaptive Write Buffer Management Scheme for

Flash-based SSDs. ACM Transactions on Storage, 8(1):1–24, 2012.

[5] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha. Lru-wsr: integration of lru and

writes sequence reordering for flash memory. IEEE Transactions on Consumer

Electronics, 54(3):1215–1223, 2008.

[6] H. Jo, J. Kang, S. Park, J. Kim, and J. Lee. FAB: Flash-aware Buffer Management

Policy for Portable Media Players. IEEE Transactions on Consumer Electronics,

54(3):1215–1223, 2008.

[7] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha. Performance Trade-offs in

Using NVRAM Write Buffer for Flash Memory-based Storage Devices. IEEE

Transactions on Computers, 58(6):744–758, 2009.

[8] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems:

Three Easy Pieces. Arpaci-Dusseau Books, 0.91 edition, May 2015.

94



95

[9] S. Qiu and A. L. N. Reddy. NVMFS: A Hybrid File System for Improving Random

Write in NAND-flash SSD. In MSST, pages 1–5, 2013.

[10] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee. CFLRU: a Replacement Algorithm

for Flash Memory. In CASES, pages 234–241, 2006.

[11] Binny S. Gill and Dharmendra S. Modha. Wow: Wise ordering for writes - combin-

ing spatial and temporal locality in non-volatile caches. In Proceedings of the 4th

Conference on USENIX Conference on File and Storage Technologies - Volume 4,

FAST’05, pages 10–10, Berkeley, CA, USA, 2005. USENIX Association.

[12] Binny S. Gill, Michael Ko, Biplob Debnath, and Wendy Belluomini. Stow: A

spatially and temporally optimized write caching algorithm. In Proceedings of the

2009 Conference on USENIX Annual Technical Conference, USENIX’09, pages

26–26, Berkeley, CA, USA, 2009. USENIX Association.

[13] Jiao Hui, Xiongzi Ge, Xiaoxia Huang, Yi Liu, and Qiangjun Ran. E-hash: An

energy-efficient hybrid storage system composed of one ssd and multiple hdds.

In Proceedings of the Third International Conference on Advances in Swarm In-

telligence - Volume Part II, ICSI’12, pages 527–534, Berlin, Heidelberg, 2012.

Springer-Verlag.

[14] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello,

Naoya Maruyama, and Satoshi Matsuoka. Fti: High performance fault tolerance

interface for hybrid systems. In Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis, SC ’11, pages

32:1–32:32, New York, NY, USA, 2011. ACM.

[15] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski.

Design, modeling, and evaluation of a scalable multi-level checkpointing system.

In Proceedings of the 2010 ACM/IEEE International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’10, pages 1–11, Wash-

ington, DC, USA, 2010. IEEE Computer Society.

[16] Raghunath Rajachandrasekar, Adam Moody, Kathryn Mohror, and Dhabaleswar

K. (DK) Panda. A 1 pb/s file system to checkpoint three million mpi tasks. In



96

Proceedings of the 22Nd International Symposium on High-performance Parallel

and Distributed Computing, HPDC ’13, pages 143–154, New York, NY, USA,

2013. ACM.

[17] Jianguo Wang, Dongchul Park, Yang Suk Kee, Yannis Papakonstantinouy, and

Steven Swanson. SSD In-Storage Computing for List Intersection. In DaMoN,

pages 1 – 8, June 2016.

[18] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and

C. Maltzahn. On the role of burst buffers in leadership-class storage systems. In

012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST),

pages 1–11, April 2012.

[19] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu. Burstmem:

A high-performance burst buffer system for scientific applications. In 2014 IEEE

International Conference on Big Data (Big Data), pages 71–79, Oct 2014.

[20] S. Thapaliya, P. Bangalore, J. Lofstead, K. Mohror, and A. Moody. Managing i/o

interference in a shared burst buffer system. In 2016 45th International Conference

on Parallel Processing (ICPP), pages 416–425, Aug 2016.

[21] C. Chen, M. Lang, L. Ionkov, and Y. Chen. Active burst-buffer: In-transit process-

ing integrated into hierarchical storage. In 2016 IEEE International Conference

on Networking, Architecture and Storage (NAS), pages 1–10, Aug 2016.

[22] T. Wang, S. Oral, M. Pritchard, B. Wang, and W. Yu. Trio: Burst buffer based

i/o orchestration. In 2015 IEEE International Conference on Cluster Computing,

pages 194–203, Sept 2015.

[23] Ziqi Fan, Alireza Haghdoost, David H.C. Du, and Doug Voigt. I/O-Cache: A Non-

volatile Memory Based Buffer Cache Policy to Improve Storage Performance. In

MASCOTS, pages 102–111, 2015.

[24] Viking. NVDIMM-Fastest Tier in Your Storage Strategy. Technical report, Viking

Technology, 2014.



97

[25] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change Memory

as a Scalable DRAM Alternative. In ISCA, pages 2–13, 2009.

[26] Michael Krause. The Solid State Storage (R-)Evolution. Technical report,

Hewlette Packard, 2012.

[27] E. Lee, H. Bahn, and S. H. Noh. Unioning of the Buffer Cache and Journaling

Layers with Non-volatile Memory. In FAST, pages 73–80, 2013.

[28] Y. Liu, X. Ge, X. Huang, and D. H. C. Du. Molar: A cost-efficient, high-

performance hybrid storage cache. In 2013 IEEE International Conference on

Cluster Computing (CLUSTER), pages 1–5, Sept 2013.

[29] S. Qiu and A. L. N. Reddy. NVMFS: A Hybrid File System for Improving Random

Write in NAND-flash SSD. In MSST, pages 1–5, 2013.

[30] N. Megiddo and D. S. Modha. ARC: a Self-tuning, Low Overhead Replacement

Cache. In FAST, pages 115–130, 2003.

[31] Thomas Coughlin and Edward Grochowski. Emerging Non-Volatile Memory and

Spin Logic Technology and Memory Manufacturing Report. Technical report,

Coughlin Associates, 2015.

[32] Dongchul Park, Biplob Debnath, and David Du. CFTL: A Convertible Flash

Translation Layer Adaptive to Data Access Patterns. In SIGMETRICS, pages

365–366, 2010.

[33] Jianguo Wang, Eric Lo, Man Lung Yiu, Jiancong Tong, Gang Wang, and Xi-

aoguang Liu. The Impact of Solid State Drive on Search Engine Cache Manage-

ment. In SIGIR, pages 693–702, 2013.

[34] Dongchul Park, Biplob Debnath, and David H.C. Du. A Dynamic Switching

Flash Translation Layer based on A Page-Level Mapping. IEICE Transactions on

Information and Systems, E99-D(6):51–60, June 2016.

[35] M. Murugan and David H.C. Du. Rejuvenator: A Static Wear Leveling Algorithm

for NAND Flash Memory with Minimized Overhead. In MSST, pages 1–12, 2011.



98

[36] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and R. Panigrahy.

Design Tradeoffs for SSD Performance. In USENIX ATC, pages 57–70, 2008.

[37] Dongchul Park, Biplob Debnath, and David Du. A Workload-Aware Adaptive

Hybrid Flash Translation Layer with an Efficient Caching Strategy. In MASCOTS,

pages 248 – 255, 2011.

[38] L. Chang and T. Kuo. An Adaptive Striping Architecture for Flash Memory

Storage Systems of Embedded Systems. In RTAS, pages 187–196, 2002.

[39] D. Jung, Y. Chae, H. Jo, J. Kim, and J. Lee. A Group-based Wear-leveling

Algorithm for Large-capacity Flash Memory Storage Systems. In CASES, pages

160–164, 2007.

[40] L. Chang. On Efficient Wear Leveling for Large-scale Flash Memory Storage

Systems. In SAC, pages 1126–1130, 2007.

[41] J. Kang, H. Jo, J. Kim, and J. Lee. A Superblock-based Flash Translation Layer

for NAND Flash Memory. In EMSOFT, pages 161–170, 2006.

[42] Samsung. Samsung V-NAND Technology. Technical report, Samsung Electronics,

2014.

[43] mandetech. Micron brings nvdimms to enterprise.

[44] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M. Shelby,

M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam. Phase-change

random access memory: A scalable technology. IBM Journal of Research and

Development, 52(4):465–479, 2008.

[45] Simone Raoux, Feng Xiong, Matthias Wuttig, and Eric Pop. Phase change mate-

rials and phase change memory. MRS Bulletin, 39(08):703–710, 2014.

[46] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable High Performance Main

Memory System Using Phase-change Memory Technology. In ISCA, pages 24–33,

2009.



99

[47] W. Zhang and T. Li. Exploring Phase Change Memory and 3d Die-stacking

for Power/thermal Friendly, Fast and Durable Memory Architectures. In PACT,

pages 101–112, 2009.

[48] H. B. Sohail, B. Vamanan, and T. N. Vijaykumar. MigrantStore: Leveraging

Virtual Memory in DRAM-PCM Memory Architecture. Technical report, Purdue

University, TR-ECE-12-02, 2012.

[49] L. Ramos, E. Gorbatov, and R. Bianchini. Page Placement in Hybrid Memory

Systems. In ICS, pages 85–95, 2011.

[50] X. Wu and A. L. N. Reddy. SCMFS : A File System for Storage Class Memory.

In SC, pages 1–11, 2011.

[51] R. Freitas. Storage Class Memory: Technology, Systems and Applications. In Hot

Chips Symposium, pages 1–37, 2010.

[52] W. J. Gallagher and S. S. P. Parkin. Development of the Magnetic Tunnel Junction

MRAM at IBM: From First Junctions to a 16-Mb MRAM Demonstrator Chip.

IBM Journal of Research and Development, 50(1):5–23, 2006.

[53] Takayuki Kawahara, Kenchi Ito, Riichiro Takemura, and Hideo Ohno. Spin-

transfer torque RAM technology: review and prospect. Microelectronics Relia-

bility, 52(4):613–627, 2012.

[54] EETimes Asia. STT-MRAM to lead 4.6B dollars non volatile memory market in

2021, 2016.

[55] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot. Redox-based

resistive switching memories–nanoionic mechanisms, prospects, and challenges.

Advanced materials, 21(25-26):2632–2663, 2009.

[56] Micron. 3D XPoint Technology. Technical report, Micron Technology, 2015.

[57] Intel. 3D XPoint Unveiled: The Next Breakthrough in Memory Technology.

Technical report, Intel Corporation, 2015.



100

[58] Z. Fan, D. H.C. Du, and D. Voigt. H-ARC: A non-volatile memory based cache

policy for solid state drives. In MSST, pages 1–11, 2014.

[59] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation Techniques

for Storage Hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[60] A. V. Aho, P. J. Denning, and J. D. Ullman. Principles of Optimal Page Replace-

ment. Journal of the ACM, 18(1):80–93, 1971.

[61] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee. CFLRU: a Replacement Algorithm

for Flash Memory. In CASES, pages 234–241, 2006.

[62] Biplob Debnath, Sunil Subramanya, David H.C. Du, and David J. Lilja. (Large

Block CLOCK (LB-CLOCK): A write caching algorithm for solid state disks. In

MASCOTS, pages 1–9, 2009.

[63] Jianguo Wang, Dongchul Park, Yang Suk Kee, Yannis Papakonstantinouy, and

Steven Swanson. SSD In-Storage Computing for List Intersection. In DaMoN,

pages 1 – 8, June 2016.

[64] Alireza Haghdoost. sim-ideal: Ideal multi-level cache simulator, 2013.

[65] D. Narayanan, A. Donnelly, and A. I. T. Rowstron. Write Offloading: Practical

Power Management for Enterprise Storage. In FAST, pages 253–267, 2008.

[66] fio. http://freecode.com/projects/fio.

[67] Filebench. http://filebench.sourceforge.net/.

[68] L. A. Belady. A Study of Replacement Algorithms for Virtual Storage Computers.

IBM Systems Journal, 5(2):78–101, 1966.

[69] L. O. Chua. Memristor: The Missing Circuit Element. IEEE Transactions on

Circuit Theory, 18(5):507–519, 1971.

[70] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Evaluating

STT-RAM as an Energy-efficient Main Memory Alternative. In ISPASS, pages

256–267, 2013.



101

[71] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change Memory

as a Scalable DRAM Alternative. In ISCA, pages 2–13, 2009.

[72] Michael Krause. The Solid State Storage (R-)Evolution. Technical report,

Hewlette Packard, 2012.

[73] E. Lee, H. Bahn, and S. H. Noh. Unioning of the Buffer Cache and Journaling

Layers with Non-volatile Memory. In FAST, pages 73–80, 2013.

[74] L. A. Belady. A Study of Replacement Algorithms for Virtual Storage Computers.

IBM Systems Journal, 5(2):78–101, 1966.

[75] A. V. Aho, P. J. Denning, and J. D. Ullman. Principles of Optimal Page Replace-

ment. Journal of the ACM, 18(1):80–93, 1971.

[76] N. Megiddo and D. S. Modha. ARC: a Self-tuning, Low Overhead Replacement

Cache. In FAST, pages 115–130, 2003.

[77] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly &

Associates Inc, 2005.

[78] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xiaodong Zhang. Dulo:

An effective buffer cache management scheme to exploit both temporal and spatial

locality. In Proceedings of the 4th Conference on USENIX Conference on File and

Storage Technologies - Volume 4, FAST’05, pages 8–8, Berkeley, CA, USA, 2005.

USENIX Association.

[79] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha. Lru-wsr: integration of lru and

writes sequence reordering for flash memory. IEEE Transactions on Consumer

Electronics, 54(3):1215–1223, 2008.

[80] H. Jo, J. Kang, S. Park, J. Kim, and J. Lee. FAB: Flash-aware Buffer Management

Policy for Portable Media Players. IEEE Transactions on Consumer Electronics,

54(3):1215–1223, 2008.

[81] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha. Performance Trade-offs in

Using NVRAM Write Buffer for Flash Memory-based Storage Devices. IEEE

Transactions on Computers, 58(6):744–758, 2009.



102

[82] G. Wu, X. He, and B. Eckart. An Adaptive Write Buffer Management Scheme for

Flash-based SSDs. ACM Transactions on Storage, 8(1):1–24, 2012.

[83] Alireza Haghdoost. sim-ideal: Ideal multi-level cache simulator, 2013.

[84] John S. Bucy and Gregory R. Ganger. The disksim simulation environment version

3.0 reference manual. Technical report, 2003.

[85] SNIA. http://www.snia.org/.

[86] D. Narayanan, A. Donnelly, and A. I. T. Rowstron. Write Offloading: Practical

Power Management for Enterprise Storage. In FAST, pages 253–267, 2008.

[87] V. Tarasov, E. Zadok, and S. Shepler. Filebench: A flexible framework for file

system benchmarking. ;login: The USENIX Magazine, 41(1):6–12, March 2016.

[88] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, Swaminathan Sundarara-

man, and Robert Wood. Hec: Improving endurance of high performance flash-

based cache devices. In Proceedings of the 6th International Systems and Storage

Conference, SYSTOR ’13, pages 10:1–10:11, New York, NY, USA, 2013. ACM.

[89] Jian Xu and Steven Swanson. Nova: A log-structured file system for hybrid

volatile/non-volatile main memories. In Proceedings of the 14th Usenix Conference

on File and Storage Technologies, FAST’16, pages 323–338, Berkeley, CA, USA,

2016. USENIX Association.

[90] Asit Dan and Don Towsley. An approximate analysis of the lru and fifo buffer

replacement schemes. In Proceedings of the 1990 ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, SIGMETRICS ’90, pages

143–152, New York, NY, USA, 1990. ACM.

[91] Soyoon Lee, Hyokyung Bahn, and Sam H. Noh. Clock-dwf: A write-history-aware

page replacement algorithm for hybrid pcm and dram memory architectures. IEEE

Trans. Comput., 63(9):2187–2200, September 2014.

[92] Yuanyuan Zhou, Zhifeng Chen, and Kai Li. Second-level buffer cache management.

IEEE Trans. Parallel Distrib. Syst., 15(6):505–519, June 2004.



103

[93] Gala Yadgar, Michael Factor, and Assaf Schuster. Karma: Know-it-all replace-

ment for a multilevel cache. In Proceedings of the 5th USENIX Conference on

File and Storage Technologies, FAST ’07, pages 25–25, Berkeley, CA, USA, 2007.

USENIX Association.

[94] Mark Woods. Optimizing storage performance and cost with intelligent caching.

Technical report, NetApp, August 2010.

[95] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich, and Tai Jin.

Evaluating content management techniques for web proxy caches. SIGMETRICS

Perform. Eval. Rev., 27(4):3–11, March 2000.

[96] Sam Romano and Hala ElAarag. A quantitative study of recency and frequency

based web cache replacement strategies. In Proceedings of the 11th Communica-

tions and Networking Simulation Symposium, CNS ’08, pages 70–78, New York,

NY, USA, 2008. ACM.

[97] mdadm - manage md devices aka linux software raid.

http://neil.brown.name/blog/mdadm.

[98] G. Dhiman, R. Ayoub, and T. Rosing. Pdram: A hybrid pram and dram main

memory system. In ACM/IEEE Design Automation Conference, pages 664–669,

July 2009.

[99] Jason Ansel, Kapil Arya, and Gene Cooperman. Dmtcp: Transparent checkpoint-

ing for cluster computations and the desktop. In Proceedings of the 2009 IEEE

International Symposium on Parallel&Distributed Processing, IPDPS ’09, pages

1–12, Washington, DC, USA, 2009. IEEE Computer Society.

[100] Mesabi at the minnesota supercomputing institute.

https://www.msi.umn.edu/content/mesabi.

[101] Stampede at the texas advanced computing center.

https://www.tacc.utexas.edu/stampede/.

[102] Itasca at the minnesota supercomputing institute.

https://www.msi.umn.edu/content/itasca.



104

[103] Msi purchases new storage system. https://www.msi.umn.edu/content/msi-

purchases-new-storage-system.

[104] J. Kaiser, R. Gad, T. SuB, F. Padua, L. Nagel, and A. Brinkmann. Deduplication

potential of hpc applications checkpoints. In 2016 IEEE International Conference

on Cluster Computing (CLUSTER), pages 413–422, Sept 2016.


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Cooperative NVRAM-based Write Buffers for SSDs
	Introduction
	Background
	Related work
	Proposed Design
	Host Write Buffer Cache: H-ARC
	Internal SSD Write Buffer: WRB

	Experiments
	Evaluation Setup
	Evaluation Results and Analysis

	Conclusion

	An NVRAM-based Buffer Cache Policy for HDDs
	Introduction
	Related Work
	Our Proposed Approach: I/O-Cache
	Approach Overview
	Real Cache Hit
	Real Cache Miss, Ghost Cache Hit
	Both Real and Ghost Cache Misses
	Cache Eviction & Balance Algorithm
	Sequential List
	System Consistency and Crash Recovery

	Evaluation
	Experimental Setup
	System I/O Performance
	Cache Hit Ratio

	Conclusion

	A Cooperative Hybrid Caching System for Storage Arrays
	Introduction
	Storage System Workload Properties
	Insight and Discussion
	Hibachi: A Hybrid Buffer Cache
	Architecture
	Right Prediction
	Right Reaction
	Right Adjustment
	Right Transformation
	Put Them All Together: Overall Workflow

	Performance Evaluation
	Evaluation Setup
	Evaluation Results

	Related Work
	Conclusion

	An NVRAM-based Burst Buffer Coordination System for PFSs
	Introduction
	Background and Related Work
	Checkpoint/Restart
	HPC Application Characteristics
	Non-volatile Memory

	Our Proposed Approach: CDBB
	CDBB Overview
	BB Coordinator
	BB
	CKPT Writer

	Performance Evaluation
	Implementation
	Testbed
	Evaluation Setup
	Evaluation Results

	Conclusion

	Conclusion
	References

