48 research outputs found

    A characterization of graph properties testable for general planar graphs with one-sided error (it's all about forbidden subgraphs)

    Get PDF
    The problem of characterizing testable graph properties (properties that can be tested with a number of queries independent of the input size) is a fundamental problem in the area of property testing. While there has been some extensive prior research characterizing testable graph properties in the dense graphs model and we have good understanding of the bounded degree graphs model, no similar characterization has been known for general graphs, with no degree bounds. In this paper we take on this major challenge and consider the problem of characterizing all testable graph properties in general planar graphs. We consider the model in which a general planar graph can be accessed by the random neighbor oracle that allows access to any given vertex and access to a random neighbor of a given vertex. We show that, informally, a graph property P is testable with one-sided error for general planar graphs if and only if testing P can be reduced to testing for a finite family of finite forbidden subgraphs. While our presentation focuses on planar graphs, our approach extends easily to general minor-free graphs. Our analysis of the necessary condition relies on a recent construction of canonical testers in the random neighbor oracle model that is applied here to the one-sided error model for testing in planar graphs. The sufficient condition in the characterization reduces the problem to the task of testing H-freeness in planar graphs, and is the main and most challenging technical contribution of the paper: we show that for planar graphs (with arbitrary degrees), the property of being H-free is testable with one-sided error for every finite graph H, in the random neighbor oracle model

    Optimal decremental connectivity in planar graphs

    Get PDF
    We show an algorithm for dynamic maintenance of connectivity information in an undirected planar graph subject to edge deletions. Our algorithm may answer connectivity queries of the form `Are vertices uu and vv connected with a path?' in constant time. The queries can be intermixed with any sequence of edge deletions, and the algorithm handles all updates in O(n)O(n) time. This results improves over previously known O(nlog⁥n)O(n \log n) time algorithm

    A Simple Algorithm for Minimum Cuts in Near-Linear Time

    Get PDF
    We consider the minimum cut problem in undirected, weighted graphs. We give a simple algorithm to find a minimum cut that 22-respects (cuts two edges of) a spanning tree TT of a graph GG. This procedure can be used in place of the complicated subroutine given in Karger's near-linear time minimum cut algorithm (J. ACM, 2000). We give a self-contained version of Karger's algorithm with the new procedure, which is easy to state and relatively simple to implement. It produces a minimum cut on an mm-edge, nn-vertex graph in O(mlog⁥3n)O(m \log^3 n) time with high probability, matching the complexity of Karger's approach.Comment: To appear in SWAT 202

    Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles

    Full text link
    Given a simple graph G=(V,E)G=(V,E), a subset of EE is called a triangle cover if it intersects each triangle of GG. Let Îœt(G)\nu_t(G) and τt(G)\tau_t(G) denote the maximum number of pairwise edge-disjoint triangles in GG and the minimum cardinality of a triangle cover of GG, respectively. Tuza conjectured in 1981 that τt(G)/Îœt(G)≀2\tau_t(G)/\nu_t(G)\le2 holds for every graph GG. In this paper, using a hypergraph approach, we design polynomial-time combinatorial algorithms for finding small triangle covers. These algorithms imply new sufficient conditions for Tuza's conjecture on covering and packing triangles. More precisely, suppose that the set TG\mathscr T_G of triangles covers all edges in GG. We show that a triangle cover of GG with cardinality at most 2Îœt(G)2\nu_t(G) can be found in polynomial time if one of the following conditions is satisfied: (i) Îœt(G)/∣TGâˆŁâ‰„13\nu_t(G)/|\mathscr T_G|\ge\frac13, (ii) Îœt(G)/∣EâˆŁâ‰„14\nu_t(G)/|E|\ge\frac14, (iii) ∣E∣/∣TGâˆŁâ‰„2|E|/|\mathscr T_G|\ge2. Keywords: Triangle cover, Triangle packing, Linear 3-uniform hypergraphs, Combinatorial algorithm

    Simple planar graph partition into three forests

    Get PDF
    AbstractWe describe a simple way of partitioning a planar graph into three edge-disjoint forests in O(n log n) time, where n is the number of its vertices. We can use this partition in Kannan et al.'s graph representation (1992) to label the planar graph vertices so that any two vertices' adjacency can be tested locally by comparing their names in constant time

    Testable properties in general graphs and random order streaming

    Get PDF
    We present a novel framework closely linking the areas of property testing and data streaming algorithms in the setting of general graphs. It has been recently shown (Monemizadeh et al. 2017) that for bounded-degree graphs, any constant-query tester can be emulated in the random order streaming model by a streaming algorithm that uses only space required to store a constant number of words. However, in a more natural setting of general graphs, with no restriction on the maximum degree, no such results were known because of our lack of understanding of constant-query testers in general graphs and lack of techniques to appropriately emulate in the streaming setting off-line algorithms allowing many high-degree vertices. In this work we advance our understanding on both of these challenges. First, we provide canonical testers for all constant-query testers for general graphs, both, for one-sided and two-sided errors. Such canonizations were only known before (in the adjacency matrix model) for dense graphs (Goldreich and Trevisan 2003) and (in the adjacency list model) for bounded degree (di-)graphs (Goldreich and Ron 2011, Czumaj et al. 2016). Using the concept of canonical testers, we then prove that every property of general graphs that is constant-query testable with one-sided error can also be tested in constant-space with one-sided error in the random order streaming model. Our results imply, among others, that properties like (s,t) disconnectivity, k-path-freeness, etc. are constant-space testable in random order streams

    Sparsest Cut on Bounded Treewidth Graphs: Algorithms and Hardness Results

    Full text link
    We give a 2-approximation algorithm for Non-Uniform Sparsest Cut that runs in time nO(k)n^{O(k)}, where kk is the treewidth of the graph. This improves on the previous 22k2^{2^k}-approximation in time \poly(n) 2^{O(k)} due to Chlamt\'a\v{c} et al. To complement this algorithm, we show the following hardness results: If the Non-Uniform Sparsest Cut problem has a ρ\rho-approximation for series-parallel graphs (where ρ≄1\rho \geq 1), then the Max Cut problem has an algorithm with approximation factor arbitrarily close to 1/ρ1/\rho. Hence, even for such restricted graphs (which have treewidth 2), the Sparsest Cut problem is NP-hard to approximate better than 17/16−ϔ17/16 - \epsilon for Ï”>0\epsilon > 0; assuming the Unique Games Conjecture the hardness becomes 1/αGW−ϔ1/\alpha_{GW} - \epsilon. For graphs with large (but constant) treewidth, we show a hardness result of 2−ϔ2 - \epsilon assuming the Unique Games Conjecture. Our algorithm rounds a linear program based on (a subset of) the Sherali-Adams lift of the standard Sparsest Cut LP. We show that even for treewidth-2 graphs, the LP has an integrality gap close to 2 even after polynomially many rounds of Sherali-Adams. Hence our approach cannot be improved even on such restricted graphs without using a stronger relaxation

    Compact Labelings For Efficient First-Order Model-Checking

    Get PDF
    We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is \emph{nicely locally cwd-decomposable}. This notion generalizes that of a \emph{nicely locally tree-decomposable} class. The graphs of such classes can be covered by graphs of bounded \emph{clique-width} with limited overlaps. We also consider such labelings for \emph{bounded} first-order formulas on graph classes of \emph{bounded expansion}. Some of these results are extended to counting queries

    Finding Small Complete Subgraphs Efficiently

    Full text link
    (I) We revisit the algorithmic problem of finding all triangles in a graph G=(V,E)G=(V,E) with nn vertices and mm edges. According to a result of Chiba and Nishizeki (1985), this task can be achieved by a combinatorial algorithm running in O(mα)=O(m3/2)O(m \alpha) = O(m^{3/2}) time, where α=α(G)\alpha= \alpha(G) is the graph arboricity. We provide a new very simple combinatorial algorithm for finding all triangles in a graph and show that is amenable to the same running time analysis. We derive these worst-case bounds from first principles and with very simple proofs that do not rely on classic results due to Nash-Williams from the 1960s. (II) We extend our arguments to the problem of finding all small complete subgraphs of a given fixed size. We show that the dependency on mm and α\alpha in the running time O(αℓ−2⋅m)O(\alpha^{\ell-2} \cdot m) of the algorithm of Chiba and Nishizeki for listing all copies of KℓK_\ell, where ℓ≄3\ell \geq 3, is asymptotically tight. (III) We give improved arboricity-sensitive running times for counting and/or detection of copies of KℓK_\ell, for small ℓ≄4\ell \geq 4. A key ingredient in our algorithms is, once again, the algorithm of Chiba and Nishizeki. Our new algorithms are faster than all previous algorithms in certain high-range arboricity intervals for every ℓ≄7\ell \geq 7.Comment: 14 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:2105.0126
    corecore