

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ENERGY EFFICIENT MACHINE LEARNING-BASED CLASSIFICATION OF ECG

HEARTBEAT TYPES

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

By

MORGHAN S HARTMANN
Norman, Oklahoma

2018

ENERGY EFFICIENT MACHINE LEARNING-BASED CLASSIFICATION OF ECG

HEARTBEAT TYPES

A THESIS APPROVED FOR THE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

 Dr. Ali Imran, Chair

 Dr. Thordur Runolfsson

 Dr. Gregory MacDonald

© Copyright by MORGHAN S HARTMANN 2018

All Rights Reserved

iv

Table of Contents

Introduction .. 1

1.1 State of the Art in Fog Computing and Edge Devices .. 1

1.2 ECG Background .. 6

1.3 ECG Classification on the Network Edge ... 7

1.4 MIT Arrhythmia Database ... 9

1.5 Contributions ... 12

1.6 Articles Currently Under Review for Publication .. 13

1.7 Organization .. 13

Classification Methods .. 15

2.1 Classification Model Formulation ... 15

2.2 Classification Metrics .. 16

2.3 Naïve Bayes Classifier ... 19

2.4 Multilayer Perceptron (MLP) ... 21

2.5 Distilled Deep Neural Network.. 21

2.6 Input Features ... 23

Data Pre-processing .. 24

Naïve Bayes Classifier Results .. 25

Multilayer Perceptron Classifier Results ... 28

Deep Neural Network Results ... 32

6.1 Deep Neural Network Teacher Model .. 32

6.2 Trained Student Model.. 33

6.3 Standalone Student Model .. 35

Comparison of Machine Learning Techniques .. 38

7.1 Accuracy Comparison ... 38

7.4 Loss Comparisons .. 39

7.2 Energy Efficiency Comparison ... 39

7.3 Latency Comparison ... 40

Conclusion and Future Work ... 42

References ... 44

v

Abstract

To meet the accuracy, latency and energy efficiency requirements during real-time collection and

analysis of health data, a distributed edge computing environment is the answer, combined with 5G

speeds and modern computing techniques. Using the state-of-the-art machine learning based

classification techniques plays a crucial role in creating the optimal healthcare system on the edge. This

thesis first provides a background on the current and emerging edge computing classification

techniques for healthcare applications, specifically for electrocardiogram (ECG) beat classification. We

then present key findings from an extensive survey of over hundred studies on the topic while

taxonomizing the literature with respect to key architectural differences, application areas and

requirements. Leveraging the insights drawn from the extensive analysis of the pertinent literature we

select a set of most promising machine learning based classification techniques for ECG beats, based

on their suitability for implementation on a small edge device called a Raspberry Pi. After implementing

these classification techniques on a Raspberry Pi based platform we perform a comparison of the

performance of these classification techniques with respect to three key performance indicators (KPI)

of interest for health care applications namely accuracy, energy efficiency, and latency.

ECG measures the electrical activity of the heart and help healthcare professionals to evaluate heart

conditions of a patient, sometimes diagnosing life-threatening conditions. The features of ECG signals

are pre-processed and fed into the classification algorithms to detect and classify abnormal beat types.

ECG classification requires low complexity but still high level of performance in terms of

aforementioned three KPIs. The classification algorithms chosen, namely Naïve Bayes, Multilayer

Perceptron (MLP), and distilled deep neural network (DNN) are all energy efficient methods hence

suitable for implementation for small edge devices. The comparative multi-faceted evaluation presented

in this thesis is a new contribution to research that exists on edge based classification as it offers

comparison of selected classification algorithms in terms three KPIs instead of one while using real

edge device based implementation. The performance of analyzed machine learning classification

vi

techniques is ranked according to each KPI. Benefiting from the results of the comparative analysis

presented in this thesis a particular classification algorithm can be selected for optimal deployment in

given scenario in healthcare system depending on the specific requirements of the given scenario. Edge

computing paves the way for a new generation of health devices that can offer a higher quality of life

for users if low-latency, low-energy, and high- performance requirements are addressed.

vii

List of Tables

Table 1.1…………………………………………………………………………………………...5

Table 1.2………………………………………………………………………………………….11

Table 4.1………………………………………………………………………………………….25

Table 5.1………………………………………………………………………………………….28

viii

List of Figures

Figure 1.1……………………………………………………………………………………1

Figure 1.2……………………………………………………………………………………6

Figure 1.3…………………………………………………………………………………..10

Figure 2.1…………………………………………………………………………………..22

Figure 4.1…………………………………………………………………………………..27

Figure 5.1…………………………………………………………………………………..29

Figure 5.2…………………………………………………………………………………..30

Figure 6.1…………………………………………………………………………………..31

Figure 6.2…………………………………………………………………………………..31

Figure 6.3…………………………………………………………………………………..32

Figure 6.4…………………………………………………………………………………..32

Figure 6.5…………………………………………………………………………………..33

Figure 6.6…………………………………………………………………………………..34

Figure 6.7…………………………………………………………………………………..34

Figure 6.8…………………………………………………………………………………..35

Figure 6.9…………………………………………………………………………………..36

Figure 7.1…………………………………………………………………………………..37

Figure 7.2…………………………………………………………………………………..38

Figure 7.3…………………………………………………………………………………..39

Figure 7.4…………………………………………………………………………………..40

1

Introduction

1.1 State of the Art in Fog Computing and Edge Devices

The first few papers published on topic of edge computing relate to the use of small, portable

devices on the edge of the network for real-time computation and their role in a larger system

called fog computing. Bonomi, et al. [1] was the first published work that referred to the term

“fog computing.” The ideal system would provide low latency IoT services with a large number

of nodes. The term “fog” describes a location in reference to the Cloud, which are large data

centers used for computation and storage. Fog computing hopes to move computing

capabilities towards the edge of the network, therefore eliminating the need to transfer the

majority of a system’s data to the Cloud, which is expensive, time-consuming, and not fast

FIGURE 1.1

Edge Device Location in E-Health Network

2

enough for latency-sensitive health applications. Fog, or edge computing has the following

requirements [2]:

• Low latency

• Increased mobility and location awareness

• Energy efficiency

• High level of security

• Usability

• Low operating cost

Current research in edge computing for healthcare uses focuses on measuring certain KPIs that

are important for the progression of health services, such as response time, energy efficiency,

and bandwidth cost. Papers tend to focus on one of the KPIs for a certain portion of the edge

computing process, so the aim of this section is to provide a picture of best data operations

techniques for a healthcare edge device.

Classification of raw data collected by health sensors is normally completed using simple or

advanced algorithms, depending on the computing power of the device, and is a very common

research theme in healthcare-related computing. Activity-based recognition is the most popular

research relating to classification in healthcare edge computing, since robust techniques are

needed for devices that have lower storage and computing capabilities.

Fall detection algorithms, for example, can be done on the smartphone device. In [3] and [4],

fall detection algorithms are run both on a smartphone initially, then on a back-end module

connected to a cloud server. The front-end algorithms contain both a root sum squares (RSS)

filter for detecting fall-like activity and an activity daily living (ADL) filter that reduces false

alarms by matching activities that might be fall-like in nature, like bending over to pick up a

dropped item, etc. Accuracy is the general goal for many papers that have results for

3

classification algorithms. One Class SVM with Gaussian Kernel’s accuracy is assessed in [5]

to be up to 75% accurate in classifying visiting events in an elderly person’s home when room

sensors in combination with a wearable Fitbit device is used as a data source. This research

shows that sometimes an additional source of data can be useful in increasing accuracy of a

system.

Comparing different classification algorithms directly is the best way to determine the most

energy efficient or low latency method. For example, in [6], the authors compare three types

of machine learning techniques, namely Bayesian belief network (BBN), support vector

machine (SVM) and K-nearest neighbors (KNN) on a dataset of breath rate and humidity level.

BBN managed to reach the highest accuracy compared to SVM and KNN, however, there was

no quantitative study of most energy efficient approach, which is an oversight of much of the

research found. However, [7] does have information on low latency measures of four

classification algorithms, including BBN. BBN has the lowest latency compared to linear

regression, nearest neighbor, and KNN methods for similar data as used in [6]. The authors of

“iHealth” use a fuzzy approach to the classification of raw sensor data [8]. The fuzzifier uses

membership functions to determine whether temperature and heart rate data are normal or not.

Additionally, this fuzzy technique on a device uses 8-10mW less than a device that is Weka

J48 decision tree and performs a comparison with two other classification methods for a data

set with vital sign and not equipped with the fuzzifier. A similar study [9] takes the

environmental information. The experiment reveals that J48 has the lowest classification time

as compared to fuzzy c-means (FCM) and random tree (RT). Artificial neural networks (ANN)

have exploded recently in classification and as shown by [10], it is a method that has lower

error than other techniques, like linear regression and decision trees. [11] also uses a neural

network, specifically convolutional neural network (CNN) to classify ECG rhythms with low

latency at an edge gateway. Much research takes an existing classification method and modifies

4

it, like in [12]. The authors’ modified Markov modulated poisson process (MMPP), which they

term M3P2, correctly classifies more elderly visiting events that MMPP. Increasing the number

of attributes can also make for a more useful program. In [13], a Weka AnswerTree correctly

classifies 96% of 17 different heart rhythm types, which is more types than existing research

at the time of publication.

Some healthcare applications require classification algorithms to work with video or image

feeds, such as the application in [14] for activity recognition. The authors use a convolutional

neural with an average of 76.06% accuracy. Although this makes for an accurate recognition

system, the authors point out that it requires too much energy to run on a simple embedded

device and would run best on a server. [15] offers a solution for the classification of voice

signals from Parkinson’s disease patients. The algorithms run on the Intel Edison fog computer

include dynamic time warping (DTW) for single-word recognition in time series data and

clinical speech processing chain (CLIP) for pitch and loudness estimation.

5

 TABLE 1.1

 RELATED WORKS ON CLASSIFICATION / PREDICTION

Reference Technique
Information

Type
Contribution Results

[40]
One-Class SVM with

Gaussian Kernel

Visiting events,
heart rate, sleep

patterns

Greater
Classification

Accuracy

75% Detection rate for
labeled data set when
Fitbit added to system

[82]
Bayesian Belief
Network (BBN)

Vital sign,
environment

data

Comparison of
classification

methods

BBN reached highest
accuracy compared to

Support Vector
Machine (SVM) and K-

nearest neighbors
(KNN)

[15] Fuzzy Logic Classifier

Heart rate,
respiration rate,

skin
conductance

Lower power
consumption

technique

Reduction by
8→10mW for fuzzy
system compared to

non-fuzzy system

[49] Weka AnswerTree ECG

Greater number
of rhythm types

than other
classifiers

Correctly classifies 96%
of 17 different rhythm

types

[41]

Markov modulated
multidimensional non-
homogeneous Poisson

process
(M3P2)

Visiting Events
Comparison of
classification

methods

Outperforms standard
Markov modulated

Poisson process
(MMPP)

[84]
Weka J48 Decision

Tree

Vital sign,

environmental

data

Comparison of

low latency

classification
methods

J48 has lowest

classification time

compared to fuzzy c-

means (FCM) and
random tree (RT)

[55] K-means Clustering
Speech data

samples

Comparison of

low latency

device

classification

Raspberry Pi has lower

runtime (160ms)

compared to the Intel

Edison, but higher

average CPU %

[83]
Weka Bayesian belief

network (BBN)

Vital sign,

environmental

data

Comparison of

low latency

classification

methods

BBN has lowest

classification time (5

min for 213 patients)

compared to linear

regression, nearest

neighbor, and KNN

methods

[54]
Artificial Neural

Network (ANN)

Gas pollutant

sensing

Comparison of

Classification

Accuracy

ANN has lowest Root
mean square error

(RMSE) compared to

linear regression and

decision tree

[72]
Convolutional Neural

Network (CNN)
ECG

Low latency

classification and

data transmission

Using edge gateway in

place of cloud

computing yields lower

round-trip time

6

1.2 ECG Background

ECG, or Electrocardiogram, is a test that measures electrical activity of the heart. According to

the American Heart Association, the test can identify parts of the heart that have been damaged,

overworked, or are too large to be healthy [17]. The test is routine and harmless, as no

electricity is transmitted to the body. The key parts of the ECG are pictured below in Figure 2.

The features labeled refer to the stimulation and contraction of different parts of the heart

muscle. The P-Wave (see Figure 1) is the action of the atria, or upper parts of the heart. The

QRS Wave refers to the ventricles, or the lower parts of the heart contracting. The P wave

signals the end of the heartbeat and represents the heart muscles resetting for another

contraction sequence. P interval, QRS area, and T interval are common extracted feature for

the classification. Each person has a slightly different normal ECG signal, depending on

gender, height, and weight, among other factors [18]. The problem with ECG data is the large

amount of data that can be amassed by the sensors, especially if the number of leads is

increased. Even ECG samples for small periods of time can take up megabytes of storage,

which is the case for the MIT arrhythmia database. Each sample contains 30 minutes of two-

FIGURE 1.2

ECG Signal Components

7

lead data, which consists of approximately 18 MB. For a small device used on the edge of the

network with limited computing and storage capabilities, this is not an acceptable amount.

1.3 ECG Classification on the Network Edge

[19] presents a vision of a smart health care system using an Arduino and Smartphone data

aggregator and processor. Data from multiple sensors, including a two-lead ECG sensor, is

analyzed using a fuzzy interference system to classify results of each vital sign as “normal”,

“above-normal”, or “emergency.” The device alerts doctors and emergency services for timely

treatment of a life-threatening situation. The ECG sensor data is used to classify heart rate as

“bradycardia” (low), “normal”, or “tachycardia” (high). Similar membership plots are shown

for blood pressure and body temperature. [20] uses Android development board and 7 ECG

leads to form a fog-type system for heart abnormality detection. The edge of the system is the

sensor tier, which consists of an ECG module with a node that wirelessly transmits data to a

mobile computing tier. This tier uses an Android development board and connects to sensors

via ZigBee interface for the remote monitoring of patients. A fog IoT health monitoring system,

called iCare, is proposed in [21]. In this system, ECG signal data is sent to a smart gateway for

feature extraction for the eventual calculation of heart rate. The features extracted from the data

is the P-R interval, Q-T interval, S-T interval, and QRS area. Then, with the help of these

features, heart rate can be calculated.

On these IoT devices, an algorithm will need to be used for the fast and energy efficient

classification of IoT ECG sensor data. In [22], one-minute samples of ECG cycles, with and

without arrhythmia, are analyzed using Support Vector Machine (SVM) learning. The use of

this low latency technique, combined with the fog node computation in the place of Cloud

computing, contributes to a very low latency device (759 ms delay) that can be deployed in an

IoT network. The computation is performed on a gateway fog node, an HP Compaq 8200 Elite,

8

which has 3 GHz speed and 16 GB RAM. The SVM algorithm distinguishes between normal

and abnormal heart rhythms based on features from the ECG with an accuracy of 93.6%.

However, this work uses a different source of data, namely the “long-term ST Database” on

Physiobank.

The choice to use a Raspberry Pi 3 for classification task was formed mainly by the research

presented in [23] and [16]. In [23], the authors used the Raspberry Pi 3 as a data processor and

for temporary storage of data relating to cardiac monitoring. It achieves a high throughput and

is 5G compliant, which is a requirement for future IoT networks. The Raspberry Pi has 1GB

RAM and is able to communicate using the 802.11 protocol along with Bluetooth and has

ethernet ports. The authors of [16] propose a Smart-Fog architecture for real-time classification

of speech abnormalities in Parkinson’s patients. When using a K-means clustering algorithm,

The Raspberry Pi outperforms the Intel Edison in terms of lower runtime but has a slightly

higher memory and average CPU usage than the Edison. However, in a healthcare field, having

a fast device is the goal for patients to have lifesaving medical attention, so this slight difference

can be overlooked.

The use of machine learning techniques for medical data classification on the edge is a common

theme of today’s relevant research, however, there are a few that focus specifically on ECG

signal classification. For example, in [18], an Intel mote runs an RBF algorithm for the analysis

of normal and abnormal heart beats. At random, 23 patients’ data were picked from the MIT

database of 48 patients. The training data consisted of several features extracted from the raw

data, including the P-Wave, RST-Wave, and T-Wave offsets. However, the algorithm was run

separately on each individual, and in addition, many of the results on some reports are quite

low in cases where the number of abnormal beats is sparse. In [13], classification of ECG

abnormalities is done on a PDA, which is a somewhat outdated technology. Nevertheless, the

reports on classification comparisons are highly detailed, which was helpful in the selection of

9

models for this research. The most accurate models used in [13] were the decision tree, neural

network, and nearest neighbor clustering, which all had over 91%. However, the neural

network had a training time of 2 hours, 10 min and the other two had times of over 5 minutes.

A technique that had an average classification accuracy of 70% and a very low time was the

Bayesian classifier, which made it a good candidate for future testing. The authors were able

to classify 15 beat types from the database, in particular, the beats relating to ventricular flutter

arrhythmia (labeled!, E, and F in the database), which is a condition that needs medical

attention in less than three minutes to avoid fatality. A recent survey on ECG classification

tasks outlines some of the common classification procedures, but has only one that classifies

ECG beats on raw data. Using MLP and a nearest neighbor approach, the author was able to

achieve 99% accuracy.

1.4 MIT Arrhythmia Database

There are several publicly available databases to use for arrhythmia classification tasks,

including those on EDB, AHA, CU, and NSD. However, the most popular to use is the MIT

Arrhythmia Database [24], since it has the best documentation and most beat types represented.

The MIT Arrhythmia Database available on Physiobank contains 48 patient ECG records, each

30 minutes long. The heartbeats fall into five “super classes” –normal, supraventricular ectopic

beats, ventricular ectopic beats, fusion beats, and unknown beats. The beats are further

classified into 18 distinct types, each represented in the database records by a character. Figure

10

2 is an excerpt from one of the database’s patient samples. From the “V” labels, it becomes

clear that this patient suffers from a premature ventricular contraction, however, the “.” Labels

correspond to normal heartbeats. Many of the patient files contain more than one type of

heartbeat. Table II outlines the basic symbols used to describe the beat classifications.

FIGURE 1.3

Example ECG Signal from MIT

database

11

.

TABLE 1.2

Beat Annotation Symbols in Data

N Normal Beat

L Left bundle branch block beat

R Right bundle branch block beat

A Atrial premature beat

a Aberrated atrial premature beat

J Nodal premature beat

S Supraventricular premature beat

V Premature ventricular contraction

F Fusion of ventricular and normal

beat

! Ventricular flutter wave

e Atrial escape beat

j Nodal escape beat

E Ventricular escape beat

/ Paced beat

f Fusion of paced and normal beat

x Non-conducted P-wave (blocked

APB)

Q Unclassifiable beat

| Isolated QRS-like artifact

12

1.5 Contributions

The contributions of this thesis are as follows:

• Survey of edge computing, with a focus on classification techniques used for edge device

based medical applications.

• Meaningful selection of machine learning methods based on previous works on edge

computing for healthcare applications, especially from [49] which provides an analysis,

however slightly outdated, on many algorithms on the same dataset. This thesis uses state-

of-the-art techniques to continue this work’s analysis not only by comparing accuracy, but

also runtime and CPU usage for optimal classification on a small device. In addition, this

work compares four different techniques, which provides insight into the optimal one to

use in a future 5G fog computing setup.

• Summary and mathematical theory behind machine learning techniques chosen for analysis

• Selection of a raw data input for the classifiers sets this project apart from previous works

in ECG classification. A large dataset takes up storage and, when processed, memory that

a small device does not have. Previous work uses a large number of features, so to test if

sparse features can be used, extracted sparse raw data from the MIT database is chosen for

the input to reduce the memory-related constraints as well as storage constraints.

• Previous work in ECG classification using deep learning techniques do not take into

account energy efficiency and latency constraints for edge-based deployments. This work

adds to these by providing an analysis in CPU usage, which is especially important for

small devices that have less than 8 GB of memory, and latency of runtime, which is another

requirement for fast medical devices.

13

• Raspberry Pi, the device on which algorithms are run in the experimental setup, is a

representative machine for modeling a fog or edge-based scenario in the future. Raspberry

Pi is 5G-compatible and can run Python code efficiently and faster when compared to a

similar Arduino model.

• This work extends to a variation of beat types included in the machine learning techniques.

In addition to showing results for 14 beat types, it also extends to abnormal versus normal

beats with a focus on distinguishing between normal beats and the most urgent beat types

that need diagnosis quickly (less than three minutes).

1.6 Articles Currently Under Review for Publication

2. M. Hartmann, U. Hashmi, C. Ge, A. Imran, “Edge Computing in Smart Health Care

Systems: Review, Challenges and Research Directions” in ETT Special Issue (Submitted

December 2018)

3. M. Hartmann and A. Imran. “Deep Learning based classification of different types of

arrhythmia using ECG data through a low-cost low energy edge deployable device” (To be

Submitted January 2019)

1.7 Organization

The first chapter gives additional background information on the topics of edge computing,

medical applications of edge computing, and basic ECG information and previous works on

classification of these signal types. Chapter two outlines the classification methods that will be

used, as well as each one’s mathematical background and information on why it was chosen

for the comparison. Now with the preliminaries completed, the next chapters focus on the actual

data processing. Chapter three explains the types of pre-processing methods, including how the

data was obtained and features extracted. Chapters four, five, six, and seven contain the results

14

of the machine learning classification tasks. First, the results of each method are given their

own chapter. Then, in chapter seven, the results are compared and final suggestion for optimal

technique, based on energy efficiency, accuracy, and latency, is given. The tradeoffs between

these three components is also discussed in chapter seven. Last, in chapter eight, is the

conclusion, which discusses the comparison results, and future research directions in ECG

classification for an edge computing scenario.

15

CHAPTER 2

Classification Methods

2.1 Classification Model Formulation

For qualitative tasks, where an output variable is in a non-numerical category, such as eye color or

animal type, a specific technique called a classifier is used [26]. Classification is commonly used

in medicine for many cases. For example, DNA sequence classification for diseases or image

classification of tumors to be categorized as cancerous or non-cancerous. In classification, a set of

input observations is given to the classifier. Logistic regression techniques cannot be used in these

cases, since a natural ordering of the data is not always present. In this research involving ECG,

there is no ordering for the types of beats. If a beat is encoded as a “1” and another as “2,” this

differentiation is not an ordering. One beat cannot be “greater” than another. For example, in this

beat classification task, the outputs can be represented by

𝑌 =

{

𝑁, 𝑁𝑜𝑟𝑚𝑎𝑙
𝐴, 𝐴𝑡𝑟𝑖𝑎𝑙 𝑃𝑟𝑒𝑚𝑎𝑡𝑢𝑟𝑒 𝐵𝑒𝑎𝑡
𝑒, 𝐴𝑡𝑟𝑖𝑎𝑙 𝐸𝑠𝑐𝑎𝑝𝑒 𝐵𝑒𝑎𝑡

…
…

The classification task has two main parts—model formulation and prediction. The prediction of a

beat into a particular class relies on a representative model, which comes from the input variables.

Each of the techniques’ models are discussed in this chapter, along with a description of the relevant

metrics used in the performance evaluations.

16

2.2 Classification Metrics

2.2.1 Error Rate

The primary metric for assessing model accuracy measures how well predictions match the input

data. For this, the mean squared error (MSE) is calculated, which is

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑛

𝑖=1

where 𝑓 represents the predicted class resulting from fitting the input data 𝑥𝑖 and 𝑦𝑖 is the actual

value of the output class. However, since the predictions in the ECG dataset task are qualitative,

MSE is not calculated. Instead an error rate is used [27]:

1

𝑛
 ∑𝐼(𝑦𝑖 ≠ 𝑦̂𝑖)

𝑛

𝑖=1

where 𝐼 is an indicator variable that decides whether the argument is true or not. For example, if

𝑦𝑖 ≠ 𝑦̂𝑖, then the observation was misclassified, and the argument will be equal one, whereas if

𝑦𝑖 = 𝑦̂𝑖, then the output will be a zero.

2.2.2 Accuracy

Accuracy, as used in all of the Python directories, is the number of correct predictions compared to

the total number of predictions made [28]. In mathematical form, accuracy is the following:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
∑(1 − (𝑦𝑖 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑓(𝑥𝑖))))

2

𝑛

𝑖=1

However, accuracy alone does not give a true performance indication for some classifiers. For

example, in the ECG arrhythmia dataset, the number of anomalies compared to normal values in

one dataset is extremely low. This would mean that if the number of misclassified instances is equal

to the total number of anomalous data points, the accuracy could still be extremely high without

17

the classifier truly achieving its goal, which is the classification of abnormal and life-threatening

beat types.

2.2.3 Logarithmic Loss

Logarithmic loss, called cross-entropy in the python code, is a probability of the algorithm’s

confidence in a prediction. Loss increases as the probability of the predicted value diverges from

its true value. For the portions of the task that involve binary classification (i.e. normal versus

abnormal beats), cross entropy [29] is calculated as

−(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝))

where p represents the predicted probability that 𝑥𝑖 belongs to class 𝑦𝑖 and 𝑦 is the binary indicator

whether 𝑦̂ is the correct classification for 𝑥.

For multi-class prediction tasks, cross-entropy is slightly different:

−∑𝑦𝑥,𝑐 log (𝑝𝑥,𝑐)

𝑀

𝑐=1

In this case, 𝑀 is the number of classes or beat types and 𝑥 represents the input observations

associated with the data entry.

2.2.4 Confusion Matrix

This table is commonly used in classification analyses since it has an extremely readable format to

determine the accuracy of the classifier. A confusion matrix contains a comparison of predictions

and accurately predicted outcomes. For example, a binary beat classification may have the resulting

confusion matrix:

[
200 10
30 150

]

18

For this, the number of correct classification instances is are on the diagonal line of the matrix, or

200 and 150. The misclassified predictions are 30 and 10, which means that this classifier will have

a relatively high accuracy according to this chart. More metrics can be obtained from the confusion

matrix, such as precision and recall [30]. For example, in the above example, recall is the ratio of

true positives (TP), which is represented by 200 abnormal types correctly classified, and the sum

of true positives (TP) and false negatives (FN), which are the normal beats classified as abnormal

beats. In this case,

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

200

200 + 30

Another similar metric is precision, which is the ratio of true positive (TP) cases to the sum of true

positives (TP) and false positives (FP). This shows how well the classifier can predict relevant

abnormalities. In the above case,

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

200

200 + 10

2.2.5 Classification Time

Because this ECG classification task involves time-sensitive information concerning a patient, the

time for a model to be fitted or trained and predictions to be made needs to be low. To find the

classification time, the timer function was used in python before the line that calls for model fitting,

whereas for prediction time, the timer function is placed before the line that processes the test data

for prediction.

2.2.6 Memory Usage

Another constraint for this task is low energy usage. The metric that is used in most publications

for edge computing is memory usage, which quantifies the amount of random-access memory that

19

the program is using. If a CPU uses more memory than it has, the program will be run slowly,

which is a problem for medical applications. The reason for this is the device type that the

algorithms will be housed. The data amount that is used as the input for the algorithm has some

influence on the memory usage, but the complexity of the algorithm is the main source of excess

computing. A convolutional neural network, for example, results in a high accuracy for data

classification, however, it also has a high memory requirement, which is not feasible for running

on a small device at the edge of the network. This tradeoff between energy efficiency and accuracy

will be discussed in the next chapter. The three compared techniques were chosen for their low

complexity and low memory requirements.

2.3 Naïve Bayes Classifier

The first classification method I tested was the Naïve Bayes. The reason this technique was picked

comes from the related work from [13], which shows the low latency and relatively high accuracy

results for an edge device with low computational power. The Naïve Bayes classifier uses the

concept of the Bayes theorem, which is a central idea in probability [31]. Given a set of variables

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑑}

And a set of outcomes

𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑑}

Bayes’ rule is calculated for each variable relating to each set of outcomes

𝑝(𝐶𝑗|𝑥1, 𝑥2, … , 𝑥𝑑) ∝ 𝑝 (𝑥1, 𝑥2, … , 𝑥𝑑| 𝐶𝑗) 𝑝(𝐶𝑗)

Where the second half of the proportion is the posterior probability that any X belongs to a class

C. This can be rewritten as a product of terms

20

𝑝(𝑋|𝐶𝑗) ∝ ∏𝑝(𝑥𝑘|𝐶𝑗)

𝑑

𝑘=1

Once every input X is given a probability of belonging to each class C, the X is given a class based

on which C has the highest probability. For example, if a beat was given a probability of .3 for

normal, .7 for abnormal, the beat would be labeled in the outcome as abnormal. The inputs for this

classification problem would be the electrical signal from two leads. For example, for one beat, the

values might be

𝑋 = {-0.12, -0.08}

which represents the values of one QRS peak. Next, the probability of X belonging to each class

will be assigned.

The specific type of Gaussian classifier used is Gaussian Naïve Bayes, which is a Python Scikit

standard function called by the line of code GaussianNB [32]. This function assumes the

likelihood of features is a normal distribution. In mathematical terms, this means that the normal

density has the form

𝑓𝑐(𝑥) =
1

√2𝜋𝜎
exp (−

1

2𝜎𝑐2
(𝑥 − 𝜇𝑐)

2)

where 𝜇 and 𝜎 are the mean and variance of each class 𝑐. Combining this expression with the

probability above, the probability that an input belongs to a class 𝑐 becomes

𝑝𝑐(𝑥) =

𝜋𝑐
1

√2𝜋𝜎
exp (−

1
2𝜎2

(𝑥 − 𝜇𝑐)
2)

∑ 𝜋𝑖
1

√2𝜋𝜎
exp (−

1
2𝜎2

(𝑥 − 𝜇𝑖)
2)𝐶

𝑖=1

where 𝐶 is the total number of classes and 𝜋𝑐 is the prior probability that an observation belongs to

a class 𝑐. Although this technique relies on a very simple expression, it is extremely fast and works

well with classification tasks, one famous example being spam filtering in emails. The simplicity

21

of the algorithm suggests that it would work well on a small device with limited computing

capability.

2.4 Multilayer Perceptron (MLP)

Multilayer perceptron is a form of feedforward neural network, which forms a stacked regression

model. The backbone of this algorithm is backpropagation, which comes from the essential

knowledge of calculus [27]. MLP has three or more layers: one input layer, one output layer, and

one or more hidden layers. For my project, I used 3 hidden layers with 100 neurons each. The

model for this scenario is the following:

𝑥𝑛 → ℎ1 → ℎ2 → ℎ3 → 𝑦𝑛

For a classification task with 𝐾 classes, the cross entropy is

𝐽(𝜃) = −∑∑ 𝑦̂𝑛𝑘𝑙𝑜𝑔𝑦̂𝑛𝑘(𝜃)

𝐾

𝑘=1𝑛

where 𝜃 is equal to the weight matrices of the model layers and 𝑛 refers to the input number. The

backpropagation comes in when the output layer for the model calculates the error and passes this

error back through the model to compute the first layer error signal to minimize the total error.

2.5 Distilled Deep Neural Network

Before the distilled neural network is discussed, it is essential to know the basics of a deep neural

network. Most neural networks used for classification have multiple convolution and pooling

layers, which add complexity to the model. The models used in this work are dense layers, which

apply weights to inputs and connect this to an output. So, for an input such as ECG raw recordings,

we have:

22

𝑀 = [
−.003 −.88
⋮ ⋮
−.3 −.01

]

And any input layer for the deep neural network can be represented as [33]

ℎ𝑖𝑛 = 𝑀 ∗𝑊 +𝐵

Where 𝑊 is the weights and 𝐵 represents biases from each of the neurons.

The newest state-of-the-art technique aims to gather essential knowledge from one large model or

a number of medium-sized models to create a “student” or generalized model that is more energy

efficient than its predecessors. This small size is ideal for a small edge device. This student model

distills the knowledge from a large neural network using logits, which are the inputs to the teacher’s

final Softmax layer [34]. Figure III below shows the sequence of events when constructing a student

model from a teacher model. The output of the teacher model’s final layer is taken as an input to

learn on the data at a fast rate. This in turn is used in the place of the Softmax activation layer of

the student model.

FIGURE 2.1

Derivation of trained Student

Model

23

2.6 Input Features

The input features chosen differ slightly from existing research discussed in the previous chapter.

Using state-of-the-art classifiers appropriate for small devices, simple and fast classification is

possible. Since these algorithms and datasets cannot exceed a certain memory usage amount,

limited input observations need to be used to ensure this speed and efficiency. The input variables

in this case are not the raw ECG signals, which exceed 15 MB for one patient’s data. Instead, the

raw signals from the amplitude of the QRS complex is taken from each beat type in 40 different

patient files. This accounts for only 160 kB once extracted, which is small enough to be run from

a small device.

24

CHAPTER 3

Data Pre-processing

The Pre-processing of MIT Arrhythmia Database files involved several steps:

• First, the files were downloaded from the Physiobank database for medical signals. The

annotation files which contain the beat type labels for the duration of each patient’s ECG,

are separate from the raw signal files, which must be merged via an indexing program that

takes the sample number from each annotation and inserts the label for the beat types in

the raw signal file.

• Next, to select the features to be used from the data files, a filtering program was run to

find the amplitude of each QRS complex, along with the raw signal information at the

amplitude of both leads. These selected features were taken from multiple patient files and

contained samples of 14 different beat types to analyze the robustness of the learning

algorithms to classify beats for any patient.

• To run machine learning algorithms on the new merged datasets, the beat types must be

assigned an integer, since the annotations use characters to represent different abnormal

beats. Once they are integers, they must be converted to categorical data type via

OneHotEncoder function from Python’s library.

25

CHAPTER 4

Naïve Bayes Classifier Results

4.1 Classification of 14 beat types

The naïve Bayes classifier was used for its low memory requirement and simple algorithm, which

could easily be run on a small device without lag. When run on 14 beat types, the algorithm was

able to classify an average of 60.7% of beat types from the two parameters it was given. The fitting

portion of the code was timed to be only 6.4ms, and prediction time only 3.8ms. The memory

requirement is also quite low, only 166 MB, which can easily be run on an edge device. Table III

outlines the classification report for 14 beat types. Clearly, some of the beat types need additional

support for the algorithm, which is why the next step was to experiment with the beat types included

in the study.

TABLE 4.1

Naïve Bayes Classification Report for 14 Beat Types

Beat Type Precision Recall F1-Score Support

A .69 .94 .79 268

N 0 0 0 114

/ .54 .36 .43 126

f 0 0 0 13

V .35 .62 .45 92

x .76 .94 .84 443

F 0 0 0 0

L .43 .55 .48 209

a .45 .25 .32 166

J 0 0 0 15

R 0 0 0 1

j 0 0 0 37

S .60 .35 .44 43

e .20 .05 .08 20

Average .53 .61 .55 1547

26

When the number of beat types was reduced to just three—normal and two of the most urgent beat

types for treatment—the result was a much higher accuracy and lower runtime. Clearly, for sparse

data inputs, the number of beats creates a tradeoff with the accuracy. The smaller dataset associated

with less beat types does contribute to the overall runtime, but the data processes also play a role

as well. The following is the confusion matrix for these three beat types:

[
𝟒 1 17
1 𝟏𝟎𝟏 4
4 4 𝟏𝟑𝟕

]

The most urgent beat types are classified correctly at an accuracy of 88.6%, where the most

common misclassification is confusing an F for ! beat classification, which are the anomalous and

urgent types. Therefore, emergency care would be dispatched, since these are not misclassified as

normal. Table IV contains the classification report summarizes the performance of the Naïve Bayes

classifier for these urgent beat types. The decreased precision observed from the F category in part

is due to the lack of available beat samples in this category but can be compensated in the future

by creating more samples to be used. Using the Naïve Bayes for these three types results in the

same memory usage as before (166 MB) but lower training time of 3ms and prediction time of

.9ms. However, there is clear need to experiment with additional classifiers, since the Naïve Bayes

is lacking in accuracy and precision.

27

0

0.2

0.4

0.6

0.8

1

F N ! Average

FIGURE 4.1

Nave Bayes Classification Results for Urgent Beat Types

Precision Recall F1-Score

28

CHAPTER 5

Multilayer Perceptron Classifier Results

5.1 Classification of 14 Beat Types

Multilayer Perception (MLP), an artificial neural network, is another method that has similar

memory and runtime to the Naïve Bayes but is less simplistic. For both the 14 beat and 3 beat types,

a three-layer neural network was chosen, with 100 neurons per layer. For 14 beat types, the training

time was 4.89 seconds and prediction time was 20ms. Compared to the Naïve Bayes, the training

time was significantly higher for the MLP model. However, the memory usage was similar (116

MB), as well as the accuracy (62.5%). The model loss is shown in Figure 5a. The classification

report summarizes the performance of the MLP classifier, which slightly outperforms the Naïve

Bayes classifier, but has weaknesses for different beat types. For example, the MLP has difficulty

classifying the f, L, J, and R beat types, whereas the Naïve Bayes could not classify the normal beat

types correctly, along with F and j types.

TABLE 5.1

MLP Classification Report for 14 Beat Types

Beat Type Precision Recall F1-Score Support

A .89 .95 .92 302

N .73 .35 .47 133

/ .73 .39 .51 148

f 0 0 0 19

V .56 .46 .50 125

x .93 .88 .91 558

F .74 .75 .75 242

L 0 0 0 1

a .8 .38 .51 229

J 0 0 0 25

R 0 0 0 2

j .56 .08 .14 61

S .40 .08 .14 49

e .75 .23 .35 39

Average .78 .64 .68 1933

29

30

5.2 Classification of Urgent Beat Types

The same urgent beat types as with Naïve Bayes were analyzed in the MLP model. The model

performed with a 92.1% accuracy, which is 3% higher than the Naïve Bayes with the same memory

requirement. The training and prediction time were only slightly higher than the Bayes, with the

training time at 1.26 seconds and prediction time only 115ms. The most significant difference

associated with less beat types was the decrease in model loss, as shown in comparison in Figure

5. When only three urgent beat types were analyzed, the loss was 40% lower than when using 14

beat types. Table 6 shows the classification report, which has high performance in all of the

categories for these urgent beat types.

0

0.2

0.4

0.6

0.8

1

1.2

F N ! Average

FIGURE 5.1

MLP Classification Results for Urgent Beat Types

Precision Recall F1-Score

31

As seen in the report, the MLP classifier has similar difficulty with the F beat type, which perhaps

suggests similarities with the F and ! beat types that cause misclassification. However, this model

outperforms the Naïve Bayes in accuracy and precision for these types, with the same memory and

only slightly longer runtime.

FIGURE 5.2

Loss Comparisons for (top) 14 beat

types and (bottom) urgent beat

types

32

CHAPTER 6

Deep Neural Network Results

6.1 Deep Neural Network Teacher Model

The previous methods involved simpler mathematics for the classification of the ECG beat types.

However, these models fail to give a high accuracy in the case of 14 beat types. The initial full, or

teacher, model was trained first on the 14 types and took 117 seconds for this task, which is

considerably longer than the Naïve Bayes and MLP methods. The memory usage was also twice

that of the other two. The accuracy after 30 epochs was 68.3%, which outperforms both of the

previous models. The loss for this model is similar to that of the MLP classifier but will be improved

FIGURE 6.2

Teacher Model Accuracy and Loss

graphs for 14 beat types classified

FIGURE 6.1

33

upon with the trained student model. Seen below in figure 6.1, the model loss decreases to 1.2 at

the end of 15 epochs.

The deep neural network teacher model was then trained to distinguish between the beat types

deemed most urgent for treatment (see Figure 6.2). This time, the training only took 42 seconds

and 244 MB of memory. It achieved an accuracy of 94%, and after the 20th epoch, consistently

achieved accuracies above 90%. Clearly a common trend among the neural network models is the

increase in accuracy and precision with the inclusion of fewer beat types.

6.2 Trained Student Model

FIGURE 6.3

Teacher Model Accuracy and Loss

graphs for Urgent beat types

classified

FIGURE 6.4

34

The student model obtained from training on the last layer of the teacher model’s logits aims to

keep the accuracy at a similar level while decreasing the loss and size of the teacher. After 30

epochs, the student was able to achieve greater than 65% accuracy, which is only slightly lower

than the teacher model. The student model takes 115 seconds to train, since some inputs from the

teacher are modified before inserting into the model, which increases the runtime. As seen from

Figure 6.3, the model loss for the trained student model was slightly less than the teacher model.

For the three urgent beat types, the student model trained on the teacher model performed similar

to the 14-beat case. Again, the accuracy was slightly decreased (88.9%) compared to the teacher

model after the 25th epoch and took 48 seconds to fully train. The loss for this case was much lower

than the 14-beat classification task, and, in addition, has the lowest loss of all the deep neural

network models trained. Because of the low loss and relatively high accuracy, this technique has

the optimal traits needed for deployment in a medical edge device scenario out of all the deep

learning models included.

FIGURE 6.5

Trained Student Model Accuracy and

Loss graphs for 14 beat types classified

35

6.3 Standalone Student Model

For comparison with the teacher-trained model, a standalone smaller model was created. This

standalone model has the same structure as the trained student model, except for the activation layer

which is separate from the teacher model. Thus, this entire model was trained independently from

the teacher. This enables testing of the distillation compared to an initial simpler deep neural

network. The training time for this model was 107 seconds, which is only 5 seconds longer than

the previous deep neural network training times. For the 14 types, the accuracy and loss were

FIGURE 6.6

Trained Student Model Accuracy and

Loss graphs for Urgent beat types

classified

FIGURE 6.7

36

similar in the standalone model to the teacher model, which suggests that a smaller model may be

appropriate for this specific ECG case.

After decreasing the dataset to include only three beat types, the standalone student model achieved

comparable results to the teacher-trained student model, however, the standalone had significant

model loss as compared to the teacher-trained student model. Figure 6.6 illustrates this standalone

model achieved a 90% accuracy and ran its training in 36.6 seconds, much lower than the other

deep neural network models. So, although there was a lower runtime involved with this model, the

accuracy and loss parameters are not as ideal as for the trained student model. For the next chapter,

these and the other machine learning techniques will be compared in their energy efficiency,

latency, and classification ability.

FIGURE 6.8

Standalone Student Model Accuracy

and Loss graphs for 14 beat types

classified

37

FIGURE 6.9

Standalone Student Model Accuracy

and Loss graphs for 3 beat types

classified

38

CHAPTER 7

Comparison of Machine Learning Techniques

7.1 Accuracy Comparison

Each of the classifiers chosen achieve similar accuracy results when compared, however, the

teacher DNN model has a slight edge over the others. This edge comes at a cost, since it has a high

runtime and the highest memory requirement out of all the classifiers. The Naïve Bayes performs

well, even though it is a relatively simple algorithms compared to the artificial neural network and

deep networks. Accuracy is only one metric that is used to compare the performance, which is why

precision and loss were included in the study. For the Naïve Bayes and MLP classifiers, the

accuracy results were comparable to the precision, which is discussed in Chapters 4 and 5. For the

neural network classifiers, loss comparisons are discussed in the next section.

0

20

40

60

80

100

Naïve Bayes MLP Teacher DNN Student DNN Standalone
DNN

%

FIGURE 7.1

Accuracy Comparison for Machine Learning

Techniques

14 beat types 3 beat types

39

7.4 Loss Comparisons

The neural networks tested—the artificial neural network (MLP) and three deep neural networks

were all assessed for their model loss. As seen from Figure 7.2, the model loss for the MLP was

much higher than the model losses for the deep neural networks. So, although the MLP model has

a relatively high accuracy that compares to the other models, it has a high loss, which cannot be

overlooked when choosing an ideal classification algorithm for an edge device.

7.2 Energy Efficiency Comparison

The third metric important for deployment on edge devices is the low CPU Usage requirement, a

comparison of which is shown in Figure 7.3. Since the Naïve Bayes and MLP methods are not deep

learning models, they consume less energy when performed on a dataset, especially the Naïve

Bayes, which uses half of the memory that the deep neural networks require. Although the MLP

does have a higher loss, it is extremely close to the teacher model in this respect and uses almost

half as less energy as the teacher model.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Teacher Student Standalone MLP

FIGURE 7.2

Loss Comparisons

40

7.3 Latency Comparison

The final metric involved in an ideal edge algorithm selection is latency. There seems to be a direct

correlation between latency and memory requirements, shown in Figure 7.4. The Naïve Bayes has

nearly no runtime lag, while the deep neural networks, and, to an extent, MLP model, have higher

latency of up to 117 seconds. However, if a dataset is run on a pre-trained model that can account

for a variety of beat types in a variety of patients, the model might not have to be fitted to each

patient’s ECG. Further testing is required to test this hypothesis.

0

50

100

150

200

250

300

Naïve Bayes MLP Teacher DNN Student DNN Standalone
DNN

M
e

m
o

ry
 (M

B
)

FIGURE 7.3

Memory Requirements for Machine Learning

Techniques

41

0

20

40

60

80

100

120

140

Naïve Bayes MLP Teacher DNN Student DNN Standalone
DNN

Se
co

n
d

s

FIGURE 7.4

Training Latency Comparison of Machine

Learning Techniques

14 beat types 3 beat types

42

CHAPTER 8

Conclusion and Future Work

This thesis provides a thorough survey of edge computing classification techniques which aided in

a comparison on promising methods for deployment on a medical device at the edge of the network

for low latency, energy efficient, and accurate diagnosis of raw ECG signals. It further provided an

analysis for the best machine learning techniques to choose in a scenario involving sparse data to

decrease the energy consumption on the part of the complete system.

The analysis of machine learning techniques included a state-of-the-art method called distilled

knowledge learning, which uses a large teacher model for training a smaller, edge-friendly

classifier. The results of the analysis proved the usefulness of the distilled neural network, which

performs with the lowest loss among the classification techniques, with only a small drop in

accuracy in comparison to the large model. This distilled model was compared to some simpler

methods, namely Naïve Bayes and MLP. These smaller models are legitimate options for small

devices with a larger number of features and low number of ECG beat types, which would help to

decrease the loss which exists under this work’s conditions. Adding more features does require

more data pre-processing, which could add to the total runtime of the diagnosis program.

Based on the analysis, it is clear that using one data feature does limit the accuracy and precision

of a system but works relatively well when the number of total classes is reduced. If more features

are added, it is suggested that a smaller model such as Naïve Bayes is used for deployment in a

case where low latency is the priority, above accuracy, such as an emergency diagnosis scenario.

However, when all of the metrics are weighed, it is clear that the student model trained on the large

deep neural network has the best tradeoff between accuracy, loss, and runtime.

Future work would include a study on best extracted features to use in a low latency scenario. For

example, comparing the total runtimes of extraction plus the learning algorithm for several different

43

features. Adding additional data, such as heart rate or blood pressure could also add to the diagnosis

aspect of a medical system. Another area of research would be to compare performance of machine

learning algorithms best for specific beat types and then create specialty models to then distill into

a neural network.

44

References

[1] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog computing and

its role in the internet of things. In Proceedings of the first edition of the MCC workshop on

Mobile cloud computing (MCC '12). ACM, New York, NY, USA, 13-16.

[2] M. Hartmann, U. Hashmi, C. Ge, A. Imran, “Edge Computing in Smart Health Care Systems:

Review, Challenges and Research Directions” (To be Submitted)

[3] K. Bhargava and S. Ivanov, "A fog computing approach for localization in WSN," 2017 IEEE

28th Annual International Symposium on Personal, Indoor, and Mobile Radio

Communications (PIMRC), Montreal, QC, 2017, pp. 1-7.

[4] Yu Cao, Songqing Chen, Peng Hou and D. Brown, "FAST: A fog computing assisted

distributed analytics system to monitor fall for stroke mitigation," 2015 IEEE International

Conference on Networking, Architecture and Storage (NAS), Boston, MA, 2015, pp. 2-11.

[5] Rui Hu, Hieu Pham, Philipp Buluschek, and Daniel Gatica-Perez. 2017. Elderly People Living

Alone: Detecting Home Visits with Ambient and Wearable Sensing. In Proceedings of the

2nd International Workshop on Multimedia for Personal Health and Health Care (MMHealth

'17). ACM, New York, NY, USA, 85-88.

[6] Bhatia, M. & Sood, S.K. Mobile Netw Appl (2018). Springer.

[7] P. Verma and S. K. Sood, "Fog Assisted-IoT Enabled Patient Health Monitoring in Smart

Homes," in IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1789-1796, June 2018.

[8] S. S. Bhunia, S. K. Dhar and N. Mukherjee, "iHealth: A fuzzy approach for provisioning

intelligent health-care system in smart city," 2014 IEEE 10th International Conference on

Wireless and Mobile Computing, Networking and Communications (WiMob), Larnaca,

2014, pp. 187-193.

[9] S. K. Sood and I. Mahajan, "A Fog-Based Healthcare Framework for Chikungunya," in IEEE

Internet of Things Journal, vol. 5, no. 2, pp. 794-801, April 2018.

[10] D. C. Yacchirema, D. Sarabia-Jácome, C. E. Palau and M. Esteve, "A Smart System for

Sleep Monitoring by Integrating IoT With Big Data Analytics," in IEEE Access, vol. 6, pp.

35988-36001, 2018.

[11] M. Hosseini, T. X. Tran, D. Pompili, K. Elisevich and H. Soltanian-Zadeh, "Deep Learning

with Edge Computing for Localization of Epileptogenicity Using Multimodal rs-fMRI and

45

EEG Big Data," 2017 IEEE International Conference on Autonomic Computing (ICAC),

Columbus, OH, 2017, pp. 83-92.

[12] Ahmed Nait Aicha, Gwenn Englebienne, and Ben Kröse. 2014. Modeling visit behaviour in

smart homes using unsupervised learning. In Proceedings of the 2014 ACM International

Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication (UbiComp

'14 Adjunct). ACM, New York, NY, USA, 1193-1200.

[13] J. Rodriguez, A. Goni and A. Illarramendi, "Real-time classification of ECGs on a PDA," in

IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 1, pp. 23-34,

March 2005.

[14] Daniel Castro, Steven Hickson, Vinay Bettadapura, Edison Thomaz, Gregory Abowd,

Henrik Christensen, and Irfan Essa. 2015. Predicting daily activities from egocentric images

using deep learning. In Proceedings of the 2015 ACM International Symposium on

Wearable Computers (ISWC '15). ACM, New York, NY, USA, 75-82.

[15] H. Dubey, J. Yang, N. Constant, A. M. Amiri, Q. Yang, K. Makodiya, “Fog Data: Enhancing

Telehealth Big Data Through Fog Computing,” Proceedings of the ASE Big Data & Social

Informatics 2015, ACM, NY.

[16] D. Borthakur, H. Dubey, N. Constant, L. Mahler and K. Mankodiya, "Smart fog: Fog

computing framework for unsupervised clustering analytics in wearable Internet of Things,"

2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal,

QC, 2017, pp. 472-476.

[17] "Electrocardiogram (ECG or EKG)", www.heart.org, 2018. [Online]. Available:

http://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-

attack/electrocardiogram-ecg-or-ekg. [Accessed: 28- Sep- 2018].

[18] Orestis Akrivopoulos, Dimitrios Amaxilatis, Athanasios Antoniou, and Ioannis

Chatzigiannakis. 2017. Design and Evaluation of a Person-Centric Heart Monitoring System

over Fog Computing Infrastructure. In Proceedings of the First International Workshop on

Human-centered Sensing, Networking, and Systems (HumanSys'17), Rasit Eskicioglu (Ed.).

ACM, New York, NY, USA, 25-30.

[19] S. S. Bhunia, S. K. Dhar and N. Mukherjee, "iHealth: A fuzzy approach for provisioning

intelligent health-care system in smart city," 2014 IEEE 10th International Conference on

Wireless and Mobile Computing, Networking and Communications (WiMob), Larnaca,

2014, pp. 187-193.

[20] C. Wang, Q. Wang and S. Shi, "A distributed wireless body area network for medical

supervision," 2012 IEEE International Instrumentation and Measurement Technology

Conference Proceedings, Graz, 2012, pp. 2612-2616.

46

[21] Z. Lv, F. Xia, G. Wu, L. Yao and Z. Chen, "iCare: A Mobile Health Monitoring System for

the Elderly," 2010 IEEE/ACM Int'l Conference on Green Computing and Communications

& Int'l Conference on Cyber, Physical and Social Computing, Hangzhou, 2010, pp. 699-705.

[22] Iman Azimi, Arman Anzanpour, Amir M. Rahmani, Tapio Pahikkala, Marco Levorato, Pasi

Liljeberg, and Nikil Dutt. 2017. HiCH: Hierarchical Fog-Assisted Computing Architecture

for Healthcare IoT. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 174 (September

2017), 20 pages.

[23] J. Jusak, H. Pratikno and V. H. Putra, "Internet of Medical Things for cardiac monitoring:

Paving the way to 5G mobile networks," 2016 IEEE International Conference on

Communication, Networks and Satellite (COMNETSAT), Surabaya, 2016, pp. 75-79.

[24] Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng in Med

and Biol 20(3):45-50 (May-June 2001).

[25] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE,

Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet:

Components of a New Research Resource for Complex Physiologic Signals. Circulation

101(23):e215-e220 [Circulation Electronic Pages;

http://circ.ahajournals.org/content/101/23/e215.full]; 2000 (June 13).

[26] G. James, D. Witten, T. Hastie, R. Tibshirani. Introduction to Statistical Learning with

Applications in R, 1st ed. 2013.

[27] K.P. Murphy. Machine Learning: A Probabilistic Perspective, 1st ed. Massachusetts Institute

of Technology, 2012.

[28] Metrics to Evaluate Machine Learning Algorithms in Python

https://machinelearningmastery.com/metrics-evaluate-machine-learning-algorithms-python/

[29] ML Cheatsheet “Loss Function” https://ml-

cheatsheet.readthedocs.io/en/latest/loss_functions.html

[30] W. Koehrsen. “Beyond Accuracy: Precision and Recall.” [online] Towards Data Science,

2018. Available: https://towardsdatascience.com/beyond-accuracy-precision-and-recall-

3da06bea9f6c [Accessed 1 Nov 2018]

 [31] H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.

[32] Scikit-learn.org. 1.9. Naive Bayes — scikit-learn 0.20.1 documentation. [online] Available:

https://scikit-learn.org/stable/modules/naive_bayes.html [Accessed 1 Nov. 2018].

47

[33] A. Sakryukin.. “Under the Hood of Neural Networks. Part 1: Fully Connected.” [online]

Towards Data Science, 2018. Available: https://towardsdatascience.com/under-the-hood-of-

neural-networks-part-1-fully-connected-5223b7f78528

[34] U. Upadhyay. “Knowledge Distillation.” [online] Towards Data Science, 2018. Available:

https://medium.com/neural-machines/knowledge-distillation-dc241d7c2322

