4,758 research outputs found

    Keys to effective transit strategies for commuting

    Get PDF
    Commuting poses relevant challenges to cities\u2019 transport systems. Various studies have identified transit as a tool to enhance sustainability, efficiency and quality of the commute. The scope of this paper is to present strategies that increase public transport attractiveness and positively impact its modal share, looking at some case studies and underlining key success factors and possible elements of replica to be ultimately planned in some of the contexts of the Interreg project SMART-COMMUTING. The strategies analyzed in this paper concern prices and fares, service expansion, service improvements, usage of vehicle locators and other technology, changes to the built environment. Relevant gains in transit modal share are more easily achievable when considering integrations between various strategies, thus adapting and tailoring the planning process to the specific context

    Benefit-Cost Analysis for Transportation Planning and Public Policy: Towards Multimodal Demand Modeling

    Get PDF
    This report examines existing methods of benefit-cost analysis (BCA) in two areas, transportation policy and transportation planning, and suggests ways of modifying these methods to account for travel within a multimodal system. Although the planning and policy contexts differ substantially, this report shows how important multimodal impacts can be incorporated into both by using basic econometric techniques and even simpler rule-of-thumb methods. Case studies in transportation planning focus on the California Department of Transportation (Caltrans), but benchmark California’s competencies by exploring methods used by other states and local governments. The report concludes with a list and discussion of recommendations for improving transportation planning models and methods. These will have immediate use to decision makers at Caltrans and other state DOTs as they consider directions for developing new planning capabilities. This project also identifies areas, and lays groundwork, for future research. Finally, by fitting the planning models into the broader context of transportation policy, this report will serve as a resource for students and others who wish to better understand BCA and its use in practice

    Rail transit fare collection: Policy and technology assessment

    Get PDF
    The impact of fare policies and fare structure on the selection of equipment was investigated, fare collection systems are described, hardware and technology related problems are documented, and the requirements of a fare collection simulation model are outlined. Major findings include: (1) a wide variation in the fare collection systems and equipment, caused primarily by historical precedence; (2) the reliability of AFC equipment used at BART and WMATA discouraged other properties from considering use of similar equipment; (3) existing equipment may not meet the fare collection needs of properties in the near future; (4) the cost of fare collection operation and maintenance is high; and (5) the relatively small market in fare collection equipment discourages new product development by suppliers. Recommendations for fare collection R&D programs include development of new hardware to meet rail transit needs, study of impacts of alternate fare policies increased communication among policymakers, and consensus on fare policy issues

    Cost-Benefit Analysis of Novel Access Modes: A Case Study in the San Francisco Bay Area

    Get PDF
    The first-mile, last-mile problem is a significant deterrent for potential transit riders, especially in suburban neighborhoods with low density. Transit agencies have typically sought to solve this problem by adding parking spaces near transit stations and adding stops to connect riders to fixed-route transit. However, these measures are often only short-term solutions. In the last few years, transit agencies have tested whether new mobility services, such as ridehailing, ridesharing, and microtransit, can offer fast, reliable connections to and from transit stations. However, there is limited research that evaluates the potential impacts of these projects. Concurrently, there is growing interest in the future of automated vehicles (AVs) and the potential of AVs to solve this first-mile problem by reducing the cost of providing these new mobility services to promote access to transit. This paper expands upon existing research to model the simulate the travel and revenue impacts of a fleet of automated vehicles that provide transit access services in the San Francisco Bay Area offered over a range of fares. The model simulates a fleet of AVs for first-mile transit access at different price points for three different service models (door-to-door ridehailing and ridesharing and meeting point ridesharing services). These service models include home-based drop-off and pick-up for single passenger service (e.g., Uber and Lyft), home-based drop-off and pick-up for multi-passenger service (e.g.,microtransit), and meeting point multi-passenger service (e.g., Via)

    Automated Transit Networks (ATN): A Review of the State of the Industry and Prospects for the Future, MTI Report 12-31

    Get PDF
    The concept of Automated Transit Networks (ATN) - in which fully automated vehicles on exclusive, grade-separated guideways provide on-demand, primarily non-stop, origin-to-destination service over an area network – has been around since the 1950s. However, only a few systems are in current operation around the world. ATN does not appear “on the radar” of urban planners, transit professionals, or policy makers when it comes to designing solutions for current transit problems in urban areas. This study explains ATN technology, setting it in the larger context of Automated Guideway Transit (AGT); looks at the current status of ATN suppliers, the status of the ATN industry, and the prospects of a U.S.-based ATN industry; summarizes and organizes proceedings from the seven Podcar City conferences that have been held since 2006; documents the U.S./Sweden Memorandum of Understanding on Sustainable Transport; discusses how ATN could expand the coverage of existing transit systems; explains the opportunities and challenges in planning and funding ATN systems and approaches for procuring ATN systems; and concludes with a summary of the existing challenges and opportunities for ATN technology. The study is intended to be an informative tool for planners, urban designers, and those involved in public policy, especially for urban transit, to provide a reference for history and background on ATN, and to use for policy development and research

    Promoting Intermodal Connectivity at California’s High Speed Rail Stations

    Get PDF
    High-speed rail (HSR) has emerged as one of the most revolutionary and transformative transportation technologies, having a profound impact on urban-regional accessibility and inter-city travel across Europe, Japan, and more recently China and other Asian countries. One of HSR’s biggest advantages over air travel is that it offers passengers a one-seat ride into the center of major cities, eliminating time-consuming airport transfers and wait times, and providing ample opportunities for intermodal transfers at these locales. Thus, HSR passengers are typically able to arrive at stations that are only a short walk away from central business districts and major tourist attractions, without experiencing any of the stress that car drivers often experience in negotiating such highly congested environments. Such an approach requires a high level of coordination and planning of the infrastructural and spatial aspects of the HSR service, and a high degree of intermodal connectivity. But what key elements can help the US high-speed rail system blend successfully with other existing rail and transit services? That question is critically important now that high-speed rail is under construction in California. The study seeks to understand the requirements for high levels of connectivity and spatial and operational integration of HSR stations and offer recommendations for seamless, and convenient integrated service in California intercity rail/HSR stations. The study draws data from a review of the literature on the connectivity, intermodality, and spatial and operational integration of transit systems; a survey of 26 high-speed rail experts from six different European countries; and an in-depth look of the German and Spanish HSR systems and some of their stations, which are deemed as exemplary models of station connectivity. The study offers recommendations on how to enhance both the spatial and the operational connectivity of high-speed rail systems giving emphasis on four spatial zones: the station, the station neighborhood, the municipality at large, and the region

    Passenger Flows in Underground Railway Stations and Platforms, MTI Report 12-43

    Get PDF
    Urban rail systems are designed to carry large volumes of people into and out of major activity centers. As a result, the stations at these major activity centers are often crowded with boarding and alighting passengers, resulting in passenger inconvenience, delays, and at times danger. This study examines the planning and analysis of station passenger queuing and flows to offer rail transit station designers and transit system operators guidance on how to best accommodate and manage their rail passengers. The objectives of the study are to: 1) Understand the particular infrastructural, operational, behavioral, and spatial factors that affect and may constrain passenger queuing and flows in different types of rail transit stations; 2) Identify, compare, and evaluate practices for efficient, expedient, and safe passenger flows in different types of station environments and during typical (rush hour) and atypical (evacuations, station maintenance/ refurbishment) situations; and 3) Compile short-, medium-, and long-term recommendations for optimizing passenger flows in different station environments

    Washington START Transportation Model

    Get PDF
    The document describes the Washington START transportation simulation model. In particular, it provides information about the model structure, the equilibrium concept, and the data used to calibrate the model. It also briefly describes the reference scenario and the elasticity analysis. Finally, the document discusses past and potential future applications and possible directions for model extensions.transportation simulation, policy analysis, general equilibrium, travel demand, transportation network, mode of transportation
    corecore