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Abstract 

To meet the accuracy, latency and energy efficiency requirements during real-time collection and 

analysis of health data, a distributed edge computing environment is the answer, combined with 5G 

speeds and modern computing techniques. Using the state-of-the-art machine learning based 

classification techniques plays a crucial role in creating the optimal healthcare system on the edge. This 

thesis first provides a background on the current and emerging edge computing classification 

techniques for healthcare applications, specifically for electrocardiogram (ECG) beat classification. We 

then present key findings from an extensive survey of over hundred studies on the topic while 

taxonomizing the literature with respect to key architectural differences, application areas and 

requirements.  Leveraging the insights drawn from the extensive analysis of the pertinent literature we 

select a set of most promising machine learning based classification techniques for ECG beats, based 

on their suitability for implementation on a small edge device called a Raspberry Pi. After implementing 

these classification techniques on a Raspberry Pi based platform we perform a comparison of the 

performance of these classification techniques with respect to three key performance indicators (KPI) 

of interest for health care applications namely accuracy, energy efficiency, and latency. 

ECG measures the electrical activity of the heart and help healthcare professionals to evaluate heart 

conditions of a patient, sometimes diagnosing life-threatening conditions. The features of ECG signals 

are pre-processed and fed into the classification algorithms to detect and classify abnormal beat types.  

ECG classification requires low complexity but still high level of performance in terms of 

aforementioned three KPIs. The classification algorithms chosen, namely Naïve Bayes, Multilayer 

Perceptron (MLP), and distilled deep neural network (DNN) are all energy efficient methods hence 

suitable for implementation for small edge devices. The comparative multi-faceted evaluation presented 

in this thesis is a new contribution to research that exists on edge based classification as it offers 

comparison of selected classification algorithms in terms three KPIs instead of one while using real 

edge device based implementation. The performance of analyzed machine learning classification 
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techniques is ranked according to each KPI. Benefiting from the results of the comparative analysis 

presented in this thesis a particular classification algorithm can be selected for optimal deployment in 

given scenario in healthcare system depending on the specific requirements of the given scenario. Edge 

computing paves the way for a new generation of health devices that can offer a higher quality of life 

for users if low-latency, low-energy, and high- performance requirements are addressed. 
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Introduction 
 

1.1 State of the Art in Fog Computing and Edge Devices 
 

The first few papers published on topic of edge computing relate to the use of small, portable 

devices on the edge of the network for real-time computation and their role in a larger system 

called fog computing. Bonomi, et al. [1] was the first published work that referred to the term 

“fog computing.” The ideal system would provide low latency IoT services with a large number 

of nodes. The term “fog” describes a location in reference to the Cloud, which are large data 

centers used for computation and storage. Fog computing hopes to move computing 

capabilities towards the edge of the network, therefore eliminating the need to transfer the 

majority of a system’s data to the Cloud, which is expensive, time-consuming, and not fast 

FIGURE 1.1 

Edge Device Location in E-Health Network 
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enough for latency-sensitive health applications. Fog, or edge computing has the following 

requirements [2]: 

• Low latency 

• Increased mobility and location awareness 

• Energy efficiency 

• High level of security 

• Usability  

• Low operating cost 

Current research in edge computing for healthcare uses focuses on measuring certain KPIs that 

are important for the progression of health services, such as response time, energy efficiency, 

and bandwidth cost. Papers tend to focus on one of the KPIs for a certain portion of the edge 

computing process, so the aim of this section is to provide a picture of best data operations 

techniques for a healthcare edge device. 

Classification of raw data collected by health sensors is normally completed using simple or 

advanced algorithms, depending on the computing power of the device, and is a very common 

research theme in healthcare-related computing. Activity-based recognition is the most popular 

research relating to classification in healthcare edge computing, since robust techniques are 

needed for devices that have lower storage and computing capabilities.   

Fall detection algorithms, for example, can be done on the smartphone device. In [3] and [4], 

fall detection algorithms are run both on a smartphone initially, then on a back-end module 

connected to a cloud server. The front-end algorithms contain both a root sum squares (RSS) 

filter for detecting fall-like activity and an activity daily living (ADL) filter that reduces false 

alarms by matching activities that might be fall-like in nature, like bending over to pick up a 

dropped item, etc. Accuracy is the general goal for many papers that have results for 
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classification algorithms. One Class SVM with Gaussian Kernel’s accuracy is assessed in [5] 

to be up to 75% accurate in classifying visiting events in an elderly person’s home when room 

sensors in combination with a wearable Fitbit device is used as a data source. This research 

shows that sometimes an additional source of data can be useful in increasing accuracy of a 

system.  

Comparing different classification algorithms directly is the best way to determine the most 

energy efficient or low latency method. For example, in [6], the authors compare three types 

of machine learning techniques, namely Bayesian belief network (BBN), support vector 

machine (SVM) and K-nearest neighbors (KNN) on a dataset of breath rate and humidity level. 

BBN managed to reach the highest accuracy compared to SVM and KNN, however, there was 

no quantitative study of most energy efficient approach, which is an oversight of much of the 

research found. However, [7] does have information on low latency measures of four 

classification algorithms, including BBN. BBN has the lowest latency compared to linear 

regression, nearest neighbor, and KNN methods for similar data as used in [6]. The authors of 

“iHealth” use a fuzzy approach to the classification of raw sensor data [8]. The fuzzifier uses 

membership functions to determine whether temperature and heart rate data are normal or not. 

Additionally, this fuzzy technique on a device uses 8-10mW less than a device that is Weka 

J48 decision tree and performs a comparison with two other classification methods for a data 

set with vital sign and not equipped with the fuzzifier. A similar study [9] takes the 

environmental information. The experiment reveals that J48 has the lowest classification time 

as compared to fuzzy c-means (FCM) and random tree (RT). Artificial neural networks (ANN) 

have exploded recently in classification and as shown by [10], it is a method that has lower 

error than other techniques, like linear regression and decision trees. [11] also uses a neural 

network, specifically convolutional neural network (CNN) to classify ECG rhythms with low 

latency at an edge gateway. Much research takes an existing classification method and modifies 
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it, like in [12]. The authors’ modified Markov modulated poisson process (MMPP), which they 

term M3P2, correctly classifies more elderly visiting events that MMPP. Increasing the number 

of attributes can also make for a more useful program. In [13], a Weka AnswerTree correctly 

classifies 96% of 17 different heart rhythm types, which is more types than existing research 

at the time of publication.  

Some healthcare applications require classification algorithms to work with video or image 

feeds, such as the application in [14] for activity recognition. The authors use a convolutional 

neural with an average of 76.06% accuracy. Although this makes for an accurate recognition 

system, the authors point out that it requires too much energy to run on a simple embedded 

device and would run best on a server. [15] offers a solution for the classification of voice 

signals from Parkinson’s disease patients. The algorithms run on the Intel Edison fog computer 

include dynamic time warping (DTW) for single-word recognition in time series data and 

clinical speech processing chain (CLIP) for pitch and loudness estimation.  
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  TABLE 1.1 

 RELATED WORKS ON CLASSIFICATION / PREDICTION 

 

Reference Technique 
Information 

Type 
Contribution Results 

[40] 
One-Class SVM with 

Gaussian Kernel 

Visiting events, 
heart rate, sleep 

patterns 

Greater 
Classification 

Accuracy 

75% Detection rate for 
labeled data set when 
Fitbit added to system 

[82] 
Bayesian Belief 
Network (BBN) 

Vital sign, 
environment 

data 

Comparison of 
classification 

methods 

BBN reached highest 
accuracy compared to 

Support Vector 
Machine (SVM) and K-

nearest neighbors 
(KNN) 

[15] Fuzzy Logic Classifier 

Heart rate, 
respiration rate, 

skin 
conductance 

Lower power 
consumption 

technique 

Reduction by 
8→10mW for fuzzy 
system compared to 

non-fuzzy system 

[49] Weka AnswerTree ECG 

Greater number 
of rhythm types 

than other 
classifiers 

Correctly classifies 96% 
of 17 different rhythm 

types 

[41] 

Markov modulated 
multidimensional non-
homogeneous Poisson 

process 
(M3P2) 

Visiting Events 
Comparison of 
classification 

methods 

Outperforms standard 
Markov modulated 

Poisson process 
(MMPP) 

[84] 
Weka J48 Decision 

Tree 

Vital sign, 

environmental 

data 

Comparison of 

low latency 

classification 
methods 

J48 has lowest 

classification time 

compared to fuzzy c-

means (FCM) and 
random tree (RT) 

[55] K-means Clustering 
Speech data 

samples 

Comparison of 

low latency 

device 

classification 

Raspberry Pi has lower 

runtime (160ms) 

compared to the Intel 

Edison, but higher 

average CPU % 

[83] 
Weka Bayesian belief 

network (BBN) 

Vital sign, 

environmental 

data 

Comparison of 

low latency 

classification 

methods 

BBN has lowest 

classification time (5 

min for 213 patients) 

compared to linear 

regression, nearest 

neighbor, and KNN 

methods 

[54] 
Artificial Neural 

Network (ANN) 

Gas pollutant 

sensing 

Comparison of 

Classification 

Accuracy 

ANN has lowest Root 
mean square error 

(RMSE) compared to 

linear regression and 

decision tree 

[72] 
Convolutional Neural 

Network (CNN) 
ECG 

Low latency 

classification and 

data transmission 

Using edge gateway in 

place of cloud 

computing yields lower 

round-trip time 
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1.2 ECG Background 
 

ECG, or Electrocardiogram, is a test that measures electrical activity of the heart. According to 

the American Heart Association, the test can identify parts of the heart that have been damaged, 

overworked, or are too large to be healthy [17]. The test is routine and harmless, as no 

electricity is transmitted to the body. The key parts of the ECG are pictured below in Figure 2. 

The features labeled refer to the stimulation and contraction of different parts of the heart 

muscle. The P-Wave (see Figure 1) is the action of the atria, or upper parts of the heart. The 

QRS Wave refers to the ventricles, or the lower parts of the heart contracting. The P wave 

signals the end of the heartbeat and represents the heart muscles resetting for another 

contraction sequence. P interval, QRS area, and T interval are common extracted feature for 

the classification. Each person has a slightly different normal ECG signal, depending on 

gender, height, and weight, among other factors [18]. The problem with ECG data is the large 

amount of data that can be amassed by the sensors, especially if the number of leads is 

increased. Even ECG samples for small periods of time can take up megabytes of storage, 

which is the case for the MIT arrhythmia database. Each sample contains 30 minutes of two-

FIGURE 1.2 

ECG Signal Components 
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lead data, which consists of approximately 18 MB. For a small device used on the edge of the 

network with limited computing and storage capabilities, this is not an acceptable amount.  

1.3 ECG Classification on the Network Edge 
 

[19] presents a vision of a smart health care system using an Arduino and Smartphone data 

aggregator and processor. Data from multiple sensors, including a two-lead ECG sensor, is 

analyzed using a fuzzy interference system to classify results of each vital sign as “normal”, 

“above-normal”, or “emergency.” The device alerts doctors and emergency services for timely 

treatment of a life-threatening situation. The ECG sensor data is used to classify heart rate as 

“bradycardia” (low), “normal”, or “tachycardia” (high). Similar membership plots are shown 

for blood pressure and body temperature. [20] uses Android development board and 7 ECG 

leads to form a fog-type system for heart abnormality detection. The edge of the system is the 

sensor tier, which consists of an ECG module with a node that wirelessly transmits data to a 

mobile computing tier. This tier uses an Android development board and connects to sensors 

via ZigBee interface for the remote monitoring of patients. A fog IoT health monitoring system, 

called iCare, is proposed in [21]. In this system, ECG signal data is sent to a smart gateway for 

feature extraction for the eventual calculation of heart rate. The features extracted from the data 

is the P-R interval, Q-T interval, S-T interval, and QRS area. Then, with the help of these 

features, heart rate can be calculated.  

On these IoT devices, an algorithm will need to be used for the fast and energy efficient 

classification of IoT ECG sensor data. In [22], one-minute samples of ECG cycles, with and 

without arrhythmia, are analyzed using Support Vector Machine (SVM) learning. The use of 

this low latency technique, combined with the fog node computation in the place of Cloud 

computing, contributes to a very low latency device (759 ms delay) that can be deployed in an 

IoT network. The computation is performed on a gateway fog node, an HP Compaq 8200 Elite, 
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which has 3 GHz speed and 16 GB RAM. The SVM algorithm distinguishes between normal 

and abnormal heart rhythms based on features from the ECG with an accuracy of 93.6%. 

However, this work uses a different source of data, namely the “long-term ST Database” on 

Physiobank.  

The choice to use a Raspberry Pi 3 for classification task was formed mainly by the research 

presented in [23] and [16]. In [23], the authors used the Raspberry Pi 3 as a data processor and 

for temporary storage of data relating to cardiac monitoring. It achieves a high throughput and 

is 5G compliant, which is a requirement for future IoT networks. The Raspberry Pi has 1GB 

RAM and is able to communicate using the 802.11 protocol along with Bluetooth and has 

ethernet ports. The authors of [16] propose a Smart-Fog architecture for real-time classification 

of speech abnormalities in Parkinson’s patients. When using a K-means clustering algorithm, 

The Raspberry Pi outperforms the Intel Edison in terms of lower runtime but has a slightly 

higher memory and average CPU usage than the Edison. However, in a healthcare field, having 

a fast device is the goal for patients to have lifesaving medical attention, so this slight difference 

can be overlooked.  

The use of machine learning techniques for medical data classification on the edge is a common 

theme of today’s relevant research, however, there are a few that focus specifically on ECG 

signal classification. For example, in [18], an Intel mote runs an RBF algorithm for the analysis 

of normal and abnormal heart beats. At random, 23 patients’ data were picked from the MIT 

database of 48 patients. The training data consisted of several features extracted from the raw 

data, including the P-Wave, RST-Wave, and T-Wave offsets. However, the algorithm was run 

separately on each individual, and in addition, many of the results on some reports are quite 

low in cases where the number of abnormal beats is sparse. In [13], classification of ECG 

abnormalities is done on a PDA, which is a somewhat outdated technology. Nevertheless, the 

reports on classification comparisons are highly detailed, which was helpful in the selection of 
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models for this research. The most accurate models used in [13] were the decision tree, neural 

network, and nearest neighbor clustering, which all had over 91%. However, the neural 

network had a training time of 2 hours, 10 min and the other two had times of over 5 minutes. 

A technique that had an average classification accuracy of 70% and a very low time was the 

Bayesian classifier, which made it a good candidate for future testing. The authors were able 

to classify 15 beat types from the database, in particular, the beats relating to ventricular flutter 

arrhythmia (labeled!, E, and F in the database), which is a condition that needs medical 

attention in less than three minutes to avoid fatality. A recent survey on ECG classification 

tasks outlines some of the common classification procedures, but has only one that classifies 

ECG beats on raw data. Using MLP and a nearest neighbor approach, the author was able to 

achieve 99% accuracy.  

1.4 MIT Arrhythmia Database  
 

There are several publicly available databases to use for arrhythmia classification tasks, 

including those on EDB, AHA, CU, and NSD. However, the most popular to use is the MIT 

Arrhythmia Database [24], since it has the best documentation and most beat types represented. 

The MIT Arrhythmia Database available on Physiobank contains 48 patient ECG records, each 

30 minutes long. The heartbeats fall into five “super classes” –normal, supraventricular ectopic 

beats, ventricular ectopic beats, fusion beats, and unknown beats. The beats are further 

classified into 18 distinct types, each represented in the database records by a character. Figure 



10 
 

2 is an excerpt from one of the database’s patient samples. From the “V” labels, it becomes 

clear that this patient suffers from a premature ventricular contraction, however, the “.” Labels 

correspond to normal heartbeats. Many of the patient files contain more than one type of 

heartbeat. Table II outlines the basic symbols used to describe the beat classifications.  

FIGURE 1.3 

Example ECG Signal from MIT 

database 
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TABLE 1.2 

Beat Annotation Symbols in Data 

N Normal Beat 

L Left bundle branch block beat 

R Right bundle branch block beat 

A Atrial premature beat 

a Aberrated atrial premature beat 

J Nodal premature beat 

S Supraventricular premature beat 

V Premature ventricular contraction 

F Fusion of ventricular and normal 

beat 

! Ventricular flutter wave 

e Atrial escape beat 

j Nodal escape beat 

E Ventricular escape beat 

/ Paced beat 

f Fusion of paced and normal beat 

x Non-conducted P-wave (blocked 

APB) 

Q Unclassifiable beat 

| Isolated QRS-like artifact 
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1.5 Contributions 
 

The contributions of this thesis are as follows: 

• Survey of edge computing, with a focus on classification techniques used for edge device 

based medical applications.  

• Meaningful selection of machine learning methods based on previous works on edge 

computing for healthcare applications, especially from [49] which provides an analysis, 

however slightly outdated, on many algorithms on the same dataset. This thesis uses state-

of-the-art techniques to continue this work’s analysis not only by comparing accuracy, but 

also runtime and CPU usage for optimal classification on a small device. In addition, this 

work compares four different techniques, which provides insight into the optimal one to 

use in a future 5G fog computing setup.  

• Summary and mathematical theory behind machine learning techniques chosen for analysis  

• Selection of a raw data input for the classifiers sets this project apart from previous works 

in ECG classification. A large dataset takes up storage and, when processed, memory that 

a small device does not have. Previous work uses a large number of features, so to test if 

sparse features can be used, extracted sparse raw data from the MIT database is chosen for 

the input to reduce the memory-related constraints as well as storage constraints.  

• Previous work in ECG classification using deep learning techniques do not take into 

account energy efficiency and latency constraints for edge-based deployments. This work 

adds to these by providing an analysis in CPU usage, which is especially important for 

small devices that have less than 8 GB of memory, and latency of runtime, which is another 

requirement for fast medical devices.  
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• Raspberry Pi, the device on which algorithms are run in the experimental setup, is a 

representative machine for modeling a fog or edge-based scenario in the future. Raspberry 

Pi is 5G-compatible and can run Python code efficiently and faster when compared to a 

similar Arduino model.  

• This work extends to a variation of beat types included in the machine learning techniques. 

In addition to showing results for 14 beat types, it also extends to abnormal versus normal 

beats with a focus on distinguishing between normal beats and the most urgent beat types 

that need diagnosis quickly (less than three minutes).  

 

1.6 Articles Currently Under Review for Publication 
 

2. M. Hartmann, U. Hashmi, C. Ge, A. Imran, “Edge Computing in Smart Health Care 

Systems: Review, Challenges and Research Directions” in ETT Special Issue (Submitted 

December 2018) 

3. M. Hartmann and A. Imran. “Deep Learning based classification of different types of 

arrhythmia using ECG data through a low-cost low energy edge deployable device” (To be 

Submitted January 2019) 

 

1.7 Organization 
 

The first chapter gives additional background information on the topics of edge computing, 

medical applications of edge computing, and basic ECG information and previous works on 

classification of these signal types. Chapter two outlines the classification methods that will be 

used, as well as each one’s mathematical background and information on why it was chosen 

for the comparison. Now with the preliminaries completed, the next chapters focus on the actual 

data processing. Chapter three explains the types of pre-processing methods, including how the 

data was obtained and features extracted. Chapters four, five, six, and seven contain the results 
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of the machine learning classification tasks. First, the results of each method are given their 

own chapter. Then, in chapter seven, the results are compared and final suggestion for optimal 

technique, based on energy efficiency, accuracy, and latency, is given. The tradeoffs between 

these three components is also discussed in chapter seven. Last, in chapter eight, is the 

conclusion, which discusses the comparison results, and future research directions in ECG 

classification for an edge computing scenario.  
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CHAPTER 2 

Classification Methods  
 

2.1 Classification Model Formulation 

 

For qualitative tasks, where an output variable is in a non-numerical category, such as eye color or 

animal type, a specific technique called a classifier is used [26]. Classification is commonly used 

in medicine for many cases. For example, DNA sequence classification for diseases or image 

classification of tumors to be categorized as cancerous or non-cancerous. In classification, a set of 

input observations is given to the classifier. Logistic regression techniques cannot be used in these 

cases, since a natural ordering of the data is not always present. In this research involving ECG, 

there is no ordering for the types of beats. If a beat is encoded as a “1” and another as “2,” this 

differentiation is not an ordering. One beat cannot be “greater” than another. For example, in this 

beat classification task, the outputs can be represented by 

𝑌 =

{
 
 

 
 

𝑁, 𝑁𝑜𝑟𝑚𝑎𝑙
𝐴,    𝐴𝑡𝑟𝑖𝑎𝑙 𝑃𝑟𝑒𝑚𝑎𝑡𝑢𝑟𝑒 𝐵𝑒𝑎𝑡  
𝑒, 𝐴𝑡𝑟𝑖𝑎𝑙 𝐸𝑠𝑐𝑎𝑝𝑒 𝐵𝑒𝑎𝑡

…
…

 

The classification task has two main parts—model formulation and prediction. The prediction of a 

beat into a particular class relies on a representative model, which comes from the input variables. 

Each of the techniques’ models are discussed in this chapter, along with a description of the relevant 

metrics used in the performance evaluations.  
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2.2 Classification Metrics 

2.2.1 Error Rate 

The primary metric for assessing model accuracy measures how well predictions match the input 

data. For this, the mean squared error (MSE) is calculated, which is 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑛

𝑖=1

 

where 𝑓 represents the predicted class resulting from fitting the input data 𝑥𝑖 and 𝑦𝑖 is the actual 

value of the output class. However, since the predictions in the ECG dataset task are qualitative, 

MSE is not calculated. Instead an error rate is used [27]: 

1

𝑛
 ∑𝐼(𝑦𝑖 ≠ 𝑦̂𝑖)

𝑛

𝑖=1

 

where 𝐼 is an indicator variable that decides whether the argument is true or not. For example, if 

𝑦𝑖 ≠ 𝑦̂𝑖, then the observation was misclassified, and the argument will be equal one, whereas if 

𝑦𝑖 = 𝑦̂𝑖, then the output will be a zero.  

2.2.2 Accuracy 

Accuracy, as used in all of the Python directories, is the number of correct predictions compared to 

the total number of predictions made [28]. In mathematical form, accuracy is the following: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
∑(1 − (𝑦𝑖 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑓(𝑥𝑖))))

2

𝑛

𝑖=1

 

However, accuracy alone does not give a true performance indication for some classifiers. For 

example, in the ECG arrhythmia dataset, the number of anomalies compared to normal values in 

one dataset is extremely low. This would mean that if the number of misclassified instances is equal 

to the total number of anomalous data points, the accuracy could still be extremely high without 
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the classifier truly achieving its goal, which is the classification of abnormal and life-threatening 

beat types.  

2.2.3 Logarithmic Loss 

Logarithmic loss, called cross-entropy in the python code, is a probability of the algorithm’s 

confidence in a prediction. Loss increases as the probability of the predicted value diverges from 

its true value. For the portions of the task that involve binary classification (i.e. normal versus 

abnormal beats), cross entropy [29] is calculated as  

−(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)) 

where p represents the predicted probability that 𝑥𝑖 belongs to class 𝑦𝑖 and 𝑦 is the binary indicator 

whether 𝑦̂ is the correct classification for 𝑥.  

For multi-class prediction tasks, cross-entropy is slightly different: 

−∑𝑦𝑥,𝑐  log (𝑝𝑥,𝑐)

𝑀

𝑐=1

 

In this case, 𝑀 is the number of classes or beat types and 𝑥 represents the input observations 

associated with the data entry.  

2.2.4 Confusion Matrix  

This table is commonly used in classification analyses since it has an extremely readable format to 

determine the accuracy of the classifier. A confusion matrix contains a comparison of predictions 

and accurately predicted outcomes. For example, a binary beat classification may have the resulting 

confusion matrix: 

[
200 10
30 150

] 
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For this, the number of correct classification instances is are on the diagonal line of the matrix, or 

200 and 150. The misclassified predictions are 30 and 10, which means that this classifier will have 

a relatively high accuracy according to this chart. More metrics can be obtained from the confusion 

matrix, such as precision and recall [30]. For example, in the above example, recall is the ratio of 

true positives (TP), which is represented by 200 abnormal types correctly classified, and the sum 

of true positives (TP) and false negatives (FN), which are the normal beats classified as abnormal 

beats. In this case, 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 

200

200 + 30
 

Another similar metric is precision, which is the ratio of true positive (TP) cases to the sum of true 

positives (TP) and false positives (FP). This shows how well the classifier can predict relevant 

abnormalities. In the above case,  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

200

200 + 10
 

 

2.2.5 Classification Time 

Because this ECG classification task involves time-sensitive information concerning a patient, the 

time for a model to be fitted or trained and predictions to be made needs to be low. To find the 

classification time, the timer function was used in python before the line that calls for model fitting, 

whereas for prediction time, the timer function is placed before the line that processes the test data 

for prediction.  

2.2.6 Memory Usage 

Another constraint for this task is low energy usage. The metric that is used in most publications 

for edge computing is memory usage, which quantifies the amount of random-access memory that 
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the program is using. If a CPU uses more memory than it has, the program will be run slowly, 

which is a problem for medical applications. The reason for this is the device type that the 

algorithms will be housed. The data amount that is used as the input for the algorithm has some 

influence on the memory usage, but the complexity of the algorithm is the main source of excess 

computing. A convolutional neural network, for example, results in a high accuracy for data 

classification, however, it also has a high memory requirement, which is not feasible for running 

on a small device at the edge of the network. This tradeoff between energy efficiency and accuracy 

will be discussed in the next chapter. The three compared techniques were chosen for their low 

complexity and low memory requirements. 

 

2.3 Naïve Bayes Classifier 
 

The first classification method I tested was the Naïve Bayes. The reason this technique was picked 

comes from the related work from [13], which shows the low latency and relatively high accuracy 

results for an edge device with low computational power. The Naïve Bayes classifier uses the 

concept of the Bayes theorem, which is a central idea in probability [31]. Given a set of variables  

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑑} 

And a set of outcomes  

𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑑} 

Bayes’ rule is calculated for each variable relating to each set of outcomes 

𝑝(𝐶𝑗|𝑥1, 𝑥2, … , 𝑥𝑑)  ∝ 𝑝 (𝑥1, 𝑥2, … , 𝑥𝑑| 𝐶𝑗) 𝑝(𝐶𝑗) 

Where the second half of the proportion is the posterior probability that any X belongs to a class 

C. This can be rewritten as a product of terms 
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𝑝(𝑋|𝐶𝑗) ∝  ∏𝑝(𝑥𝑘|𝐶𝑗)

𝑑

𝑘=1

 

Once every input X is given a probability of belonging to each class C, the X is given a class based 

on which C has the highest probability. For example, if a beat was given a probability of .3 for 

normal, .7 for abnormal, the beat would be labeled in the outcome as abnormal. The inputs for this 

classification problem would be the electrical signal from two leads. For example, for one beat, the 

values might be 

𝑋 = {-0.12, -0.08} 

which represents the values of one QRS peak. Next, the probability of X belonging to each class 

will be assigned.  

The specific type of Gaussian classifier used is Gaussian Naïve Bayes, which is a Python Scikit 

standard function called by the line of code GaussianNB [32]. This function assumes the 

likelihood of features is a normal distribution. In mathematical terms, this means that the normal 

density has the form 

𝑓𝑐(𝑥) =
1

√2𝜋𝜎
exp (−

1

2𝜎𝑐2
(𝑥 − 𝜇𝑐)

2) 

where 𝜇 and 𝜎 are the mean and variance of each class 𝑐. Combining this expression with the 

probability above, the probability that an input belongs to a class 𝑐 becomes 

𝑝𝑐(𝑥) =  

𝜋𝑐
1

√2𝜋𝜎
exp (−

1
2𝜎2

(𝑥 − 𝜇𝑐)
2)

∑ 𝜋𝑖
1

√2𝜋𝜎
exp (−

1
2𝜎2

(𝑥 − 𝜇𝑖)
2)𝐶

𝑖=1

 

where 𝐶 is the total number of classes and 𝜋𝑐 is the prior probability that an observation belongs to 

a class 𝑐. Although this technique relies on a very simple expression, it is extremely fast and works 

well with classification tasks, one famous example being spam filtering in emails. The simplicity 
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of the algorithm suggests that it would work well on a small device with limited computing 

capability.  

2.4 Multilayer Perceptron (MLP) 
 

Multilayer perceptron is a form of feedforward neural network, which forms a stacked regression 

model. The backbone of this algorithm is backpropagation, which comes from the essential 

knowledge of calculus [27]. MLP has three or more layers: one input layer, one output layer, and 

one or more hidden layers. For my project, I used 3 hidden layers with 100 neurons each. The 

model for this scenario is the following: 

𝑥𝑛 → ℎ1 → ℎ2 → ℎ3 → 𝑦𝑛 

For a classification task with 𝐾 classes, the cross entropy is 

𝐽(𝜃) = −∑∑ 𝑦̂𝑛𝑘𝑙𝑜𝑔𝑦̂𝑛𝑘(𝜃)

𝐾

𝑘=1𝑛

 

where 𝜃 is equal to the weight matrices of the model layers and 𝑛 refers to the input number. The 

backpropagation comes in when the output layer for the model calculates the error and passes this 

error back through the model to compute the first layer error signal to minimize the total error.  

2.5 Distilled Deep Neural Network 
 

Before the distilled neural network is discussed, it is essential to know the basics of a deep neural 

network. Most neural networks used for classification have multiple convolution and pooling 

layers, which add complexity to the model. The models used in this work are dense layers, which 

apply weights to inputs and connect this to an output. So, for an input such as ECG raw recordings, 

we have: 
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𝑀 = [
−.003 −.88
⋮ ⋮
−.3 −.01

] 

And any input layer for the deep neural network can be represented as [33] 

ℎ𝑖𝑛 = 𝑀 ∗𝑊 +𝐵 

Where 𝑊 is the weights and 𝐵 represents biases from each of the neurons.  

The newest state-of-the-art technique aims to gather essential knowledge from one large model or 

a number of medium-sized models to create a “student” or generalized model that is more energy 

efficient than its predecessors. This small size is ideal for a small edge device. This student model 

distills the knowledge from a large neural network using logits, which are the inputs to the teacher’s 

final Softmax layer [34]. Figure III below shows the sequence of events when constructing a student 

model from a teacher model. The output of the teacher model’s final layer is taken as an input to 

learn on the data at a fast rate. This in turn is used in the place of the Softmax activation layer of 

the student model.  

 

 

 

 

FIGURE 2.1 

Derivation of trained Student 

Model 
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2.6 Input Features 
 

The input features chosen differ slightly from existing research discussed in the previous chapter. 

Using state-of-the-art classifiers appropriate for small devices, simple and fast classification is 

possible. Since these algorithms and datasets cannot exceed a certain memory usage amount, 

limited input observations need to be used to ensure this speed and efficiency. The input variables 

in this case are not the raw ECG signals, which exceed 15 MB for one patient’s data. Instead, the 

raw signals from the amplitude of the QRS complex is taken from each beat type in 40 different 

patient files. This accounts for only 160 kB once extracted, which is small enough to be run from 

a small device.  
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CHAPTER 3  

Data Pre-processing 

 

The Pre-processing of MIT Arrhythmia Database files involved several steps: 

• First, the files were downloaded from the Physiobank database for medical signals. The 

annotation files which contain the beat type labels for the duration of each patient’s ECG, 

are separate from the raw signal files, which must be merged via an indexing program that 

takes the sample number from each annotation and inserts the label for the beat types in 

the raw signal file.  

• Next, to select the features to be used from the data files, a filtering program was run to 

find the amplitude of each QRS complex, along with the raw signal information at the 

amplitude of both leads. These selected features were taken from multiple patient files and 

contained samples of 14 different beat types to analyze the robustness of the learning 

algorithms to classify beats for any patient.  

• To run machine learning algorithms on the new merged datasets, the beat types must be 

assigned an integer, since the annotations use characters to represent different abnormal 

beats. Once they are integers, they must be converted to categorical data type via 

OneHotEncoder function from Python’s library.  
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CHAPTER 4 

Naïve Bayes Classifier Results 

 

4.1 Classification of 14 beat types 

The naïve Bayes classifier was used for its low memory requirement and simple algorithm, which 

could easily be run on a small device without lag. When run on 14 beat types, the algorithm was 

able to classify an average of 60.7% of beat types from the two parameters it was given. The fitting 

portion of the code was timed to be only 6.4ms, and prediction time only 3.8ms. The memory 

requirement is also quite low, only 166 MB, which can easily be run on an edge device. Table III 

outlines the classification report for 14 beat types. Clearly, some of the beat types need additional 

support for the algorithm, which is why the next step was to experiment with the beat types included 

in the study.  

 

TABLE 4.1 

Naïve Bayes Classification Report for 14 Beat Types 

 

Beat Type Precision Recall F1-Score Support 

A .69 .94 .79 268 

N 0 0 0 114 

/ .54 .36 .43 126 

f 0 0 0 13 

V .35 .62 .45 92 

x .76 .94 .84 443 

F 0 0 0 0 

L .43 .55 .48 209 

a .45 .25 .32 166 

J 0 0 0 15 

R 0 0 0 1 

j 0 0 0 37 

S .60 .35 .44 43 

e .20 .05 .08 20 

Average  .53 .61 .55 1547 
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When the number of beat types was reduced to just three—normal and two of the most urgent beat 

types for treatment—the result was a much higher accuracy and lower runtime. Clearly, for sparse 

data inputs, the number of beats creates a tradeoff with the accuracy. The smaller dataset associated 

with less beat types does contribute to the overall runtime, but the data processes also play a role 

as well. The following is the confusion matrix for these three beat types: 

 

[
𝟒 1 17
1 𝟏𝟎𝟏 4
4 4 𝟏𝟑𝟕

] 

 

The most urgent beat types are classified correctly at an accuracy of 88.6%, where the most 

common misclassification is confusing an F for ! beat classification, which are the anomalous and 

urgent types. Therefore, emergency care would be dispatched, since these are not misclassified as 

normal. Table IV contains the classification report summarizes the performance of the Naïve Bayes 

classifier for these urgent beat types. The decreased precision observed from the F category in part 

is due to the lack of available beat samples in this category but can be compensated in the future 

by creating more samples to be used. Using the Naïve Bayes for these three types results in the 

same memory usage as before (166 MB) but lower training time of 3ms and prediction time of 

.9ms. However, there is clear need to experiment with additional classifiers, since the Naïve Bayes 

is lacking in accuracy and precision.  
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CHAPTER 5 

Multilayer Perceptron Classifier Results 

 

5.1 Classification of 14 Beat Types 

Multilayer Perception (MLP), an artificial neural network, is another method that has similar 

memory and runtime to the Naïve Bayes but is less simplistic. For both the 14 beat and 3 beat types, 

a three-layer neural network was chosen, with 100 neurons per layer. For 14 beat types, the training 

time was 4.89 seconds and prediction time was 20ms. Compared to the Naïve Bayes, the training 

time was significantly higher for the MLP model. However, the memory usage was similar (116 

MB), as well as the accuracy (62.5%). The model loss is shown in Figure 5a.  The classification 

report summarizes the performance of the MLP classifier, which slightly outperforms the Naïve 

Bayes classifier, but has weaknesses for different beat types. For example, the MLP has difficulty 

classifying the f, L, J, and R beat types, whereas the Naïve Bayes could not classify the normal beat 

types correctly, along with F and j types.  

 

TABLE 5.1 

MLP Classification Report for 14 Beat Types 

 

Beat Type Precision Recall F1-Score Support 

A .89 .95 .92 302 

N .73 .35 .47 133 

/ .73 .39 .51 148 

f 0 0 0 19 

V .56 .46 .50 125 

x .93 .88 .91 558 

F .74 .75 .75 242 

L 0 0 0 1 

a .8 .38 .51 229 

J 0 0 0 25 

R 0 0 0 2 

j .56 .08 .14 61 

S .40 .08 .14 49 

e .75 .23 .35 39 

Average .78 .64 .68 1933 
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5.2 Classification of Urgent Beat Types 

 

The same urgent beat types as with Naïve Bayes were analyzed in the MLP model. The model 

performed with a 92.1% accuracy, which is 3% higher than the Naïve Bayes with the same memory 

requirement. The training and prediction time were only slightly higher than the Bayes, with the 

training time at 1.26 seconds and prediction time only 115ms. The most significant difference 

associated with less beat types was the decrease in model loss, as shown in comparison in Figure 

5. When only three urgent beat types were analyzed, the loss was 40% lower than when using 14 

beat types. Table 6 shows the classification report, which has high performance in all of the 

categories for these urgent beat types. 
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As seen in the report, the MLP classifier has similar difficulty with the F beat type, which perhaps 

suggests similarities with the F and ! beat types that cause misclassification. However, this model 

outperforms the Naïve Bayes in accuracy and precision for these types, with the same memory and 

only slightly longer runtime.  

 

 

 

FIGURE 5.2 

Loss Comparisons for (top) 14 beat 

types and (bottom) urgent beat 

types 
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CHAPTER 6 

Deep Neural Network Results 
 

6.1 Deep Neural Network Teacher Model 

 

 

The previous methods involved simpler mathematics for the classification of the ECG beat types. 

However, these models fail to give a high accuracy in the case of 14 beat types. The initial full, or 

teacher, model was trained first on the 14 types and took 117 seconds for this task, which is 

considerably longer than the Naïve Bayes and MLP methods. The memory usage was also twice 

that of the other two. The accuracy after 30 epochs was 68.3%, which outperforms both of the 

previous models. The loss for this model is similar to that of the MLP classifier but will be improved 

FIGURE 6.2 

Teacher Model Accuracy and Loss 

graphs for 14 beat types classified 

FIGURE 6.1 
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upon with the trained student model. Seen below in figure 6.1, the model loss decreases to 1.2 at 

the end of 15 epochs.  

The deep neural network teacher model was then trained to distinguish between the beat types 

deemed most urgent for treatment (see Figure 6.2). This time, the training only took 42 seconds 

and 244 MB of memory. It achieved an accuracy of 94%, and after the 20th epoch, consistently 

achieved accuracies above 90%. Clearly a common trend among the neural network models is the 

increase in accuracy and precision with the inclusion of fewer beat types.  

 

 

 

 

6.2 Trained Student Model  

 

FIGURE 6.3 

Teacher Model Accuracy and Loss 

graphs for Urgent beat types 

classified 

FIGURE 6.4 
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The student model obtained from training on the last layer of the teacher model’s logits aims to 

keep the accuracy at a similar level while decreasing the loss and size of the teacher. After 30 

epochs, the student was able to achieve greater than 65% accuracy, which is only slightly lower 

than the teacher model. The student model takes 115 seconds to train, since some inputs from the 

teacher are modified before inserting into the model, which increases the runtime. As seen from 

Figure 6.3, the model loss for the trained student model was slightly less than the teacher model.  

 

 

 

 

For the three urgent beat types, the student model trained on the teacher model performed similar 

to the 14-beat case. Again, the accuracy was slightly decreased (88.9%) compared to the teacher 

model after the 25th epoch and took 48 seconds to fully train. The loss for this case was much lower 

than the 14-beat classification task, and, in addition, has the lowest loss of all the deep neural 

network models trained. Because of the low loss and relatively high accuracy, this technique has 

the optimal traits needed for deployment in a medical edge device scenario out of all the deep 

learning models included.  

 

FIGURE 6.5 

Trained Student Model Accuracy and 

Loss graphs for 14 beat types classified 
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6.3 Standalone Student Model 
 

 

 

For comparison with the teacher-trained model, a standalone smaller model was created. This 

standalone model has the same structure as the trained student model, except for the activation layer 

which is separate from the teacher model. Thus, this entire model was trained independently from 

the teacher. This enables testing of the distillation compared to an initial simpler deep neural 

network. The training time for this model was 107 seconds, which is only 5 seconds longer than 

the previous deep neural network training times. For the 14 types, the accuracy and loss were 

FIGURE 6.6 

Trained Student Model Accuracy and 

Loss graphs for Urgent beat types 

classified 

FIGURE 6.7 
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similar in the standalone model to the teacher model, which suggests that a smaller model may be 

appropriate for this specific ECG case.  

 

 

After decreasing the dataset to include only three beat types, the standalone student model achieved 

comparable results to the teacher-trained student model, however, the standalone had significant 

model loss as compared to the teacher-trained student model. Figure 6.6 illustrates this standalone 

model achieved a 90% accuracy and ran its training in 36.6 seconds, much lower than the other 

deep neural network models. So, although there was a lower runtime involved with this model, the 

accuracy and loss parameters are not as ideal as for the trained student model. For the next chapter, 

these and the other machine learning techniques will be compared in their energy efficiency, 

latency, and classification ability.  

 

 

 

FIGURE 6.8 

Standalone Student Model Accuracy 

and Loss graphs for 14 beat types 

classified 



37 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.9 

Standalone Student Model Accuracy 

and Loss graphs for 3 beat types 

classified 
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CHAPTER 7 

Comparison of Machine Learning Techniques 

 

7.1 Accuracy Comparison 

 

Each of the classifiers chosen achieve similar accuracy results when compared, however, the 

teacher DNN model has a slight edge over the others. This edge comes at a cost, since it has a high 

runtime and the highest memory requirement out of all the classifiers. The Naïve Bayes performs 

well, even though it is a relatively simple algorithms compared to the artificial neural network and 

deep networks. Accuracy is only one metric that is used to compare the performance, which is why 

precision and loss were included in the study. For the Naïve Bayes and MLP classifiers, the 

accuracy results were comparable to the precision, which is discussed in Chapters 4 and 5. For the 

neural network classifiers, loss comparisons are discussed in the next section.  
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7.4 Loss Comparisons  

 

 

 

The neural networks tested—the artificial neural network (MLP) and three deep neural networks 

were all assessed for their model loss. As seen from Figure 7.2, the model loss for the MLP was 

much higher than the model losses for the deep neural networks. So, although the MLP model has 

a relatively high accuracy that compares to the other models, it has a high loss, which cannot be 

overlooked when choosing an ideal classification algorithm for an edge device.  

 

7.2 Energy Efficiency Comparison 

 

The third metric important for deployment on edge devices is the low CPU Usage requirement, a 

comparison of which is shown in Figure 7.3. Since the Naïve Bayes and MLP methods are not deep 

learning models, they consume less energy when performed on a dataset, especially the Naïve 

Bayes, which uses half of the memory that the deep neural networks require. Although the MLP 

does have a higher loss, it is extremely close to the teacher model in this respect and uses almost 

half as less energy as the teacher model.  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Teacher Student Standalone MLP

FIGURE 7.2

Loss Comparisons



40 
 

 

 

 

7.3 Latency Comparison 

 

The final metric involved in an ideal edge algorithm selection is latency. There seems to be a direct 

correlation between latency and memory requirements, shown in Figure 7.4. The Naïve Bayes has 

nearly no runtime lag, while the deep neural networks, and, to an extent, MLP model, have higher 

latency of up to 117 seconds. However, if a dataset is run on a pre-trained model that can account 

for a variety of beat types in a variety of patients, the model might not have to be fitted to each 

patient’s ECG. Further testing is required to test this hypothesis.  
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CHAPTER 8 

Conclusion and Future Work 
 

This thesis provides a thorough survey of edge computing classification techniques which aided in 

a comparison on promising methods for deployment on a medical device at the edge of the network 

for low latency, energy efficient, and accurate diagnosis of raw ECG signals. It further provided an 

analysis for the best machine learning techniques to choose in a scenario involving sparse data to 

decrease the energy consumption on the part of the complete system.  

The analysis of machine learning techniques included a state-of-the-art method called distilled 

knowledge learning, which uses a large teacher model for training a smaller, edge-friendly 

classifier. The results of the analysis proved the usefulness of the distilled neural network, which 

performs with the lowest loss among the classification techniques, with only a small drop in 

accuracy in comparison to the large model. This distilled model was compared to some simpler 

methods, namely Naïve Bayes and MLP. These smaller models are legitimate options for small 

devices with a larger number of features and low number of ECG beat types, which would help to 

decrease the loss which exists under this work’s conditions. Adding more features does require 

more data pre-processing, which could add to the total runtime of the diagnosis program.  

Based on the analysis, it is clear that using one data feature does limit the accuracy and precision 

of a system but works relatively well when the number of total classes is reduced. If more features 

are added, it is suggested that a smaller model such as Naïve Bayes is used for deployment in a 

case where low latency is the priority, above accuracy, such as an emergency diagnosis scenario. 

However, when all of the metrics are weighed, it is clear that the student model trained on the large 

deep neural network has the best tradeoff between accuracy, loss, and runtime.  

Future work would include a study on best extracted features to use in a low latency scenario. For 

example, comparing the total runtimes of extraction plus the learning algorithm for several different 
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features. Adding additional data, such as heart rate or blood pressure could also add to the diagnosis 

aspect of a medical system. Another area of research would be to compare performance of machine 

learning algorithms best for specific beat types and then create specialty models to then distill into 

a neural network.  
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