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Abstract 

We describe a simple way of partitioning a planar graph into three edge-disjoint forests in 
O(n log n) time, where n is the number of its vertices. We can use this partition in Kannan et al.‘s 
graph representation (1992) to label the planar graph vertices so that any two vertices’ adjacency 
can be tested locally by comparing their names in constant time. 0 1998 Elsevier Science B.V. 
All rights reserved. 
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1. Introduction 

A number of ways of storing a graph compactly can be found in the literature 

[2, 3, IO- 12, 14, 191. Among other things, this is useful to save space in distributed 

environments where the adjacency matrix of the given graph cannot be stored in 

each node. Kannan et al. [12] describe an elegant method for representing the ad- 

jacency matrices of some graph families without having the whole adjacency informa- 

tion available in every single vertex. Among the graph families examined, the authors 

study the graphs with bounded arboricity k, i.e., the graphs which can be decomposed 

into k edge-disjoint spanning forests for the minimum integer k (see Nash-Williams’ 

theorem [4, 151). Given one such graph G, Kannan et al. assign names to its ver- 

tices so that the adjacency of any two vertices can be tested locally by comparing 

their corresponding names. To this end, they prelabel the vertices with distinct integers 

and partition G into k forests. A vertex’s name is then given by the (k + I)-tuple 

made up of the vertex’s label and its parents’ labels in the k forests. The authors use 

Picard and Queryranne’s algorithm to partition the graph into k edge-disjoint forests 
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in 0(n2mlog2 n) time (or 0(n4) time for dense graphs), where n is the number of 

vertices and m is the number of edges. A subsequent result by Gabow [6] gives a 

faster partitioning algorithm whose running time is O(kndw). 

In their paper, Kannan et al. examine the special case of planar graphs, that is, 

graphs that can be drawn on the plane so that no two edges intersect (the result- 

ing drawing is called planar embedding [93). Since planar graphs have m = O(n) 

edges and k = 3 arboricity [ 161, their technique immediately produces vertex names 

which are quadruples. In this case, we have to face the problem of partitioning a 

planar graph into three forests. We can still use Gabow’s algorithm for this and 

do the task in O(n&z) time. In this paper, we use the planarity hypothesis in 

order to describe a simple O(nlogn)-time partitioning into three edge-disjoint forests. 

We use a well-known corollary to Euler’s famous theorem on planar graphs (1750) 

stating that every planar graph contains a vertex whose degree is five at most [ 161 

(where a vertex degree is defined as the number of its incident edges) and the Jordan 

curve theorem stating that a closed curve C with no crossings divides the plane into 

two disjoint regions whose boundary is C. We also introduce a graph transformation 

that maintains the planar embedding and a certain kind of edge coloring. Given a color 

a and an edge color labeling, we say that there is an a-cycle if we find a cycle whose 

edges are all the same color a. We label the edges with three colors, so that for any 

color a there are no a-cycles. We call this kind of edge coloring three-color cycle-free 

labeling (in short, 3CF coloring). Consequently, partitioning a planar graph into three 

forests amounts to determining a 3CF coloring. Any two edges are the same color if 

and only if they belong to the same forest. 

Some comments are in order. Partitioning a planar graph into four forests can be 

done in linear time while obtaining five or more forests is straightforward as we can 

always choose a vertex with degree five at most (see [S]). In order to get k = 3 forests, 

we can try some intuitive approaches, such as repeatedly removing all of the spanning 

forest’s edges from the graph (see Fig. l), but they do not seem to work properly. Our 

solution works for the problem regarding the three forests by a detailed case analysis. 

We first show a graph reduction maintaining planar embedding in order to obtain a 

3CF coloring. We then describe our planar graph partitioning algorithm. When treating 

planar graphs, our algorithm can be used in Kannan et al.‘s representation [12] instead 

of the aforementioned algorithms. 

2. Graph reduction 

We let G be an undirected planar graph having n vertices and m edges, with 

m < 3n-6. We denote the set of G’s edges by E and fix one of G’s planar embeddings 

(no two edges intersect each other in the plane). We assume that the embedding is 

represented as follows: Each vertex u has an associated adjacency list that contains the 

vertices adjacent to u taken clockwise. We define a graph transformation that maintains 

this embedding. 
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Cc) W 

Fig. 1. A counterexample to partition a planar graph by repeatedly removing its spanning tree’s edges (shown 

in boldface): as a result, we obtain the four trees shown in (a)-(d) (instead of three). 

Given a vertex u E G with degree d < 5, let ~0,. . . , w&l be its adjacent vertices 

(also called neighbors) in clockwise order. In this paper, we use the convention that 

subscripted indices are modulo d; that is, wi denotes Wimodd for every integer i. 

We now define operation Reduce(G, u) to handle u according to its degree d: 

Case d 63: We remove u and the edges linking u to ~0,. . . , Wd_1 (see Fig. 2(i)). 

Case d = 4: We find a pair wi, wi+2 of u’s neighbors, such that edge (Wi, Wi+2) does 

not belong to E. This pair exists because of the Jordan curve theorem. We then remove 

u and the edges linking it to ~0,. . . , ~3. We add a new edge (wi,w;+z) (see Fig. 2(ii)). 

Case d = 5: We determine an edge, i.e., (wi-i,wi+i), that belongs to E. If this edge 

does not exist, then we pick out an arbitrary pair wi_1, wi+i of u’s neighbors. We 

then replace u and the edges linking it to wa,. . . , w4 with new edges (wi_2,wi) and 

(wi, Wi+Z). Moreover, we install edges (wi- 1, wi) and (w,, wi+ I) if they do not already 

exist (see Fig. 2(iii)). 

Note that (Wi_2,wi) and (w:,w~+z) cannot belong to E. Indeed: (1) If (Wi-i,Wl+i) 

does not exist for every i, then (wi_z,wi) and (wi,wi+z) cannot exist either. (2) If 

(wi- 1, Wi+l ) exists, then wi-1, u, wi+i are the vertices in a cycle that divides the plane 

into two regions: wi must be in one of the two regions, while wi_2 and wi+2 must be 
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Fig. 2. A node u and its neighbors in the embedding before (left) and after (right) the graph reduction 

Reduce(G,u) according to U’S degree. 

in the other region. The existence of either (wi_z,wi) or (Wi, wi+2) would contradict 

the Jordan curve theorem (analogously to the case d = 4). 

Our graph reduction maintains the initial graph embedding (this implies that the 

resulting graph is planar). 

Lemma 1. Every planar embedding for a graph G is also a planar embedding for 

the graph obtained by applying Reduce(G,u). 

Proof. By checking the three operations above, it is soon obtained. The details can be 

found in [7]. 0 

3. Graph 3CF coloring 

We now take the sequence of graphs G,,, GE_,, . . . , Gt , such that G, = G and Gj-r 

is obtained by applying Reduce(Gj, uj) (for j = n, . . . ,2), where uj denotes one of Gj’s 

minimum-degree vertices. By the definition of Reduce, Gj has j vertices and is still 
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Fig. 3. 3CF coloring of the edges incident to a node Uj in graph G, (left) obtained by a 3CF coloring of 

G,_ 1 (right) when u, ‘s degree is (i) d < 3 and (ii) d = 4. 

planar by Lemma 1. Consequently, #j’s degree is five at most by Euler’s theorem and 

G,,, G,_ 1,. . , G1 is a well-defined sequence of planar graphs. 

Our basic idea in obtaining G’s 3CF coloring consists of processing the graphs in 

reverse order: Gr , . , G,_ 1, G,. We use three colors (blue, green and red) and variables 

a, b,c,x, y E {blue,green,red} to denote these colors. We show that G,‘s 3CF coloring 

can be obtained from Gj_1 ‘s by induction for j = 2,3,. , n. The inductive basis holds 

because Gr has no edges. 

For j> 1, we let Ej be the set of Gj’s edges and their 3CF coloring be represented 

by a mapping Cj : Ej + {blue, green, red} that assigns the colors to Gj’s edges, such 

that for any color c( E {blue, green, red} there is no cc-cycle. We denote Uj’s neighbors 

by WO, . . , w&_I (we have d < 5) and use ei = (Uj, wi) to indicate the edge in Ej linking 

uj to its neighbor wi. Since we have Cj-r by induction, we show how to obtain Ci 

according to uj’s degree d: 

Case d<3: We have E/=Ej_1 U{eo,..., e&l} and three new edges eo,...,ed_I at 

most. We define Cj to be the same as Cj_ 1 when its edges are in Ej_ 1 C: l?i and have 

enough colors for assigning different colors to the remaining edges eo, , e& 1 in E, 

(see Fig. 3(i)). 

Case d =4: We have Ej =Ej_l - (1) U {eo,...,e3}, where 1 =(wi,wi+2). We let 

a=C’-l(1) be l’s color in Gj-r (see Fig. 3(ii)). We define Cj to be the same as (I-1 

when its edges are in Ej_1 - (1) s Ej. For the remaining edges in l?j, we set Cj as 

follows: we assign color a to both ei and ei+2 and the other two colors to the edges 

in {eo,...,e3} - {ei,ei+2>. 

Case d=5: We have Ej=EJ_I -E’- {lI,Z2}U{eo,...,e~}, where Ir =(Wi-2,Wl), 

lz=(w,,wi+2) and E’C{(wi-l,w;),( w wi+l)} denotes the set of edges added by i, 

Reduce(Gj, uj) in order to link wi to wi_1 and wi+r when the corresponding edge 
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Fig. 4. 3CF coloring of the edges incident 

Gj_ .I (right) when Uj’s degree is d =5. 

a 
CW 

c=l 
(2b) 

wi-2 Y+2 

to a Uj in graph Gj (left) obtained by a 3CF coloring of 

is not in Ej (see Fig. 4, right). Let a = Cj_t(2l) and b = Ci_t(Z2), and define Cj to be 

the same as Cj-1 when its edges are in Ej- 1 - E’ - {ll, 12) & Ej. Note that the edges 
in E’ U { I1,12} are discarded because they do not belong to Ei. We now have to define 

cj 
1. 

2. 

for the edges left: eo, . . . ,e4. There are two possible cases: 

If a = b, then we assign color a to ei-2, ei and ei+2 and the other two colors to the 

edges in {eo, . . .,Q} - {ei_-2,ei,ei+2} (see Fig. 4(l)). 

If a # b, then we let c be the remaining color. We first define a boolean predicate 

pathi- (01, ~2, a, I): it is true when there is a path of edges belonging to Ej_r - {I}, 

such that all the edges are color 01 and connect vertices ~1 and v2 together. We now 
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need three subcases to assign colors to es,. . . , e4 according to pat/z_, (we also 

need to change some previously assigned colors in the last subcase): 

2a. If path,_i(wi_2,wi_i,a, 11) is false (see Fig. 4(2a)), then we assign color a to 

ei_-2 and e;_l, color b to ei and ei+2, and color c to ei+l. 

2b. If path,_,(Wi+l, wi+2, b, 12) is false (see Fig. 4(2b)), we assign the colors sym- 

metrically as in subcase 2a: we assign color b to ej+l and ei+2, color a to e, 

and e;_2, and color c to ei- 1. 

2c. In all other cases, we take (wi_t,wi)‘s color x and (wi,wifl)‘s color y assigned 

by C’-1 (see Fig. 4(2c)). These two edges exist in Ei-1 thanks to Reduce. If 

they belong to E,, they are not discarded and their colors are changed by C,: 

(wi_~,wi)‘s color becomes a and (wI, wi+t )‘s color becomes 6. We assign color 

x to e,_l and color y to e,+t, and we assign color a to ei_2, color b to e;+2 

and color c to e,. 

We now prove that the above case analysis produces Gj’s 3CF coloring. We first 

examine the more involved subcase 2c when d = 5 and then go on to the other cases 

(Lemma 2). 

Let us assume that C,_t is a 3CF coloring. We claim that in subcase 2c for A = 5, 

no a-cycles traversing either (wi_l,wi) or (wi, wi+l), or one of uj’s incident edges are 

possible, where a E {blue, green, red}. In order to see why, we let a, b and c denote the 

three colors (without specifying them) and x and y the two (maybe equal) colors used 

in subcase 2c (see Fig. 4(2c)). According to the Jordan curve theorem, we partition 

the plane into an internal region that is delimited on the outside by the convex hull 

of uj’s neighbors ~0,. .., w4 (i.e., the region delimited by the embedding of u, and 

its neighbors, together with their linking edges) and an external region (i.e., what is 

left by removing the internal region). We now prove our claim. Let us assume by 

contradiction that an a-cycle exists in Gj and traverses either (w;_l,wi) or (wi, w,.+t ), 

or one of uj’s incident edges. Three cases follow according to color x (see Fig. 4(2c)): 

(1) Case c( = c. Since Uj’s only incident edges having color c in Gj are the ones 

linking Uj to wi_ 1, wi and wi+t at most, the c-cycle traverses two of these edges. Let 

us assume that they are (wi-t,Uj) and (nj, wi) without any loss in generality (and SO 

x = c). We can deduce that a path (whose edges are all color c) connects w,-1 to w, 

in the external region. Since this path also exists in G,_ 1, and (wi_ 1, w, ) is color x = c 

in Gj_ 1, we obtain a c-cycle in Gj- 1 (a contradiction). 

(2) Case CI = a. Color x satisfies x # a because of Cj_ l (see Fig. 4(2c), right). Let 

us examine Gj. We deduce that (wi_1, wi), ei-2 and ei+t are the only edges whose 

color can be a in the internal region. Therefore, the a-cycle traverses both (wi-t , w,) 

and one of Uj’s incident edges, or it traverses either (w__, w,) or one of Ui’s incident 

edges. 

If the a-cycle traverses both (wi-1, w,) and one of ui’s incident edges, then y = a 
because ej+t is the only edge (other than ei-2) incident to Uj whose color is a. We 

deduce that wi and wi+l are connected by a path (in the external region) whose edges 

are all color a. This path is also in Gi-1, and (We, w;+l )‘s color in Gi_1 is _Y = a; 
therefore, we obtain an a-cycle in G,_t (a contradiction). 
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If the a-cycle only traverses one of uj’s incident edges, then y=a. We deduce that 

wi-2 and wi+i are connected by a path (in the external region) whose edges are all 

color a. Since this path is also in Gj_1 and both (wi-2, wi) and (wi,Wi+i) are color a 

in Gj_1, we obtain an a-cycle in Gj_i (a contradiction). 

If the a-cycle only traverses (wi_i, wi), then its endpoints are connected together 

by a path (in the external region) whose edges are all color a. This path exists also 

in Gj_1. Since pathj_,(wi_2,wi_l,a,lI) is true and (wi-2,wi) is color a, we have a 

contradiction in Gj_ 1. 

(3) Case a = b is analogous to case a = a (the b-cycle involves (wi, wi+i) and y #b). 

Lemma 2. Given a 3CF coloring for Gj-1 ‘s edges, we can determine a 3CF coloring 
for Gj’s edges, where 2 <j <n. 

Proof. Since Cj-i is a 3CF coloring for Gj-i’s edges, we show that for any CI E {blue, 

green, red} there are no a-cycles produced in Gj by Cj’s colors. Let us assume that 

an a-cycle exists by contradiction. Since the edges that are added to form Ej are all 

incident to uj, the cc-cycle must traverse at least two of uj’s incident edges (except 

for the subcase 2c discussed previously). We go on to prove that we always obtain a 

contradiction according to our case analysis. 

In case d <3 (see Fig. 3(i)), we use different colors and so no two edges can be 

incident to uj and be the same color. This means that no a-cycles can be created 

at all. 

In case d =4 (see Fig. 3(ii)), we can only have tx = a because it is the only color 

assigned to two edges incident to uj. We previously saw that the two edges are ci 

and ei+2. However, going on to replace the two edges with I= (Wi,Wi+z) would pro- 

duce an a-cycle in Gj_i and therefore contradict the hypothesis that Cj_i is a 3CF 

coloring. 

In case d = 5, since subcase 1 is similar to case d =4 (see Figs. 3(ii) and 4.1), we 

focus our attention on subcases 2a-2c. Let a, b and c be the different colors used. In 

subcase 2a (see Fig. 4(2a), right), an a-cycle is not possible in Gj because it would 

traverse ci-2 and ci-i and imply that pathj_,(wi_2,Wi-~,a,1~) is true in Gj-1, where 

Ii = (wi-2, wi). A b-cycle would not be possible in Gj either because it would traverse 

ei and ci+2 and imply the existence of a b-cycle in Gj_i traversing (Wi,Wi+z), which 

contradicts the fact that Cj_1 is a 3CF coloring. Finally, no c-cycles exist because ei+i 

is the only edge (incident to Uj) whose color is c. The same holds for the symmetrical 

subcase 2b. Subcase 2c is special because we change two edges’ colors and so an 

a-cycle can traverse them whether or not it also traverses Uj’s incident edges. However, 

the claim discussed before this lemma shows that no such a-cycles are possible. This 

completes our case analysis. 

In brief, we showed that it is possible to build a 3CF coloring from Cj-i and we 

proved the lemma’s statement. 0 

Corollary 3. We can always determine a 3CF coloring for a planar graph G. 
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Proof. The sequence G,, . . . , G1 is well formed by Lemma 1. G1 trivially has a 3CF col- 

oring because it only contains one vertex. By induction and Lemma 2, we have that 

G, = G and so G has a 3CF coloring. 0 

4. Edge-disjoint forests’ construction 

Our algorithm for building a partition into three forests applies the Reduce operation 

to the input graph until a single vertex is obtained. Then, it examines the sequence of 

intermediate planar graphs so obtained backward, and assigns the colors to their edges 

following the case analysis discussed in Section 3. Its high-level description is shown 

in Fig. 5. We give some comments below and specify the relevant implementation 

details. 

We first execute Hopcroft and Tarjan’s linear-time algorithm [9] for finding G’s 

planar embedding in step (1). This is useful in step (2) to represent the adjacency 

lists in G according to its embedding. The adjacency between any two vertices can 

be verified in constant time and linear space (say, by an easy-to-compute partition 

into k=5 forests and by Kannan et al.‘s adjacency method [12]). In steps (3)-(6), 

we obtain the sequence of graphs G,, G,_ 1,. , G1. We maintain an array indexed by 

the vertices’ degrees, in which the vertices of the same degree are kept in a doubly 

linked list. We are able to determine uj in constant time by scanning the array’s first 

five entries. When a vertex’s degree changes because of Reduce(Gj, Uj), we update the 

array and the adjacency lists in constant time. We store u, and the 0( 1) edges involved 

by Reduce into a stack cell, so as to be able to obtain Gj from Gj-1 subsequently. We 

spend a total of O(n) time in steps (3)-(6). We produce a 3CF coloring by means 

of steps (7)-( 10). Initially, Cl is empty as G1 is just an isolated vertex. In step (9), 

we retrieve Uj and the edges that contributed to get Gj-1 from Gj, in constant time. 

At this point, we execute step (10) to apply our case analysis presented in Section 3. 

The efficient implementation of this step deserves more discussion below. Finally, we 

give the three forests as output in step (11). Each forest consists of the edges in G = G, 

whose colors are identical in the 3CF coloring C,,. 

(1) 
(‘4 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 

Execute Hopcroft-Tarjan algorithm to find G’s planar embedding; 

G, := G; /* with its planar embedding ‘/ 
for j := n downto 2 do 

Find a m&degree vertex u3 in G,: 

G,_I := Redwe(G,, ~1~); 
Push uj, its incident edges and the edges in CJ/G3_1 into a stack; 

C, := empty; /* initial 3CF coloring */ 

for j := 2 to n do 
Pop uJ and its companion edges from the stack; 
Compute C, from C,_, by the case analysis on uJ given in Section 3; 

Output the three forests, each forest identified by the edges with same color in C,. 

Fig. 5. Pseudocode for partitioning an n-vertex planar graph G into three forests. 
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In the rest of this section, we describe the data structures and the algorithms to 

implement step (10) in O(logn) time. Let us therefore examine the corresponding case 

analysis, presented in Section 3. Let d be Uj’s degree. When d 64, we only have to 

treat the edges retrieved in step (9). When d = 5, we also need edges (wi-1, wi) and 

(wi,wi+r ) in Fig. 4(2c). However, we may have to check predicate pathj_,(ut, ~12, LX, I) 

to see if there is a path of edges different from edge 1, such that all the edges are color 

CI and connect vertices vr and v2 together. This motivates the following intermediate 

subproblem: for a given color CI, mantain a forest (i.e., the edges color a) under 

insertion and deletion of edges so as to answer queries pathj_l(vl, 02, c(, I). 

We use Henzinger and King’s technique [8] to solve our subproblem. For each 

(unrooted) tree T in the forest, we maintain its Euler tour ET(T): if T has q vertices, 

then ET(T) is a sequence of 2q - 1 symbols, which are the vertices visited in preorder 

after T is rooted at a vertex. Every edge is visited twice and every vertex of degree c 

occurs c times in ET(T), except the root, which occurs c+ 1 times. We store ET(T) in 

the leaves of a 2-3 tree (from left to right); we can split it at any leaf or concatenate 

it to another 2-3 tree in logarithmic time [I]. By using this, Henzinger and King show 

how to change the root, split a tree by means of an edge removal, merge two trees 

by linking their roots together through an edge insertion, and establish whether or not 

two vertices belong to the same tree, in logarithmic time per operation. We use these 

operations in our subproblem as follows. 

In order to insert an edge (u, u) in the forest, we take the tree T, containing u and 

the tree T, containing v. We then make T, rooted at u and T, rooted at v. We merge 

the two trees at their roots through edge (u,v). Deleting an edge (u,u) is analogous: 

We take the tree T containing the edge and make it rooted at u. Then, we split the 

subtree rooted at v (which a child of u). As a result, we obtain two smaller trees 

from T. Both insertion and deletion take logarithmic time (see [8] for more details). 

In order to answer pathj_ 1 (VI, ~2, a, I), where 1 is a forest edge, we delete 1. That is, 

the tree T containing I = (u, u) is split in two subtrees T, and T,, the former containing 

u and the latter containing v. Then, we check to see if both vi and t.2 belong to the 

same tree in the forest where T is replaced by T, and T,. The answer is returned by 

path,_,. We then re-insert 1 to get T in place of T,, and T, in the forest. The cost is 

logarithmic time because it takes a constant number of operations on the Henzinger- 

King data structure. 

We now turn to our implementation of step (10) in the pseudocode shown in Fig. 5. 

We assume to have inductively computed coloring Cj-1 for graph Gj-r (initially, for 

j = 2, this holds vacuously). Let us therefore assume that we have three Henzinger- 

King data structures, one per color. We only discuss how to implement case d = 5, 

subcase 2c, as the other cases are easier to handle. We perform the path query necessary 

to case d = 5. Subsequently, we have to remove edges lr,12 and the edges in E’ 

from Gj-1 (they were recorded in step (6) and retrieved in step (9)). We delete 

them from the Henzinger-King data structures of the proper color (e.g., Ii is color a 

and so we remove it from the data structure for a). We then change the color (i.e., 

remove from one of the Henzinger-King data structures and insert into another) of 
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edges (Wi_ 1, wi) and (wi, Wi+l ), if necessary. We insert eo, . , e4 into their proper data 

structures after their color is given. The resulting Henzinger-King data structures are 

correctly maintained for the next inductive step on j. This completes the algorithmic 

description and shows that Cj can be obtained from Cj_i in logarithmic time. The total 

cost of steps (7)-(10) is O(nlogn). According to Corollary 3, we obtain our result: 

Theorem 4. A planar graph with II vertices can be partitioned into three forests in 

O(n log n) time. 

5. Concluding remarks 

We showed that partitioning a planar graph with n vertices into three forests takes 

O(n log n) time. The source for such a cost is due to the possiblity that the min-degree 

vertex has degree d = 5. In this case, we have to answer the path query and maintain the 

Henzinger-King data structures at a logarithmic cost (we can avoid all these problems 

if we want to obtain four or more forests). If case d = 5 never occurs, our partitioning 

algorithm clearly becomes linear time. It would be interesting to obtain a linear-time 

algorithm that also works for the general case. An independent result presented in [ 181 

shows how to find an acyclic 3-coloring of planar graphs in linear time, with the colors 

assigned to the vertices. However, the resulting forests are vertex disjoint and so this 

result does not seem to apply directly to our problem, in which we require that the 

forests are edge disjoint, i.e., they can share some vertices. 
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