239,555 research outputs found

    A Smart Health Monitoring Technology

    Get PDF
    With the implementation of the Advanced Metering Infrastructure (AMI), comes the opportunity to gain valuable insights into an individual’s daily habits, patterns and routines. A vital part of the AMI is the smart meter. It enables the monitoring of a consumer’s electricity usage with a high degree of accuracy. Each device reports and records a consumer’s energy usage readings at regular intervals. This facilitates the identification of emerging abnormal behaviours and trends, which can provide operative monitoring for people living alone with various health conditions. Through profiling, the detection of sudden changes in behaviour is made possible, based on the daily activities a patient is expected to undertake during a 24-hour period. As such, this paper presents the development of a system which detects accurately the granular differences in energy usage which are the result of a change in an individual’s health state. Such a process provides accurate monitoring for people living with self-limiting conditions and enables an early intervention practice (EIP) when a patient’s condition is deteriorating. The results in this paper focus on one particular behavioural trend, the detection of sleep disturbances; which is related to various illnesses, such as depression and Alzheimer’s. The results demonstrate that it is possible to detect sleep pattern changes to an accuracy of 95.96% with 0.943 for sensitivity, 0.975 for specificity and an overall error of 0.040 when using the VPC Neural Network classifier. This type of behavioral detection can be used to provide a partial assessment of a patient’s wellbeing

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    IoT-Enabled Smart Healthcare Infrastructure Maximises Energy Efficiency

    Get PDF
    Advancements in IoT-based applications have become the cutting-edge technology among researchers due to the wide availability of the Internet. In order to make the application more user-friendly, Android-based and Web-based technologies have become increasingly important in this cutting-edge technology. Smart cities, Internet of Things(IoT), Smart health care systems are the technology of the future. A combination of numerous systems focusing on monitoring different components of the smart city (such as water, e-health, gas,  power monitoring and emergency scenario detection) can be used to make the city more sustainable and secure. In smart cities, energy consumption is particularly important for e-health. An optimization approach is provided in this paper to reduce total network energy usage. When compared to previous methods, the overall performance has improved by 57.89%

    IoT Based Smart Manufacturing system-Case Studies

    Get PDF
    Manufacturing now a days growing and becoming more complex, automated and computerized. Smart manufacturing is an emerging form of production manufacturing asset of today and in the future with involvement of smart sensors, actuators, communication technology, smart consumer devices like smart phones and tablets and data-intensive modeling. This paper will highlight a review of IoT application in smart manufacturing. Case studies on advanced techniques used in manufacturing industries for different operation such as Monitoring and controlling of smart equipment, IoT based Smart factory connectivity for industries, Hazardous Gas Detection, Electromyogram (EMG) monitoring system, and Tool wears characterization, Defect predictive in a manufacturing system, Machinery Health monitoring are presented

    Perceptions of seniors with heart failure regarding autonomous zero-effort monitoring of physiological parameters in the smart-home environment

    Get PDF
    Background: Technological advances are leading to the ability to autonomously monitor patient’s health status in their own homes, to enable aging-in-place. Objectives: To understand the perceptions of seniors with heart failure (HF) regarding smart-home systems to monitor their physiological parameters. Methods: In this qualitative study, HF outpatients were invited to a smart-home lab, where they completed a sequence of activities, during which the capacity of 5 autonomous sensing modalities was compared to gold standard measures. Afterwards, a semi-structured interview was undertaken. These were transcribed and analyzed using an interpretive-descriptive approach. Results: Five themes emerged from the 26 interviews: (1) perceptions of technology, (2) perceived benefits of autonomous health monitoring, (3) disadvantages of autonomous monitoring, (4) lack of perceived need for continuous health monitoring, and (5) preferences for autonomous monitoring. Conclusions: Patient perception towards autonomous monitoring devices was positive, lending credenceto zero-effort technology as a viable and promising approach

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Chronic Health Patient Monitoring System Using IOT

    Get PDF
    In the recent technology, Internet of Things (IoT) makes all objects interconnected and it has been recognized as the technical revolution. Some of the applications of Internet of Things are smart parking, smart home, smart city , smart environment, industrial places, agricultural fields and health monitoring process. One such application is in healthcare to monitor the patient health status Internet of Things makes medical equipment’s more effective by allowing real time monitoring of patient health. We have a designed a system which is very helpful in monitoring & updating the patient health status in a graph report format to the doctor via PC or desktop. We have implemented a pulse monitoring for continuous pulse rate measurement for an hour/day is done by blood pulse sensor. Likewise body temperature, pressure, moisture, obesity has been noted using temperature sensor, pressure sensor, moisture sensor, flex sensor with the help of ADC converter. A Raspberry PI module picks up the sensor data and sends it to the network through WI-FI and hence provides real time monitoring of the healthcare parameters for doctors. These data can be accessed anytime by the doctor. The proposed system of the project is to report a clear notification of patient database health status in graphical form to the doctor side

    An Overview of Smart Shoes in the Internet of Health Things: Gait and Mobility Assessment in Health Promotion and Disease Monitoring

    Get PDF
    New smart technologies and the internet of things increasingly play a key role in healthcare and wellness, contributing to the development of novel healthcare concepts. These technologies enable a comprehensive view of an individual’s movement and mobility, potentially supporting healthy living as well as complementing medical diagnostics and the monitoring of therapeutic outcomes. This overview article specifically addresses smart shoes, which are becoming one such smart technology within the future internet of health things, since the ability to walk defines large aspects of quality of life in a wide range of health and disease conditions. Smart shoes offer the possibility to support prevention, diagnostic work-up, therapeutic decisions, and individual disease monitoring with a continuous assessment of gait and mobility. This overview article provides the technological as well as medical aspects of smart shoes within this rising area of digital health applications, and is designed especially for the novel reader in this specific field. It also stresses the need for closer interdisciplinary interactions between technological and medical experts to bridge the gap between research and practice. Smart shoes can be envisioned to serve as pervasive wearable computing systems that enable innovative solutions and services for the promotion of healthy living and the transformation of health care
    • …
    corecore