8 research outputs found

    A Smart System for Sleep Monitoring by Integrating IoT With Big Data Analytics

    Full text link
    [EN] Obtrusive sleep apnea (OSA) is one of the most important sleep disorders because it has a direct adverse impact on the quality of life. Intellectual deterioration, decreased psychomotor performance, behavior, and personality disorders are some of the consequences of OSA. Therefore, a real-time monitoring of this disorder is a critical need in healthcare solutions. There are several systems for OSA detection. Nevertheless, despite their promising results, these systems not guiding their treatment. For these reasons, this research presents an innovative system for both to detect and support of treatment of OSA of elderly people by monitoring multiple factors such as sleep environment, sleep status, physical activities, and physiological parameters as well as the use of open data available in smart cities. Our system architecture performs two types of processing. On the one hand, a pre-processing based on rules that enables the sending of real-time notifications to responsible for the care of elderly, in the event of an emergency situation. This pre-processing is essentially based on a fog computing approach implemented in a smart device operating at the edge of the network that additionally offers advanced interoperability services: technical, syntactic, and semantic. On the other hand, a batch data processing that enables a descriptive analysis that statistically details the behavior of the data and a predictive analysis for the development of services, such as predicting the least polluted place to perform outdoor activities. This processing uses big data tools on cloud computing. The performed experiments show a 93.3% of effectivity in the air quality index prediction to guide the OSA treatment. The system's performance has been evaluated in terms of latency. The achieved results clearly demonstrate that the pre-processing of data at the edge of the network improves the efficiency of the system.This work was supported in part by the European Union's Horizon 2020 Research and Innovation Programme through the Interoperability of Heterogeneous IoT Platforms Project (INTER-IoT) under Grant 687283, in part by the Escuela Politecnica Nacional, Ecuador, and in part by the Secretaria Nacional de Educacion Superior, Ciencia, Tecnologia e Innovacion (SENESCYT), Ecuador.Yacchirema-Vargas, DC.; Sarabia-Jácome, DF.; Palau Salvador, CE.; Esteve Domingo, M. (2018). A Smart System for Sleep Monitoring by Integrating IoT With Big Data Analytics. IEEE Access. 6:35988-36001. https://doi.org/10.1109/ACCESS.2018.2849822S3598836001

    A Novel Completely Local Repairable Code Algorithm Based on Erasure Code

    Get PDF
    Hadoop Distributed File System (HDFS) is widely used in massive data storage. Because of the disadvantage of the multi-copy strategy, the hardware expansion of HDFS cannot keep up with the continuous volume of big data. Now, the traditional data replication strategy has been gradually replaced by Erasure Code due to its smaller redundancy rate and storage overhead. However, compared with replicas, Erasure Code needs to read a certain amount of data blocks during the process of data recovery, resulting in a large amount of overhead for I/O and network. Based on the Reed-Solomon (RS) algorithm, we propose a novel Completely Local Repairable Code (CLRC) algorithm. By grouping RS coded blocks and generating local check blocks, CLRC algorithm can optimize the locality of the RS algorithm, which can reduce the cost of data recovery. Evaluations show that the CLRC algorithm can reduce the bandwidth and I/O consumption during the process of data recovery when a single block is damaged. What\u27s more, the cost of decoding time is only 59% of the RS algorithm

    Doppler radar-based non-contact health monitoring for obstructive sleep apnea diagnosis: A comprehensive review

    Get PDF
    Today’s rapid growth of elderly populations and aging problems coupled with the prevalence of obstructive sleep apnea (OSA) and other health related issues have affected many aspects of society. This has led to high demands for a more robust healthcare monitoring, diagnosing and treatments facilities. In particular to Sleep Medicine, sleep has a key role to play in both physical and mental health. The quality and duration of sleep have a direct and significant impact on people’s learning, memory, metabolism, weight, safety, mood, cardio-vascular health, diseases, and immune system function. The gold-standard for OSA diagnosis is the overnight sleep monitoring system using polysomnography (PSG). However, despite the quality and reliability of the PSG system, it is not well suited for long-term continuous usage due to limited mobility as well as causing possible irritation, distress, and discomfort to patients during the monitoring process. These limitations have led to stronger demands for non-contact sleep monitoring systems. The aim of this paper is to provide a comprehensive review of the current state of non-contact Doppler radar sleep monitoring technology and provide an outline of current challenges and make recommendations on future research directions to practically realize and commercialize the technology for everyday usage

    Big Data em cidades inteligentes: um mapeamento sistemático

    Get PDF
    O conceito de Cidades Inteligentes ganhou maior atenção nos círculos acadêmicos, industriais e governamentais. À medida que a cidade se desenvolve ao longo do tempo, componentes e subsistemas como redes inteligentes, gerenciamento inteligente de água, tráfego inteligente e sistemas de transporte, sistemas de gerenciamento de resíduos inteligentes, sistemas de segurança inteligentes ou governança eletrônica são adicionados. Esses componentes ingerem e geram uma grande quantidade de dados estruturados, semiestruturados ou não estruturados que podem ser processados usando uma variedade de algoritmos em lotes, microlotes ou em tempo real, visando a melhoria de qualidade de vida dos cidadãos. Esta pesquisa secundária tem como objetivo facilitar a identificação de lacunas neste campo, bem como alinhar o trabalho dos pesquisadores com outros para desenvolver temas de pesquisa mais fortes. Neste estudo, é utilizada a metodologia de pesquisa formal de mapeamento sistemático para fornecer uma revisão abrangente das tecnologias de Big Data na implantação de cidades inteligentes

    Energy Efficient Machine Learning-Based Classification of ECG Heartbeat Types

    Get PDF
    To meet the accuracy, latency and energy efficiency requirements during real-time collection and analysis of health data, a distributed edge computing environment is the answer, combined with 5G speeds and modern computing techniques. Using the state-of-the-art machine learning based classification techniques plays a crucial role in creating the optimal healthcare system on the edge. This thesis first provides a background on the current and emerging edge computing classification techniques for healthcare applications, specifically for electrocardiogram (ECG) beat classification. We then present key findings from an extensive survey of over hundred studies on the topic while taxonomizing the literature with respect to key architectural differences, application areas and requirements. Leveraging the insights drawn from the extensive analysis of the pertinent literature we select a set of most promising machine learning based classification techniques for ECG beats, based on their suitability for implementation on a small edge device called a Raspberry Pi. After implementing these classification techniques on a Raspberry Pi based platform we perform a comparison of the performance of these classification techniques with respect to three key performance indicators (KPI) of interest for health care applications namely accuracy, energy efficiency, and latency. ECG measures the electrical activity of the heart and help healthcare professionals to evaluate heart conditions of a patient, sometimes diagnosing life-threatening conditions. The features of ECG signals are pre-processed and fed into the classification algorithms to detect and classify abnormal beat types. ECG classification requires low complexity but still high level of performance in terms of aforementioned three KPIs. The classification algorithms chosen, namely Naïve Bayes, Multilayer Perceptron (MLP), and distilled deep neural network (DNN) are all energy efficient methods hence suitable for implementation for small edge devices. The comparative multi-faceted evaluation presented in this thesis is a new contribution to research that exists on edge based classification as it offers comparison of selected classification algorithms in terms three KPIs instead of one while using real edge device based implementation. The performance of analyzed machine learning classification techniques is ranked according to each KPI. Benefiting from the results of the comparative analysis presented in this thesis a particular classification algorithm can be selected for optimal deployment in given scenario in healthcare system depending on the specific requirements of the given scenario. Edge computing paves the way for a new generation of health devices that can offer a higher quality of life for users if low-latency, low-energy, and high- performance requirements are addressed

    Fall detection system for elderly people using IoT and ensemble machine learning algorithm

    Full text link
    [EN] Falls represent a major public health risk worldwide for the elderly people. A fall not assisted in time can cause functional impairment in an elderly and a significant decrease in his mobility, independence, and life quality. In this sense, we propose IoTE-Fall system, an intelligent system for detecting falls of elderly people in indoor environments that takes advantages of the Internet of Thing and the ensemble machine learning algorithm. IoTE-Fall system employs a 3D-axis accelerometer embedded into a 6LowPAN wearable device capable of capturing in real time the data of the movements of elderly volunteers. To provide high efficiency in fall detection, in this paper, four machine learning algorithms (classifiers): decision trees, ensemble, logistic regression, and Deepnets are evaluated in terms of AUC ROC, training time and testing time. The acceleration readings are processed and analyzed at the edge of the network using an ensemble-based predictor model that is identified as the most suitable predictor for fall detection. The experiment results from collection data, interoperability services, data processing, data analysis, alert emergency service, and cloud services show that our system achieves accuracy, precision, sensitivity, and specificity above 94%.Research presented in this article has been partially funded by Horizon 2020 European Project grant INTER-IoT no. 687283, ACTIVAGE project under grant agreement no. 732679, the Escuela Politecnica Nacional, Ecuador, and Secretaria de Educacion Superior Ciencia, Tecnologia e Innovacion (SENESCYT), Ecuador.Yacchirema, D.; Suárez De Puga, J.; Palau Salvador, CE.; Esteve Domingo, M. (2019). Fall detection system for elderly people using IoT and ensemble machine learning algorithm. Personal and Ubiquitous Computing. 23(5-6):801-817. https://doi.org/10.1007/s00779-018-01196-8S801817235-6He W, Goodkind D, Kowal P (2016) U.S. Census Bureau, International Population Reports, P95/16-1, An Aging World: 2015. U.S. Government Publishing Office, Washington, DCBousquet J, Kuh D, Bewick M, Standberg T, Farrell J, Pengelly R, Joel ME, Rodriguez Mañas L, Mercier J, Bringer J, Camuzat T, Bourret R, Bedbrook A, Kowalski ML, Samolinski B, Bonini S, Brayne C, Michel JP, Venne J, Viriot-Durandal P, Alonso J, Avignon A, Ben-Shlomo Y, Bousquet PJ, Combe B, Cooper R, Hardy R, Iaccarino G, Keil T, Kesse-Guyot E, Momas I, Ritchie K, Robine JM, Thijs C, Tischer C, Vellas B, Zaidi A, Alonso F, Andersen Ranberg K, Andreeva V, Ankri J, Arnavielhe S, Arshad H, Augé P, Berr C, Bertone P, Blain H, Blasimme A, Buijs GJ, Caimmi D, Carriazo A, Cesario A, Coletta J, Cosco T, Criton M, Cuisinier F, Demoly P, Fernandez-Nocelo S, Fougère B, Garcia-Aymerich J, Goldberg M, Guldemond N, Gutter Z, Harman D, Hendry A, Heve D, Illario M, Jeande C, Krauss-Etschmann S, Krys O, Kula D, Laune D, Lehmann S, Maier D, Malva J, Matignon P, Melen E, Mercier G, Moda G, Nizinkska A, Nogues M, O’Neill M, Pelissier JY, Poethig D, Porta D, Postma D, Puisieux F, Richards M, Robalo-Cordeiro C, Romano V, Roubille F, Schulz H, Scott A, Senesse P, Slagter S, Smit HA, Somekh D, Stafford M, Suanzes J, Todo-Bom A, Touchon J, Traver-Salcedo V, van Beurden M, Varraso R, Vergara I, Villalba-Mora E, Wilson N, Wouters E, Zins M (2015) Operational definition of active and healthy ageing (AHA): a conceptual framework. J Nutr Health Aging 19(9):955–960Yacchirema DC, Sarabia-Jácome D, Palau CE, Esteve M (2018) A Smart System for sleep monitoring by integrating IoT with big data analytics. IEEE Access, p 1Robie K (2010) Falls in older people: risk factors and strategies for prevention. JAMA 304(17):1958–1959Jrad RBN, Ahmed MD, Sundaram D (2014) Insider Action Design Research a multi-methodological Information Systems research approach. 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS). Marrakech, pp 1–12. https://doi.org/10.1109/RCIS.2014.6861053Chaccour K, Darazi R, El Hassani AH, Andrès E (2017) From fall detection to fall prevention: a generic classification of fall-related systems. IEEE Sensors J 17(3):812–822Min W, Cui H, Rao H, Li Z, Yao L (2018) Detection of human falls on furniture using scene analysis based on deep learning and activity characteristics. IEEE Access 6:9324–9335Ma X, Wang H, Xue B, Zhou M, Ji B, Li Y (2014) Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J Biomed Heal Inform 18(6):1915–1922Yang L, Ren Y, Zhang W (2016) 3D depth image analysis for indoor fall detection of elderly people. Digit Commun Netw 2(1):24–34Mastorakis G, Makris D (2014) Fall detection system using Kinect’s infrared sensor. J Real-Time Image Process 9(4):635–646Kwolek B, Kepski M (2014) Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput Methods Prog Biomed 117(3):489–501Wang Y, Wu K, Ni LM (2017) WiFall: device-free fall detection by wireless networks. IEEE Trans Mob Comput 16(2):581–594Sehairi K, Chouireb F, Meunier J (2018) Elderly fall detection system based on multiple shape features and motion analysis. 2018 International Conference on Intelligent Systems and Computer Vision (ISCV). Fez, pp 1–8. https://doi.org/10.1109/ISACV.2018.8354084Álvarez de la Concepción MÁ, Soria Morillo LM, Álvarez García JA, González-Abril L (2017) Mobile activity recognition and fall detection system for elderly people using Ameva algorithm. Pervasive Mob Comput 34:3–13Fortino G, Gravina R (2015) Fall-MobileGuard: a smart real-time fall detection system. In: Proceedings of the 10th EAI International Conference on Body Area Networks (BodyNets '15). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ICST, Brussels, Belgium, pp 44–50. https://doi.org/10.4108/eai.28-9-2015.2261462Aguiar B, Rocha T, Silva J, Sousa I (2014) Accelerometer-based fall detection for smartphones. 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Lisboa, pp 1–6. https://doi.org/10.1109/MeMeA.2014.6860110Kau L, Chen C (2015) A smart phone-based pocket fall accident detection, positioning, and rescue system. IEEE J Biomed Heal Inform 19(1):44–56He J, Bai S, Wang X (2017) An Unobtrusive Fall Detection and Alerting System Based on Kalman Filter and Bayes Network Classifier. Sensors 17:1393. https://doi.org/10.3390/s17061393Santoyo-Ramón JA, Casilari E, Cano-García JM (2018) Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection with Supervised Learning. Sensors 18:1155. https://doi.org/10.3390/s18041155Mao A, Ma X, He Y, Luo J (2017) Highly Portable, Sensor-Based System for Human Fall Monitoring. Sensors 17:2096. https://doi.org/10.3390/s17092096Casilari E, Oviedo-Jiménez MA (2015) Automatic fall detection system based on the combined use of a smartphone and a smartwatch. PLoS One 10(11):e0140929Dias PVGF, Costa EDM, Tcheou MP, Lovisolo L (2016) Fall detection monitoring system with position detection for elderly at indoor environments under supervision. 2016 8th IEEE Latin-American Conference on Communications (LATINCOM). Medellin, pp. 1–6. https://doi.org/10.1109/LATINCOM.2016.7811576Phu PT, Hai NT, Tam NT (2015) A Threshold Algorithm in a Fall Alert System for Elderly People. In: Toi V, Lien Phuong T (eds) 5th International Conference on Biomedical Engineering in Vietnam. IFMBE Proceedings, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-11776-8_85 . ISBN:978-3-319-11775-1Santiago J, Cotto E, Jaimes LG, Vergara-Laurens, I (2017) Fall detection system for the elderly. 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC). Las Vegas, NV, pp 1–4. https://doi.org/10.1109/CCWC.2017.7868363Malheiros L, Nze GDA, Cardoso LX (2017) Fall detection system and body positioning with heart rate monitoring. IEEE Lat Am Trans 15(6):1021–1026Ethem Alpaydin (2010) Introduction to Machine Learning, 2nd edn. The MIT PressMezghani N, Ouakrim Y, Islam MR, Yared R, Abdulrazak B (2017) Context aware adaptable approach for fall detection bases on smart textile. 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Orlando, FL, pp 473–476. https://doi.org/10.1109/BHI.2017.7897308Pierleoni P, Belli A, Palma L, Pellegrini M, Pernini L, Valenti S (2015) A high reliability wearable device for elderly fall detection. IEEE Sensors J 15(8):4544–4553Aziz O, Musngi M, Park EJ, Mori G, Robinovitch SN (2017) A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med Biol Eng Comput 55(1):45–55Nguyen LP, Saleh M, Le Bouquin Jeannès R (2018) An Efficient Design of a Machine Learning-Based Elderly Fall Detector. In: Ahmed M, Begum S, Fasquel JB (eds) Internet of Things (IoT) Technologies for HealthCare. HealthyIoT 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 225. Springer, ChamÖzdemir TA, Barshan B (2014) Detecting falls with wearable sensors using machine learning techniques. Sensors 14(6):10691–10708Tong L, Song Q, Ge Y, Liu M (2013) HMM-based human fall detection and prediction method using tri-axial accelerometer. IEEE Sensors J 13(5):1849–1856SISTEMIC: Research group on Embedded Systems and Computational Intelligence of the Electronics and Telecommunications Department at the Faculty of Engineering, University of Antioquia, “SisFall Dataset.” Online. Available: http://sistemic.udea.edu.co/investigacion/proyectos/english-falls/?lang=en . Accessed 2 Feb 2018Rubenstein L (2006) Falls in older people: epidemiology. Risk Factors and Strategies for Prev 35(Suppl 2):ii37–ii41Youn J, Okuma Y, Hwang M, Kim D, Cho JW (2017) Falling direction can predict the mechanism of recurrent falls in advanced Parkinson’s disease. Sci Rep 7(1):3921Nevitt S, Cummings MC (2018) Type of fall and risk of hip and wrist fractures: The study of osteoporotic fractures. J Am Geriatr Soc 41(11):1226–1234Karantonis DM, Narayanan MR, Mathie M, Lovell NH, Celler BG (2006) Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed 10(1):156–167Khan AM, Lee YK, Kim TS (2008) Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets in 2008 30th Annual International. Conf Proc IEEE Eng Med Biol Soc 2008:5172–5175Yoshida T, Mizuno F, Hayasaka T, Tsubota K, Wada S, Yamaguchi T (2005) A wearable computer system for a detection and prevention of elderly users from falling. In: Proceedings of the 12th international conference on biomedical engineering. Singapore, pp 179–182Kangas M, Konttila A, Winblad I, Jamsa T (2007) Determination of simple thresholds for accelerometry based parameters for fall detection. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon (France), pp 1367–1370. https://doi.org/10.1109/IEMBS.2007.4352552 . E- ISSN: 1558-4615Shan S, Yuan T (2010) A wearable pre-impact fall detector using feature selection and Support Vector Machine. In: IEEE 10th International Conference on Signal Processing Proceedings. Beijin (China), pp 1686–1689. https://doi.org/10.1109/ICOSP.2010.5656840 . E- ISSN: 2164-523XLombardi A, Ferri M, Rescio G, Grassi M, Malcovati P (2009) Wearable wireless accelerometer with embedded fall-detection logic for multi-sensor ambient assisted living applications. In: 2009 IEEE Sensors. Christchurch (New Zealand), pp. 1967–1970. https://doi.org/10.1109/ICSENS.2009.5398327 . E- ISSN: 1930-0395Aziz O, Klenk J, Schwickert L, Chiari L, Becker C, Park EJ, Mori G, Robinovitch SN (2017) Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets. PLoS One 12(7):e0180318Wang K, Delbaere K, Brodie MAD, Lovell NH, Kark L, Lord SR, Redmond SJ (2017) Differences between gait on stairs and flat surfaces in relation to fall risk and future falls. IEEE J Biomed Heal Inform 21(6):1479–1486Lindholm B, Hagell P, Hansson O, Nilsson MH (2015) Prediction of falls and/or near falls in people with mild Parkinson’s disease. PLoS One 10(1):e0117018Fan Y, Levine MD, Wen G, Qiu S (2017) A deep neural network for real-time detection of falling humans in naturally occurring scenes. Neurocomputing 260:43–58Jokanovic B, Amin M, Ahmad F (2016) Radar fall motion detection using deep learning. In: 2016 IEEE Radar Conference (RadarConf). Philadelphia (USA), pp 1–6. https://doi.org/10.1109/RADAR.2016.7485147 . E- ISSN: 2375-5318Jankowski S, Szymański Z, Dziomin U, Mazurek P, Wagner J (2015) Deep learning classifier for fall detection based on IR distance sensor data. In: 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol 2. Warsar (Polonia), pp. 723–727. https://doi.org/10.1109/IDAACS.2015.7341398Jokanović B, Amin M (2018) Fall detection using deep learning in range-Doppler radars. IEEE Trans Aerosp Electron Syst 54(1):180–189Shojaei-Hashemi A, Nasiopoulos P, Little JJ, Pourazad MT (2018) Video-based Human Fall Detection in Smart Homes Using Deep Learning. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Florence (Italy), pp 1–5. https://doi.org/10.1109/ISCAS.2018.8351648 . E- ISSN: 2379-447XLeu F-Y, Ko C-Y, Lin Y-C, Susanto H, Yu H-C (2017) Chapter 10 - Fall Detection and Motion Classification by Using Decision Tree on Mobile Phone. In: Xhafa F, Leu F-Y, Hung L-LBT-SSN (eds) Intelligent Data-Centric Systems Book. Academic Press, pp 205–237. https://doi.org/10.1016/B978-0-12-809859-2.00013-9Yacchirema D, Suárez de Puga J, Palau C, Esteve M (2018) Fall detection system for elderly people using IoT and Big Data. In: 9th International Conference on Ambient Systems, Networks and Technologies (ANT 2018), Porto (Portugal), available at Procedia Computer Science, vol 130, pp 603–610. https://doi.org/10.1016/j.procs.2018.04.110 E-ISSN:1877-0509Rougier C, Meunier J, St-Arnaud A, Rousseau J (2011) Robust video surveillance for fall detection based on human shape deformation. IEEE Trans Circuits Syst Video Technol 21(5):611–622Stone EE, Skubic M (2015) Fall detection in homes of older adults using the Microsoft Kinect. IEEE J Biomed Heal Inform 19(1):290–301Yuwono M, Moulton BD, Su SW, Celler BG, Nguyen HT (2012) Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems. Biomed Eng Online 11(1):9Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol. 1, no. 10. Springer series in statistics New York, NY, USA. https://doi.org/10.1007/b94608 . E-ISBN: 9780387848587Zhang C, Ma Y (2012) Ensemble machine learning: Methods and applications. Springer-Verlag New York, NY. https://doi.org/10.1007/978-1-4419-9326-7 . E-ISBN 978-1-4419-9326-7Big ML (2017) Inc. US “Comprehensive Machine Learning Platform”. Online. Available: https://bigml.com/features . Accessed 12 Aug 2018Ling CX, Huang J, Zhang H et al (2003) AUC: a statistically consistent and more discriminating measure than accuracy. In: 18th Int'l Joint Conf. Artificial Intelligence (IJCAI), Acapulco (mexico), vol 3, pp 519–524. ISBN:0-7695-2728-0Dai J, Bai X, Yang Z, Shen Z, Xuan D (2010) PerFallD: A pervasive fall detection system using mobile phones. In: 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops). Mannheim (Germany), pp 292–297. https://doi.org/10.1109/PERCOMW.2010.5470652 . E- ISBN: 978-1-4244-6606-1Li Y, Ho KC, Popescu M (2012) A microphone array system for automatic fall detection. IEEE Trans Biomed Eng 59(5):1291–1301Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874Pease SG, Trueman R, Davies C, Grosberg J, Yau KH, Kaur N, Conway P, West A (2018) An intelligent real-time cyber-physical toolset for energy and process prediction and optimisation in the future industrial Internet of Things. Futur Gener Comput Syst 79(Part 3):815–829Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140Hanke S, Mayer C, Hoeftberger O, Boos H, Wichert R, Tazari M-R, Wolf P, Furfari F (2011) universAAL -- An Open and Consolidated AAL Platform. In: Wichert R, Eberhardt B (eds) Ambient Assisted Living: 4. AAL-Kongress 2011, Berlin, Germany, January 25–26, 2011. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 127–140. https://doi.org/10.1007/978-3-642-18167-2_10 . E-ISBN: 978-3-642-18167-2Gjoreski H, Lustrek M, Gams M (2011) Accelerometer Placement for Posture Recognition and Fall Detection. In: 2011 Seventh International Conference on Intelligent Environments. Nottingham (UK), pp 47–54. doi: https://doi.org/10.1109/IE.2011.11 . E- ISBN: 978-0-7695-4452-6Parker C (2011) An Analysis of Performance Measures for Binary Classifiers. In: 2011 IEEE 11th International Conference on Data Mining, Vancouver (Canada), pp 517–526. doi: https://doi.org/10.1109/ICDM.2011.21 . E- ISSN: 2374-8486Han J, Kamber M, Pei J (2012) Data Mining Concepts and Techniques, Third Edit. Morgan Kaufmann Publishers in The Morgan Kaufmann Series in Data Management Systems. Waltham (USA). E-ISBN: 978012381480
    corecore