8,728 research outputs found

    A Simulation-based Approach for Constructing All-day Travel Chains from Mobile Phone Data

    Get PDF
    The purpose of this work is to investigate replacing travel diaries with sets of call detail records (CDRs) as inputs for an agent-oriented traffic simulation. We propose constructing an agent population directly from a CDR dataset and fusing it with link volume counts to reduce spatio-temporal uncertainty and correct for underrepresented traffic segments. The problem of finding a set of travel plans which realizes a set of CDR trajectories and is consistent with a set of link volume counts is rephrased in terms of calibrating a choice model. This enables us to make use of an existing calibration scheme for agent-oriented simulations. We demonstrate our approach by an illustrative scenario with synthetic data

    The TimeGeo modeling framework for urban motility without travel surveys

    Get PDF
    Well-established fine-scale urban mobility models today depend on detailed but cumbersome and expensive travel surveys for their calibration. Not much is known, however, about the set of mechanisms needed to generate complete mobility profiles if only using passive datasets with mostly sparse traces of individuals. In this study, we present a mechanistic modeling framework (TimeGeo) that effectively generates urban mobility patterns with resolution of 10 min and hundreds of meters. It ties together the inference of home and work activity locations from data, with the modeling of flexible activities (e.g., other) in space and time. The temporal choices are captured by only three features: the weekly home-based tour number, the dwell rate, and the burst rate. These combined generate for each individual: (i) stay duration of activities, (ii) number of visited locations per day, and (iii) daily mobility networks. These parameters capture how an individual deviates from the circadian rhythm of the population, and generate the wide spectrum of empirically observed mobility behaviors. The spatial choices of visited locations are modeled by a rank-based exploration and preferential return (r-EPR) mechanism that incorporates space in the EPR model. Finally, we show that a hierarchical multiplicative cascade method can measure the interaction between land use and generation of trips. In this way, urban structure is directly related to the observed distance of travels. This framework allows us to fully embrace the massive amount of individual data generated by information and communication technologies (ICTs) worldwide to comprehensively model urban mobility without travel surveys

    Calibration of choice model parameters in a transport scenario with heterogeneous traffic conditions and income dependency

    Get PDF
    By raising the issue of data requirements for the purpose of modal development, validation and application, this study proposes an approach to calibrate choice model parameters in heterogeneous traffic condition using minimal empirical data. For this, a real-world scenario of Patna, India is chosen. For the calibration, a Bayesian framework-based calibration technique (CaDyTS: Calibration of Dynamic Traffic Simulations) is used. Commonly available, mode-specific, hourly-classified traffic counts are used to generate full day plans of agents and their initially unknown activity locations. While the proposed approach implements location choice implicitly, the approach can be applied to a variety of other problems. Further, the effect of household income is included in the utility function to incorporate the effect of income in the decision-making process of individual travelers and to filter out inconsistencies in the daily plans, which originate from the survey data

    Analysing the Diffusion of a Mobile Service Supporting the E-grocery Supply Chain

    Get PDF
    Purpose – The purpose of this paper is to propose a systemic methodology to assess the potential of and facilitate policies for the diffusion of a smartphone based service enabling supply chain (SC) operations in the e-grocery sector. Design/methodology/approach – A System Dynamics (SD) model combining the Bass paradigm for innovation diffusion and an inventory management framework is developed. Semi-structured interviews are conducted to understand the industry business processes; a simple SD model is designed to capture the most important variables together with the relationships among them; a detailed SD model is calibrated and simulation outcomes are analysed. Findings – The efficiency and reliability of the service drive its diffusion among producers and consumers, who in turn persuade retailers to adopt. The assessment methodology can be part of feasibility studies and marketing investigations in order to understand the impact of e-commerce tools on SC processes. Research limitations/implications – This contribution stresses the need to analyse how mobile information technologies may benefit all the business processes of the e-grocery SC, and not just one single process or stakeholder. Practical implications – The approach offers a roadmap to identify the factors influencing the diffusion of mobile e-grocery services as well as the associated impacts on SC processes. Originality/value – The work contributes to overcoming the lack of approaches studying the diffusion of e-grocery by taking into account all the relevant aspects and stakeholders involved and not only the consumer perspective

    A Mobility Model for Synthetic Travel Demand from Sparse Traces

    Get PDF
    Knowing how much people travel is essential for transport planning. Empirical mobility traces collected from call detail records (CDRs), location-based social networks (LBSNs), and social media data have been used widely to study mobility patterns. However, these data suffer from sparsity, an issue that has largely been overlooked. In order to extend the use of these low-cost and accessible data, this study proposes a mobility model that fills the gaps in sparse mobility traces from which one can later synthesise travel demand. The proposed model extends the fundamental mechanisms of exploration and preferential return to synthesise mobility trips. The model is tested on sparse mobility traces from Twitter. We validate our model and find good agreement on origin-destination matrices and trip distance distributions for Sweden, the Netherlands, and Sa\uf5 Paulo, Brazil, compared with a benchmark model using a heuristic method, especially for the most frequent trip distance range (1-40 km). Moreover, the learned model parameters are found to be transferable from one region to another. Using the proposed model, reasonable travel demand values can be synthesised from a dataset covering a large enough population of very sparse individual geolocations (around 1.5 geolocations per day covering 100 days on average)

    Studying the Accuracy of Demand Generation from Mobile Phone Trajectories with Synthetic Data

    Get PDF
    We investigate replacing travel diaries with sets of call detail records (CDRs) as input data for an agent-oriented traffic simulation. Synthetic CDRs are used in order to study the effect of this substitution in isolation. We introduce an experimental design where a detailed synthetic transportation scenario with individual simulated travellers is combined with a simple model of mobile phone usage to collect synthetic CDRs. This set of artificial CDRs is then considered as input for another instance of the same traffic model, disregarding all other information. We analyse to what degree the model reproduces the base case, depending on the frequency of the available CDRs

    Developing Travel Behaviour Models Using Mobile Phone Data

    Get PDF
    Improving the performance and efficiency of transport systems requires sound decision-making supported by data and models. However, conducting travel surveys to facilitate travel behaviour model estimation is an expensive venture. Hence, such surveys are typically infrequent in nature, and cover limited sample sizes. Furthermore, the quality of such data is often affected by reporting errors and changes in the respondents’ behaviour due to awareness of being observed. On the other hand, large and diverse quantities of time-stamped location data are nowadays passively generated as a by-product of technological growth. These passive data sources include Global Positioning System (GPS) traces, mobile phone network records, smart card data and social media data, to name but a few. Among these, mobile phone network records (i.e. call detail records (CDRs) and Global Systems for Mobile Communication (GSM) data) offer the biggest promise due to the increasing mobile phone penetration rates in both the developed and the developing worlds. Previous studies using mobile phone data have primarily focused on extracting travel patterns and trends rather than establishing mathematical relationships between the observed behaviour and the causal factors to predict the travel behaviour in alternative policy scenarios. This research aims to extend the application of mobile phone data to travel behaviour modelling and policy analysis by augmenting the data with information derived from other sources. This comes along with significant challenges stemming from the anonymous and noisy nature of the data. Consequently, novel data fusion and modelling frameworks have been developed and tested for different modelling scenarios to demonstrate the potential of this emerging low-cost data source. In the context of trip generation, a hybrid modelling framework has been developed to account for the anonymous nature of CDR data. This involves fusing the CDR and demographic data of a sub-sample of the users to estimate a demographic prediction sub-model based on phone usage variables extracted from the data. The demographic group membership probabilities from this model are then used as class weights in a latent class model for trip generation based on trip rates extracted from the GSM data of the same users. Once estimated, the hybrid model can be applied to probabilistically infer the socio-demographics, and subsequently, the trip generation of a large proportion of the population where only large-scale anonymous CDR data is available as an input. The estimation and validation results using data from Switzerland show that the hybrid model competes well against a typical trip generation model estimated using data with known socio-demographics of the users. The hybrid framework can be applied to other travel behaviour modelling contexts using CDR data (in mode or route choice for instance). The potential of CDR data to capture rational route choice behaviour for long-distance inter-regional O-D pairs (joined by highly overlapping routes) is demonstrated through data fusion with information on the attributes of the alternatives extracted from multiple external sources. The effect of location discontinuities in CDR data (due to its event-driven nature), and how this impacts the ability to observe the users’ trajectories in a highly overlapping network is discussed prompting the development of a route identification algorithm that distinguishes between unique and broad sub-group route choices. The broad choice framework, which was developed in the context of vehicle type choice is then adapted to leverage this limitation where unique route choices cannot be observed for some users, and only the broad sub-groups of the possible overlapping routes are identifiable. The estimation and validation results using data from Senegal show that CDR data can capture rational route choice behaviour, as well as reasonable value of travel time estimates. Still relying on data fusion, a novel method based on the mixed logit framework is developed to enable the analysis of departure time choice behaviour using passively collected data (GSM and GPS data) where the challenge is to deal with the lack of information on the desired times of travel. The proposed method relies on data fusion with travel time information extracted from Google Maps in the context of Switzerland. It is unique in the sense that it allows the modeller to understand the sensitivity attached to schedule delay, thus enabling its valuation, despite the passive nature of the data. The model results are in line with the expected travel behaviour, and the schedule delay valuation estimates are reasonable for the study area. Finally, a joint trip generation modelling framework fusing CDR, household travel survey, and census data is developed. The framework adjusts the scaling factors of a traditional trip generation model (based on household travel survey data only) to optimise model performance at both the disaggregate and aggregate levels. The framework is calibrated using data from Bangladesh and the adjusted models are found to have better spatial and temporal transferability. Thus, besides demonstrating the potential of mobile phone data, the thesis makes significant methodological and applied contributions. The use of different datasets provides rich insights that can inform policy measures related to the adoption of big data for transport studies. The research findings are particularly timely for transport agencies and practitioners working in contexts with severe data limitations (especially in developing countries), as well as academics generally interested in exploring the potential of emerging big data sources, both in transport and beyond

    Policy-Based Planning for Robust Robot Navigation

    Full text link
    This thesis proposes techniques for constructing and implementing an extensible navigation framework suitable for operating alongside or in place of traditional navigation systems. Robot navigation is only possible when many subsystems work in tandem such as localization and mapping, motion planning, control, and object tracking. Errors in any one of these subsystems can result in the robot failing to accomplish its task, oftentimes requiring human interventions that diminish the benefits theoretically provided by autonomous robotic systems. Our first contribution is Direction Approximation through Random Trials (DART), a method for generating human-followable navigation instructions optimized for followability instead of traditional metrics such as path length. We show how this strategy can be extended to robot navigation planning, allowing the robot to compute the sequence of control policies and switching conditions maximizing the likelihood with which the robot will reach its goal. This technique allows robots to select plans based on reliability in addition to efficiency, avoiding error-prone actions or areas of the environment. We also show how DART can be used to build compact, topological maps of its environments, offering opportunities to scale to larger environments. DART depends on the existence of a set of behaviors and switching conditions describing ways the robot can move through an environment. In the remainder of this thesis, we present methods for learning these behaviors and conditions in indoor environments. To support landmark-based navigation, we show how to train a Convolutional Neural Network (CNN) to distinguish between semantically labeled 2D occupancy grids generated from LIDAR data. By providing the robot the ability to recognize specific classes of places based on human labels, not only do we support transitioning between control laws, but also provide hooks for human-aided instruction and direction. Additionally, we suggest a subset of behaviors that provide DART with a sufficient set of actions to navigate in most indoor environments and introduce a method to learn these behaviors from teleloperated demonstrations. Our method learns a cost function suitable for integration into gradient-based control schemes. This enables the robot to execute behaviors in the absence of global knowledge. We present results demonstrating these behaviors working in several environments with varied structure, indicating that they generalize well to new environments. This work was motivated by the weaknesses and brittleness of many state-of-the-art navigation systems. Reliable navigation is the foundation of any mobile robotic system. It provides access to larger work spaces and enables a wide variety of tasks. Even though navigation systems have continued to improve, catastrophic failures can still occur (e.g. due to an incorrect loop closure) that limit their reliability. Furthermore, as work areas approach the scale of kilometers, constructing and operating on precise localization maps becomes expensive. These limitations prevent large scale deployments of robots outside of controlled settings and laboratory environments. The work presented in this thesis is intended to augment or replace traditional navigation systems to mitigate concerns about scalability and reliability by considering the effects of navigation failures for particular actions. By considering these effects when evaluating the actions to take, our framework can adapt navigation strategies to best take advantage of the capabilities of the robot in a given environment. A natural output of our framework is a topological network of actions and switching conditions, providing compact representations of work areas suitable for fast, scalable planning.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144073/1/rgoeddel_1.pd
    • …
    corecore