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ABSTRACT

By raising the issue of data requirements for the purpose of modal development, val-
idation and application, this study proposes an approach to calibrate choice model
parameters in heterogeneous traffic condition using minimal empirical data. For this,
a real-world scenario of Patna, India is chosen. For the calibration, a Bayesian frame-
work based calibration technique (CaDyTS: Calibration of Dynamic Traffic Simu-
lations) is used. Commonly available, mode-specific, hourly-classified traffic counts
are used to generate full day plans of agents and their initially unknown activity
locations. While the proposed approach implements location choice implicitly, the
approach can be applied to a variety of other problems. Further, the effect of house-
hold income is included in the utility function to incorporate the effect of income in
the decision making process of individual travelers and to filter out inconsistencies
in the daily plans, which originate from the survey data.
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1. Introduction

In a transportation system, a wide variety of data (e.g. network data, socio-economic
data) is required for the purpose of model development, validation and application.
The aim of such models is to simulate and analyze travel demand, and test the poli-
cies, which can help transport planners to understand the decision making process
of individual travelers. A model should be causal, flexible, transferable, efficient, and
sensitive to policy objectives (Domencich and McFadden 1996). Most travel demand
models minimally require information about the trip origin, trip destination, and trip
mode. The information about origin and destination (OD) can come in different forms
and at different level of aggregation, e.g. as an OD matrix, as daily plans, etc. The
traditional way to estimate the OD matrix relies on roadside or household surveys,
which are, however, error-prone and likely to be biased (Kuwahara and Sullivan 1987;
Groves 2006). As an alternative, there are several approaches to estimate the OD ma-
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trix using traffic counts (e.g. see Bell (1983); Cascetta, Inaudi, and Marquis (1993);
van Zuylen and Willumsen (1980)).

Given the origin-destination information of an area, static traffic assignment (STA)
provides the traffic flow on each highway for every time bin. Dynamic traffic assignment
(DTA) is a generalization of STA, which provides time-dependent traffic flow on each
highway segment (Szeto and Wong 2012). From the development perspective, DTA
models can be classified in two categories, analytical (Chen and Hsueh 1998) and
simulation-based models. The former are often preferred for small networks whereas
the latter are preferred for realistic networks of large urban agglomeration and for
microscopic traffic flow characteristics (Szeto and Wong 2012; Bliemer 2007). In the
context of the application of such models to large urban transportation networks,
at least two problems become apparent: a) microscopic modeling is computationally
expensive and b) data requirements are high. Mainly based on the underlying traffic
flow model, DTA models can be classified as physical-queue models (Szeto 2008; Szeto,
Jiang, and Sumalee 2011) and non-physical-queue models (Lam and Huang 1995;
Szeto and Wong 2012). One such physical-queue model (Gawron 1998; Cetin, Burri,
and Nagel 2003) is embedded in the activity-based, multi-agent transport simulation
framework MATSim (Horni, Nagel, and Axhausen 2016). Due to its simplicity, it is
able to handle large urban transportation networks (Balmer et al. 2008) and still
resembles to Newell’s simplified kinematic wave model (Agarwal, Lämmel, and Nagel
2016; Agarwal, Lämmel, and Nagel 2017). The aforementioned problem, regarding the
resource-intensive models can be managed by such fast traffic flow models.

Traditionally, in order to gather the required data, different types of data collection
techniques are used, which are either manual or automatic. Such approaches include
mid-block traffic count surveys, spot-speed surveys, origin-destination surveys, house-
hold surveys etc. (Currin 2012). The use of mid-block traffic counts survey is popular
in India for various purposes. However, this information is not sufficient to simulate
the travel demand for an urban scenario in order to understand the behavior of in-
dividual travelers. The complexity rises if traffic streams are populated with different
vehicle types, which is very common in most developing economies. In this direction,
this study proposes an approach to calibrate travel demand in heterogeneous traffic
conditions using minimal empirical data.

In contrast to traditional data collection techniques, several studies apply alter-
native approaches to derive and validate travel demand. Detailed surveys to collect
the data (e.g. household surveys), which require origin and destination information,
trip modes, trip purposes, start times, end times etc. are often associated with high
non-responses and misreporting rates (Zimowski et al. 1997; Wolf 2000). Traffic data
collection based on manual or automated traffic counts is usually easier to manage.
With the recent technological advances, new approaches are presented, which make
use of GPS (Geographical Positioning System) technology in traditional travel surveys,
which is likely to improve the quality and robustness of the data (Wolf 2000; Chung
and Shalaby 2005; Shen and Stopher 2014). With a web-based survey, it is shown
that innovative sources to collect travel data is gaining popularity as well as accep-
tance (Lee, Sener, and Mullins III 2016). GPS data is also used to study the decision
making process of cyclists (Hood, Sall, and Charlton 2011), to measure and visualize
space-time congestion patterns (Stipancic et al. 2017). Similarly, in the last couple of
years, several other studies proposed different approaches to collect data using CDR
(call detail records) from smart-phones (Iqbal et al. 2014; Chen and Bierlaire 2014).
A simulation-based approach to construct all-day trip chains using mobile phone data
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is proposed by Zilske and Nagel (2015), which reduces spatio-temporal uncertainties.1

From the above background, main focus of the study is to explore an approach to
use traditional or modern data effectively for the purpose of constructing synthetic
activity-trip chains of individual travelers which is essential in activity-based simu-
lations. This study proposes an approach to construct trip diaries in heterogeneous
traffic conditions using hourly classified mid-block traffic counts. That is, In addition
to this, household income levels are incorporated in the utility function to understand
the choices of travelers. For this, a real-world scenario of Patna, India, is considered.
The data for the scenario is taken from the Comprehensive Mobility Plan (CMP)
for Patna (TRIPP, iTrans, and VKS 2009). A few inconsistencies in the survey data
are observed, which are likely to occur in other scenarios as well. Some of these in-
consistencies are repaired in the scenario. The remainder of the paper is structured
as follows. Section 2 illustrates the calibration process, Section 3 exhibits the travel
demand for the scenario and construction of an income-dependent utility function.
Calibration results are presented and discussed in Section 4. The study is concluded
in the Section 5.

2. Calibration procedure

In this study, the multi-agent based transport simulation framework MATSim is used
(see Section 2.1), which is able to handle large-scale scenarios because of its fast
network loading algorithm and ability to handle mixed traffic conditions (Agarwal
et al. 2015; Agarwal and Lämmel 2016). Together with this, the calibrator CaDyTS
(‘Calibration of Dynamic Traffic Simulations’; see Section 2.2) is used. It has been
used previously to adjust traffic demand of car traffic (Flötteröd, Chen, and Nagel
2011; Ziemke, Nagel, and Bhat 2015) and to calibrate the travel demand for public
transit (Moyo Oliveros and Nagel 2012). It has also been applied to solve the problem
of location choice (Ziemke, Nagel, and Bhat 2015), which was applied in the creation
of an open scenario for Berlin (Ziemke and Nagel 2017). In these approaches, however,
CaDyTS was used for homogeneous traffic conditions, while the present study extends
the approach for heterogeneous traffic conditions.

2.1. Travel Simulator: MATSim

In this study, the MATSim transport simulation framework (Horni, Nagel, and Ax-
hausen 2016) is used for all simulation experiments. The minimal inputs for a simula-
tion run are the physical boundary conditions (i.e. the road network), daily plans of
individual travelers and scenario-specific parameters. The network loading algorithm
of MATSim is embedded to an iterative cycle in which every individual traveler is
considered as an agent. The cycle consists of following three parts:

(1) Plans execution: In this step, the plans of all individual travelers are executed
simultaneously on the network using a mobility simulation. In this study, a time-
step-based queue simulation approach (Gawron 1998; Simon, Esser, and Nagel
1999) is used. This can also simulate heterogeneous traffic conditions realisti-
cally (Agarwal et al. 2015; Agarwal and Lämmel 2016; Agarwal 2017; Agarwal,
Lämmel, and Nagel 2017).

1 Refer to Rieser-Schüssler (2012); Lee, Sener, and Mullins III (2016); Barmpounakis et al. (2017) for more

details about the modern data collections approaches, data sources and examples.
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(2) Plans evaluation: The executed plans are evaluated using a utility (scoring) func-
tion. In this study, the default ‘Charypar-Nagel’ scoring function (Charypar and
Nagel 2005) is used and further modified to include the effect of household in-
come (see Section 3.2.2).

(3) Re-planning: This step is composed of two parts i.e. innovation and plan selec-
tion. A new plan is generated for some agents by modifying an existing plan’s
attribute (departure time, route, mode etc.) using so-called innovative strate-
gies. The new plan is executed in the next iteration. Innovation is used until
fixed number of iterations. The old plans are kept in the agents’ memories; the
worst plan is removed from choice set if maximum number of plans in the choice
set of a person is reached. Agents which do not undergo innovation, select a
plan from their choice set using so-called non-innovative strategies (i.e., plan
selection).

The above steps are repeated in an iterative process. Finally, a number of additional
iterations are run only with non-innovative strategies which finally results in stabilized
simulation outputs.

2.2. Calibrator: CaDyTS

In an activity-based simulation framework, traffic counts are insufficient to gener-
ate whole day plans of individual travelers. To address this issue, a calibrator called
‘CaDyTS’ is used (‘Calibration of Dynamic Traffic Simulations’; Flötteröd, Bier-
laire, and Nagel 2011; Flötteröd 2010), which is based within a Bayesian framework.
Together with simulation framework, this is integrated to the utility function such
that probability of selecting a plan i from the j plans is given by Equation (1). In
this, ylt and qlt are the measurement and simulation values for spatial location l and
time bin t. σ2

lt is variance of measurement. Vi is the utility of the plan and ω is weight
parameter for correction ∆Vlt (Equation (2)).

P (i|y) =
exp(Vi + ω ·

∑
lt∆Vlt)∑

j exp(Vi + ω ·
∑

lt∆Vlt)
(1)

∆Vlt =
ylt − qlt

σ2
lt

(2)

In this study, hourly classified traffic counts are available, which are used to generate
whole day plan for the travelers. From the Equations (1) and (2), one can observe that a
plan, in which, an agent traverses a link whose simulated counts are underestimated, is
more likely to be chosen. For heterogeneous traffic conditions, Equation (2) is modified
as shown in Equation (3); where m is the mode for which measured traffic counts at
link l, time bin t are available:

∆Vltm =
yltm − qltm

σ2
ltm

(3)

Revisiting Equations (1) and (3), it can be observed that, if the choice set of an agent
contains plans with different modes, the correction is likely to fix the modal share
as well. In this study, CaDyTS is used to generate full day plans of agents and its
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Figure 1. Patna road network, survey locations and land-use pattern.

initially unknown activity locations. The choices for the different activity locations are
provided by creating multiple plans corresponding to each plausible activity location
(see Figure 1). The calibration approach can be applied to a variety of problems.

3. Real-world case study: Patna, India

This section exhibits the set-up for a real-world scenario of Patna, India. The road
network, survey locations, and the land-use patterns of Patna are shown in Figure 1
(Agarwal 2017).

3.1. Travel Demand

The travel demand of the region is categorized in two groups, urban and external
travel demand.

3.1.1. Urban travel demand

Urban travel demand is generated directly from a trip diary survey (TRIPP, iTrans,
and VKS 2009). Table 1 shows the modal income statistics for households of Patna
city. This data is evaluated from individual monthly income form trip diaries.2 Car
is predominantly used by high income persons whereas motorbike is used by mid to
high income persons. Bicycle and walk trips are limited to low income households.
Trip diaries result in 13,278 records which represent approximately 1% sample of all
trips. Every such record is translated into one agent with one plan. In absence of other
data, for each plan two trips are generated, one ‘to work/education/social/other’ and
one ‘back home’. This is somewhat similar to generating an AM peak and a PM peak
origin-destination-matrix. In order to get significant number of plans for commuters
and through traffic in various categories (see Section 3.1.2 and Appendix A), the data
is expanded to a 10% sample. Therefore, urban plans are cloned as follows:

(a) The origin and destination zones of each trip are known from household survey
data. For every person, a random point is taken from the origin and destination
zones i.e. all cloned persons are likely to originate and terminate on different
links.

(b) Same travel mode is assumed for all cloned persons to maintain the modal share
distribution from survey data.

(c) A trip starts immediately after ending an activity (e.g. home, work, education
etc.). The activity end time for each activity is randomized within a plausible
range depending on the trip purpose. For instance, a person departs between
08:00 to 09:30 for work, between 6:30 to 08:30 for education etc. Typical dura-
tions for home, work, education, social and other activities are assumed as 12,
8, 7, 5, 5 h respectively.

2 Parts of the data in the household survey were unavailable (e.g. missing trips for few zones, missing house-
holds income for few persons etc.); for such cases the required data were imputed randomly based on other
available data (e.g. trip distribution, income distribution etc.) in the Patna CMP (see Ch. 5 in Agarwal 2012,
for further details about the imputation of missing trips).
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Table 1. Average income (|/month) statistics for Patna city; data is generated

from trip diaries (TRIPP, iTrans, and VKS 2009).

travel mode number of persons mean income median income

bicycle 3878 5903.24 4000.0
car 526 13482.41 20000.0

motorbike 2668 10341.26 6250.0
PT 3527 8343.99 4000.0
walk 2679 6383.35 4000.0

all modes 13278 7840.43 4000.0

(d) Every person has unique identifier and all cloned persons have different plan
attributes (e.g. location of trip origin/destination, trip start time etc.). Thus,
later in the simulation, every person is considered individually.

3.1.2. External travel demand

The external travel demand is further classified into through traffic and commuters.
The former is the traffic which passes through Patna and consists of at most one
trip per day, whereas the latter consists of agents who commute between Patna and
nearby areas, and have 2 trips in their plans. To include the congestion effect of external
traffic in the activity-based transport simulation framework, the whole day plans of
the external traffic are required. These are generated as follows.

(1) The Patna CMP provides hourly classified counts for 7 outer cordon stations
(see Figure 1) in both directions and directional split factors (see Appendix A).
The directional split provides the share of commuters and through traffic from
each counting station.

(2) For through traffic, an OD matrix is given, which provides the origins and des-
tinations (see Table A3). In absence of additional information, the OD weights
from the matrix are used for all modes (bicycle, car, motorbike and truck) and in
all time bins; this provides the mode and departure times for the trips.3 Conse-
quently, a 10% sample is created from the counts such that each through traffic
plan has one trip only.

(3) For commuters, exact locations of the trip destinations are initially unknown.
They are calibrated in this study based on the given traffic counts in a similar
way as done by Ziemke, Nagel, and Bhat (2015) for car traffic. A few potential
activity locations are identified based on the land-use pattern (see Figure 1).
A random point inside any of these probable activity location areas is taken as
the trip destination. Thus, for every agent, 5 plans are generated corresponding
to each plausible destination and added to the choice set of the agent. From
Equation (1) recall that a plan is favored if the agent travels via one of the
counting stations that is underestimated in the simulation. In other words, within
the simulation framework, location choice is available to the agents, similar to
OD matrix estimation in trip based models (e.g. Bell 1983), but estimating the
location for the outgoing and the returning trip together.

3 Refer to Appendix A for more details about the input data for external travel demand, steps to estimate
the external trip counts, directional split and OD matrix for through traffic. This data is taken from Patna

CMP (TRIPP, iTrans, and VKS 2009).
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Table 2. Modal attributes for Patna scenario.

bicycle car motorbike truck PT walk

Speed (km/h) 15 60 60 30 20 5
PCU 0.15 1 0.15 3 – –

Table 3. Values of time and vehicle operating costs (IRC:SP:30 2009).

travel mode vehicle operating costs (USDct/km) value of time (USDct/h)

car 3.75 93.84
motorbike 1.55 48.05
PT – 59.31

3.2. Scenario preparation

The calibration of the scenario is performed for the following reasons.

(a) Trip destinations (activity locations) of the commuters are unknown.
(b) A few trip diaries do not have mode and income information which is randomly

assigned based on the income-dependent modal distribution from Patna CMP
(see Section 3.1.1).

(c) A few trip diaries are inconsistent (see Figure 3(a)). For instance, i) persons from
very low income group (8-11 USD/month) make trips by car, ii) persons from
high income group make 10 km long trips using bicycle or walk modes. Such
situations are very unlikely and assumed as reporting errors.

(d) The Patna CMP does not provide any utility parameters. As a starting point
utility parameters are taken from IRC:SP:30 (2009) as shown in Table 3; these
parameters are not related to the CMP survey. Other elements of a mode-choice
utility function, such as alternative (or mode) specific constants (ASCs) for all
modes or marginal utility of distances, are unknown and need to be found from
calibration.

3.2.1. Travel modes

In this study, car, motorbike, bicycle, and truck modes are physically simulated on
network (so called main modes or congested modes), whereas walk and public transit
(PT) are teleported between origin and destination (so-called uncongested or tele-
ported modes). The main difference between the two is that main modes consume
flow and storage capacities on the link and thus affect the route choice decision mak-
ing process of the individual travelers. Table 2 provides the maximum speeds for all
modes and PCU (passenger car unit) for congested modes. In the traffic mix, shares
of bicycle and motorbike modes are high, therefore, the PCU of bicycle and motorbike
is assumed as 0.15 (Chandra and Sikdar 2000).

3.2.2. Utility function

3.2.2.1. Utility parameters. To evaluate a plan, a scoring function is used which
requires explicit values for utility parameters. In order to determine the utility param-
eters, the value of time and vehicle operating costs is taken from IRC:SP:30 (2009) and
converted to USD4 for a common interpretation (see Table 3). The average trip cost
per km for PT is taken from Kumar, Baus, and Maitra (2004) and shown in Equa-

41 USD ≈ 66.6 |. Exchange rate on 8 June 2016.
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tion (4). The value are on the lower side, however, seems appropriate due to significant
share of low cost ‘tuk-tuks’ in Patna.

PT trip costs[USD] =

{
0.045, if d ≤ 4 km

0.045 + (d− 4) · 0.0047, if d > 4 km
(4)

3.2.2.2. Dependency on household income. In general, the value of time is
the opportunity cost of time an individual traveler spends on the trip; this is highly
dependent on the income level of individual. In order to incorporate the high income
differentiation across different modes, the perception of income is added to behavioral
decision making process of individual as follows:

(1) Utility of traveling: The utility of traveling is given by:

Strav,mode = Cmode + β̃trav,mode · ttrav + (βd,mode + βm · γd,mode) · dtrav (5)

where Cmode is ASC for mode mode, β̃trav,mode is the effective (see below)
marginal utility of time spent traveling (normally negative or zero), βd,mode is
marginal utility of distance (normally negative or zero), βm is marginal utility of
money (normally positive) and γd,mode is mode-specific monetary distance rate
(normally negative or zero). ttrav and dtrav is travel time and travel distance
between two activity locations.

(2) Marginal utility of traveling:
a) As is common (e.g. Franklin 2006), it is assumed that the income-dependent

marginal utility of money (βm,j) of person j is indirectly proportional to
this person’s income yj :

βm,j =
ȳ

yj

util

USD

where ȳ is the median income for all individuals.
b) The value of travel time savings (VTTS) is related to Equation (5) in the

usual way as −βm/β̃trav, e.g. for car as

VTTScar
!
=

−β̃trav,car
βm

. (6)

It is now plausible to assume that the car VTTS values from Table 3 were
obtained from people who actually used car, i.e. those with higher income.
Equation (6) thus becomes

VTTScar
!
=

−β̃trav,car
βm,highIncome

. (7)

Together with

βm,highIncome =
ȳ

yhighIncome

util

USD
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where it is thus assumed that the car users have a ‘typical’ income of
yhighIncome, and after rearrangement, Equation (7) becomes

β̃trav,car = −VTTScar·
ȳ

yhighIncome

util

USD
= −0.9384

USD

h
·
4000

20000

util

USD
= −0.19

util

h
,

where the number values are now taken from Table 3, and the income values
from Table 1; note that a conversion of the Rupee values into USD is not
necessary because of the division.

c) Similarly, for motorbike and PT, the marginal utility of traveling will be:

β̃trav,mb = −0.4805
USD

h
·
4000

6250

util

USD
= −0.31

util

h

β̃trav,PT = −0.5931
USD

h
·
4000

4000

util

USD
= −0.59

util

h

d) In absence of the values of time for bicycle and walk modes, (dis)utility
(or disagreeability) of being (stuck) in traffic for bicycle and walk mode is
assumed same as motorbike; i.e.

β̃trav,bicycle = β̃trav,walk = β̃trav,mb = −0.31 util/h

These values now plausibly express that in terms of marginal utility of time
spent traveling, car is the most favorable of all available modes, and PT the
least favorable. The fact that the VTTS of car in Table 3 comes out as the one
with the highest willingness-to-pay to shorten its duration is explained by the
higher income of car users, and not as a general inconvenience of car.

(3) Utility of performing an activity: Considering the marginal utility of time
as a resource, a unit reduction in travel time (∆t) would not only save the direct
(dis)utility of travel βtrav ·∆t but also increase the score by the utility of time
as a resource, which approximately is βdur ·∆t (Kickhöfer and Nagel 2016). The
latter is the opportunity cost of time gained by performing the activities for the
saved time (∆t). This results in

β̃trav,mode = βtrav,mode − βdur

where the sign convention is such that the parameter βdur is typically positive,
−βdur in consequence negative, and βtrav,mode denotes additional inconvenience
of the mode over ‘doing nothing’. Following Kickhöfer and Nagel (2016), the value
of the marginal utility of performing an activity (βdur) is taken as the negative of
that marginal utility of traveling across all the considered modes that is closest
to zero (here thus βdur = −β̃trav,car = 0.19 util/h), and the corresponding direct
marginal utility, βtrav,car, is set to zero. All other direct marginal utilities of
traveling are set relative to this value, i.e.

βtrav,mode = 0.19 util/h− β̃trav,mode

In words: The marginal disutility of each mode is decomposed into a ‘base’
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Table 4. Utility parameters converted to MATSim format.

travel mode bicycle car motorbike PT walk

monetary distance rate (γd) [USD/m] − −3.7· 10-5 −1.6· 10-5 Equation (4) −

marginal utility of traveling (βtrav) [util/h] −0.12 −0.0 −0.12 −0.40 −0.12

marginal utility of performing (βdur) [util/h] 0.19

marginal disutility caused by the martinal utility of time as a resource, plus
a mode-specific ‘additional’ (direct) marginal disutility. The resulting mode-
specific direct marginal utilities of traveling for MATSim scoring function are
shown in Table 4.

Further, the ASCs for different modes are calibrated to capture the influence of vari-
ables not explicitly included in the scoring function. Along with this, to include the
physical effort in bicycle and walk mode, the marginal utilities of distance for bicycle
and walk, βd,bicycle and βd,walk, are also calibrated.

In absence of any relevant data, the utility parameters of bicycle, car, and motorbike
from urban and external traffic are assumed to be the same. For trucks, a different
behavioral model is required, which is out of the scope of this study. However, for the
scenario completion and to include the congestion effects from commercial vehicles,
trucks are also included in the simulation with default utility parameters.5 This means
that they will search for their own fastest route and thus contribute to congestion, but
they have no other choice dimension besides route, and will not be included into the
economic analysis later.

3.2.3. Simulation setup

The modal splits of the urban travelers from reference study and initial plans are
shown in Table 6. In order to replicate this modal split, mode choice is allowed for urban
travelers and the ASCs are calibrated. The calibration is performed over 200 iterations
together with CaDyTS in order to generate the synthetic plans for the external demand
(see Section 2.2) and find destinations for commuters. For the calibration process, the
maximum limit of plans in the choice set of an agent is set to 10. After calibrating with
CaDyTS, only the best plans for each agent and in consequence only the destinations
best matching the traffic counts are kept. The simulation is then continued for another
1000 iterations (i.e. overall 1200 iterations) to stabilize the urban and external demand
in absence of CaDyTS.

Different so-called innovative modules are used for different sub-populations (urban
and external).

(i) Urban: In a given iteration, 15% of the urban travelers are allowed to change
their route, 10% are allowed to change mode and 5% are allowed to mutate the
departure time of the activity. The mutation of the departure time of the activity
is performed randomly between −2 to +2 h. The time mutation is turned off
after CaDyTS calibration, i.e. the departure times of the urban travelers are
then fixed.

(ii) External: In a given iteration, 15% of the agents from external traffic are allowed
to change routes until innovation is turned off. After 200 iterations, the origin-
destination pairs of the external demand are fixed.

5 By default, the marginal utility of traveling, ASC, monetary distance rates for a mode are set to 0. This
means, during a trip by mode truck, the agent will lose only opportunity cost of time (= βdur · ttrav).
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Table 5. Calibrated utility parameters.

parameter bicycle car motorbike PT walk

ASC (util) 0.0 −0.6 −0.58 −0.545 0.0
βd,mode (util/m) −0.00011 − − − −0.00012

Innovation is used until 80% of iteration (i.e., initially for iterations 1 to 160, and then
for iterations 201 to 1000). The remaining agents until 80% of the iterations and all
agents afterwards chose a plan from their generated choice sets. This plan selection
follows a probability distribution which converges to a multinomial logit model (Nagel
and Flötteröd 2012).

4. Calibration results

In this section, the results of the calibration are presented and the modal splits from
reference study, initial plans and calibrated demand are compared. Afterwards, the
real-world traffic counts are compared with the simulation counts. In order to under-
stand the impact of the income-dependent scoring function, a comparison of income-
dependent distance distribution from first and last iterations are presented.

4.1. Calibrated utility parameters

Strav,bicycle = − 0.00−
0.12

h
· ttrav −

0.00011

m
· dtrav

Strav,car = − 0.60−
0.0

h
· ttrav −

3.7 · 10-5

m
·
ȳ

yj
· dtrav

Strav,motorbike = − 0.58−
0.12

h
· ttrav −

1.6 · 10-5

m
·
ȳ

yj
· dtrav (8)

Strav,PT = − 0.545−
0.40

h
· ttrav − γd,PT ·

ȳ

yj
· dtrav

Strav,walk = − 0.00−
0.12

h
· ttrav −

0.00012

m
· dtrav

The (manually) calibrated ASCs for all modes and marginal utility of distance for
bicycle and walk modes are shown in Table 5 and Equation (8). The value of γd,PT

in Equation (8) is given by Equation (4). The ASCs for bicycle and walk modes are
estimated to zero, which can be interpreted as no initial impedance. Car/motorbike and
PT often have some initial overhead either in terms of getting the car out of the garage
or in terms of walking to a PT stop. In this scenario, walking to PT stop is marginally
less burdensome as getting the car/motorbike out of the garage/parking location. As a
consequence of mode choice, the share of walk mode increases (see Table 6), which can
be controlled either by a negative ASC or by having marginal utility of distance for
walk mode (βd,walk). The former has less significance for the walk mode and therefore
the latter is chosen. In contrast to bicycle, the walk mode is teleported and thus the
utility for a person with walk mode is not affected by congestion. The marginal utility
of distance for the walk mode (βd,walk = −1.2 · 10-4 util/m) is estimated marginally
higher than the marginal utility of distance for the bicycle mode (βd,walk = −1.1 ·
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Table 6. Modal splits for urban demand.

mode reference study initial urban after calibration
(TRIPP, iTrans, and VKS 2009) plans from travel it.1200

diaries; it.0

bicycle 33% 29.0% 32.3%
car 2% 4.0% 2.7%
motorbike 14% 20.3% 14.7%
PT 22% 26.6% 21.7%
walk 29% 20.1% 28.6%
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Figure 2. Comparison of 24 h simulation and real traffic counts.

10-4 util/m). This means, for walking 1 km, an agent will loose 0.12 util. At a speed of
5 km/h, it will take 12 min which could be used for performing an activity. Thus, the
agent will loose 0.024 util (= βtrav,walk ·0.2 h) for walking and 0.038 util (= βdur ·0.2 h)
opportunity cost of time which could be used for performing an activity.

4.2. Modal split

A comparison of the modal splits at different stages is shown in Table 6. It can be
observed that the modal share for the walk mode is significantly different in the ref-
erence study and in the initial plans. The aim of the calibration is to replicate the
modal shares from the reference study. Clearly, the modal split after calibration (col-
umn ‘it.1200’ in Table 6) has close resemblance with the reference study.

4.3. Traffic counts

Figure 2 shows the comparison of average weekday real counts and average weekday
simulation counts after 1200 iterations. In the first step, CaDyTS pushes agents on
the routes by adding a correction factor (Equation (2)) to the scoring function such
that the simulation counts match the measured counts. Afterwards, in absence of the
CaDyTS correction factor, the simulation counts for motorbike and bicycle become
higher than the real counts and simulation counts for car and truck have a good match
with real counts (see Figure 2). Eventually, the calibration results after 1200 iterations
provide a good fit for modal split and synthetic plans for external traffic.
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4.4. Income-dependent distance distribution
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Figure 3. Income-dependent distance distributions for initial plans and calibrated plans. The x- and y-axes
depict the distance classes (in km) and number of trips respectively. The average income (in USD/month) is
shown at the top of each frame.

In order to understand the impact of the income-dependent scoring function for
different modes, the income-distance distribution is plotted in Figure 3. The income
attributes are taken from the initial trip diaries and trip distances are the direct
distances between origin and destination activities. The following observations are
made:

a) After the calibration, the car is restricted to high income groups. In contrast to
the initial plans, now the car is used for the longer distances.

b) PT is used mainly for longer distances (> 4 km), whereas bicycle and walk modes
are used for relatively shorter distances (< 6 km). A few longer bicycle trips can
also be observed for households with a very low income.

c) To replicate the modal share from the reference study, the scenario is calibrated
such that the share of walk trips is about 8% higher after the calibration (see
Table 6). A higher share of walk trips (relatively shorter distance i.e., < 4 km)
can be noticed in the Figure 3(b). Additionally, the scoring function forces the
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impractical longer (> 8 km) walk trips to more plausible modes. A similar effect
is also observed for the longer bicycle trips from higher income groups.

Overall one can observe that several irregularities from the travel diaries are fixed in
the calibrated plans which is suitable for policy testing.

5. Conclusions

This study addresses the difficulties in the model development and validation due to
limited availability of the data. The overall objectives of the study were to estimate
the alternative specific constants (ASCs) in order to replicate the modal split in the
reference study and include the perception of income levels in the utility function.
In this direction, this study extended an approach to generate full day activity plans
in heterogeneous traffic conditions. To simulate travel demand, an agent-based travel
simulator was used, while for calibration, a Bayesian framework based calibration
technique was used. A real-world scenario of Patna was used for this purpose. Diverse
income levels were included in the utility function to filter out the errors in the survey
data and to understand the impact of income levels on the decisions of travelers. In this
approach, location choice was implicitly implemented to identify the initially unknown
destinations based on the land use pattern. The calibrated ASCs show plausible values.
With the help of income-based distance distributions, it was shown that the calibrated
plans are feasible plans and free from the errors originated from the survey. In future,
the authors wish to replace the manual calibration with an automatic calibration
process using some optimization techniques (Agarwal, Flötteröd, and Nagel 2017).
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Appendix A. Patna external demand

The external demand for Patna scenario is generated as follows.

Table A1. An example of hourly classified traffic counts data.

time bin car motorbike truck bicycle total

1 34 5 142 1 182
... ... ... ... ... ...
6 43 38 210 68 359
7 48 93 139 101 381
8 76 123 141 137 477
9 56 33 42 36 167
... ... ... ... ... ...
22 115 55 165 10 345
23 95 40 225 3 363
24 49 16 186 1 252

1) TRIPP, iTrans, and VKS (2009) provide hourly classified traffic counts data for
all counting stations in both (inbound and outbound) directions (see Table A1
for an example). For each mode, the daily sum of hourly inbound and outbound
counts must be equal, if this is not the case, the counts are adjusted. For instance,
total inbound car count is 990 and outbound count is 1000, thus, the outbound
counts are reduced by a factor calculated as (1000− 990)/990.

Table A2. Share of through and commuters traffic.

Share of ...

Outer cordon location commuters traffic through traffic

OC1 0.70 0.30
OC2 0.58 0.42
OC3 0.94 0.06
OC4 0.66 0.34
OC5 0.76 0.24
OC6 0.86 0.14
OC7 0.95 0.05

2) Further, the directional split for each counting station is available (see Table A2).
In absence of the classified hourly factors, the directional split is used together
with the adjusted hourly classified counts (from step 1) to get the hourly modal
counts for commuters and through traffic. E.g., at OC1, for time bin 2, the car
count is 100; 70% of this will be commuters and the remaining 30 will be through
traffic.

3) Further, Patna CMP also provides an origin-destination (OD) matrix for through
traffic which helps to determine the origin and destination of the through trip.
Again, in absence of the hourly classified OD matrix, the through traffic counts
obtained in step 2 are used along with the OD matrix (see Table A3) to get
the through trips. From the example in step 2, of the 30 through car trips that
originate at OC1 in time bin 2, 49% trips (≈ 15) terminate at OC4, 15% trips
(≈ 5) terminate at OC5, etc.
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Table A3. Origin-destination (O-D) matrix for through traffic.

O-D OC1 OC2 OC3 OC4 OC5 OC6 OC7

OC1 0% 0% 2% 49% 15% 3% 31%
OC2 1% 0% 0% 84% 5% 0% 10%
OC3 19% 4% 0% 4% 17% 23% 33%
OC4 76% 16% 0% 0% 3% 0% 5%
OC5 35% 7% 4% 38% 0% 8% 8%
OC6 30% 7% 23% 0% 13% 0% 27%
OC7 34% 7% 0% 9% 50% 0% 0%
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