Simple planar graph partition into three forests

Roberto Grossia,\dagger, Elena Lodib

aDipartimento di Sistemi e Informatica, Universit\'a di Firenze, via Lombroso 61/7, 50134 Firenze, Italy
bDipartimento di Matematica, Universit\'a di Siena, via del Capitano 15, 53100 Siena, Italy

Received 27 April 1996; received in revised form 28 October 1997; accepted 1 December 1997

Abstract

We describe a simple way of partitioning a planar graph into three edge-disjoint forests in $O(n \log n)$ time, where n is the number of its vertices. We can use this partition in Kannan et al.'s graph representation (1992) to label the planar graph vertices so that any two vertices' adjacency can be tested locally by comparing their names in constant time. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Planar graphs; Forest partition; Edge coloring

1. Introduction

A number of ways of storing a graph compactly can be found in the literature [2, 3, 10–12, 14, 19]. Among other things, this is useful to save space in distributed environments where the adjacency matrix of the given graph cannot be stored in each node. Kannan et al. [12] describe an elegant method for representing the adjacency matrices of some graph families without having the whole adjacency information available in every single vertex. Among the graph families examined, the authors study the graphs with bounded arboricity k, i.e., the graphs which can be decomposed into k edge-disjoint spanning forests for the minimum integer k (see Nash–Williams' theorem [4, 15]). Given one such graph G, Kannan et al. assign names to its vertices so that the adjacency of any two vertices can be tested locally by comparing their corresponding names. To this end, they prelabel the vertices with distinct integers and partition G into k forests. A vertex’s name is then given by the $(k+1)$-tuple made up of the vertex’s label and its parents’ labels in the k forests. The authors use Picard and Queryranne’s algorithm to partition the graph into k edge-disjoint forests.

\dagger This work is partially supported by MURST of Italy.
\dagger Corresponding author. E-mail: grossi@dsi.unifi.it.
in $O(n^2m \log^2 n)$ time (or $O(n^4)$ time for dense graphs), where n is the number of vertices and m is the number of edges. A subsequent result by Gabow [6] gives a faster partitioning algorithm whose running time is $O(kn\sqrt{m + kn\log n})$.

In their paper, Kannan et al. examine the special case of planar graphs, that is, graphs that can be drawn on the plane so that no two edges intersect (the resulting drawing is called planar embedding [9]). Since planar graphs have $m = O(n)$ edges and $k = 3$ arboricity [16], their technique immediately produces vertex names which are quadruples. In this case, we have to face the problem of partitioning a planar graph into three forests. We can still use Gabow’s algorithm for this and do the task in $O(n\sqrt{n\log n})$ time. In this paper, we use the planarity hypothesis in order to describe a simple $O(n\log n)$-time partitioning into three edge-disjoint forests.

We use a well-known corollary to Euler’s famous theorem on planar graphs (1750) stating that every planar graph contains a vertex whose degree is five at most [16] (where a vertex degree is defined as the number of its incident edges) and the Jordan curve theorem stating that a closed curve C with no crossings divides the plane into two disjoint regions whose boundary is C. We also introduce a graph transformation that maintains the planar embedding and a certain kind of edge coloring. Given a color a and an edge color labeling, we say that there is an a-cycle if we find a cycle whose edges are all the same color a. We label the edges with three colors, so that for any color a there are no a-cycles. We call this kind of edge coloring three-color cycle-free labeling (in short, 3CF coloring). Consequently, partitioning a planar graph into three forests amounts to determining a 3CF coloring. Any two edges are the same color if and only if they belong to the same forest.

Some comments are in order. Partitioning a planar graph into four forests can be done in linear time while obtaining five or more forests is straightforward as we can always choose a vertex with degree five at most (see [5]). In order to get $k = 3$ forests, we can try some intuitive approaches, such as repeatedly removing all of the spanning forest’s edges from the graph (see Fig. 1), but they do not seem to work properly. Our solution works for the problem regarding the three forests by a detailed case analysis. We first show a graph reduction maintaining planar embedding in order to obtain a 3CF coloring. We then describe our planar graph partitioning algorithm. When treating planar graphs, our algorithm can be used in Kannan et al.’s representation [12] instead of the aforementioned algorithms.

2. Graph reduction

We let G be an undirected planar graph having n vertices and m edges, with $m \leq 3n - 6$. We denote the set of G’s edges by E and fix one of G’s planar embeddings (no two edges intersect each other in the plane). We assume that the embedding is represented as follows: Each vertex u has an associated adjacency list that contains the vertices adjacent to u taken clockwise. We define a graph transformation that maintains this embedding.
Given a vertex $u \in G$ with degree $d \leq 5$, let w_0, \ldots, w_{d-1} be its adjacent vertices (also called neighbors) in clockwise order. In this paper, we use the convention that subscripted indices are modulo d; that is, w_i denotes $w_{i \mod d}$ for every integer i.

We now define operation $\text{Reduce}(G, u)$ to handle u according to its degree d:

Case $d = 3$: We remove u and the edges linking u to w_0, \ldots, w_{d-1} (see Fig. 2(i)).

Case $d = 4$: We find a pair w_i, w_{i+2} of u's neighbors, such that edge (w_i, w_{i+2}) does not belong to E. This pair exists because of the Jordan curve theorem. We then remove u and the edges linking it to w_0, \ldots, w_3. We add a new edge (w_i, w_{i+2}) (see Fig. 2(ii)).

Case $d = 5$: We determine an edge, i.e., (w_{i-1}, w_{i+1}), that belongs to E. If this edge does not exist, then we pick out an arbitrary pair w_{i-1}, w_{i+1} of u's neighbors. We then replace u and the edges linking it to w_0, \ldots, w_4 with new edges (w_{i-2}, w_i) and (w_i, w_{i+2}). Moreover, we install edges (w_{i-1}, w_i) and (w_i, w_{i+1}) if they do not already exist (see Fig. 2(iii)).

Note that (w_{i-2}, w_i) and (w_i, w_{i+2}) cannot belong to E. Indeed: (1) If (w_{i-1}, w_{i+1}) does not exist for every i, then (w_{i-2}, w_i) and (w_i, w_{i+2}) cannot exist either. (2) If (w_{i-1}, w_{i+1}) exists, then w_{i-1}, u, w_{i+1} are the vertices in a cycle that divides the plane into two regions: w_i must be in one of the two regions, while w_{i-2} and w_{i+2} must be
in the other region. The existence of either \((w_{i-2}, w_i)\) or \((w_i, w_{i+2})\) would contradict the Jordan curve theorem (analogously to the case \(d = 4\)).

Our graph reduction maintains the initial graph embedding (this implies that the resulting graph is planar).

Lemma 1. Every planar embedding for a graph \(G\) is also a planar embedding for the graph obtained by applying \(\text{Reduce}(G, u)\).

Proof. By checking the three operations above, it is soon obtained. The details can be found in [7]. \(\Box\)

3. Graph 3CF coloring

We now take the sequence of graphs \(G_n, G_{n-1}, \ldots, G_1\), such that \(G_n = G\) and \(G_{j-1}\) is obtained by applying \(\text{Reduce}(G_j, u_j)\) (for \(j = n, \ldots, 2\)), where \(u_j\) denotes one of \(G_j\)'s minimum-degree vertices. By the definition of \(\text{Reduce}\), \(G_j\) has \(j\) vertices and is still
planar by Lemma 1. Consequently, u_j’s degree is five at most by Euler’s theorem and $G_n, G_{n-1}, \ldots, G_1$ is a well-defined sequence of planar graphs.

Our basic idea in obtaining G’s 3CF coloring consists of processing the graphs in reverse order: $G_1, \ldots, G_{n-1}, G_n$. We use three colors (blue, green and red) and variables $a, b, c, x, y \in \{\text{blue, green, red}\}$ to denote these colors. We show that G_j’s 3CF coloring can be obtained from G_{j-1}’s by induction for $j = 2, 3, \ldots, n$. The inductive basis holds because G_1 has no edges.

For $j > 1$, we let E_j be the set of G_j’s edges and their 3CF coloring be represented by a mapping $C_j : E_j \rightarrow \{\text{blue, green, red}\}$ that assigns the colors to G_j’s edges, such that for any color $\alpha \in \{\text{blue, green, red}\}$ there is no α-cycle. We denote u_j’s neighbors by w_0, \ldots, w_{d-1} (we have $d \leq 5$) and use $e_i = (u_j, w_i)$ to indicate the edge in E_j linking u_j to its neighbor w_i. Since we have C_{j-1} by induction, we show how to obtain C_j according to u_j’s degree d:

Case $d = 3$: We have $E_j = E_{j-1} \cup \{e_0, \ldots, e_{d-1}\}$ and three new edges e_0, \ldots, e_{d-1} at most. We define C_j to be the same as C_{j-1} when its edges are in $E_{j-1} \subseteq E_j$ and have enough colors for assigning different colors to the remaining edges e_0, \ldots, e_{d-1} in E_j (see Fig. 3(i)).

Case $d = 4$: We have $E_j = E_{j-1} - \{l\} \cup \{e_0, \ldots, e_3\}$, where $l = (w_i, w_{i+2})$. We let $a = C_{j-1}(l)$ be l’s color in G_{j-1} (see Fig. 3(ii)). We define C_j to be the same as C_{j-1} when its edges are in $E_{j-1} - \{l\} \subseteq E_j$. For the remaining edges in E_j, we set C_j as follows: we assign color a to both e_i and e_{i+2} and the other two colors to the edges in $\{e_0, \ldots, e_3\} - \{e_i, e_{i+2}\}$.

Case $d = 5$: We have $E_j = E_{j-1} - E' - \{l_1, l_2\} \cup \{e_0, \ldots, e_4\}$, where $l_1 = (w_i, w_{i+2})$, $l_2 = (w_i, w_{i+2})$ and $E' \subseteq \{(w_{i-1}, w_i), (w_i, w_{i+1})\}$ denotes the set of edges added by $\text{Reduce}(G_j, u_j)$ in order to link w_i to w_{i-1} and w_{i+1} when the corresponding edge
is not in E_j (see Fig. 4, right). Let $a = C_{j-1}(l_1)$ and $b = C_{j-1}(l_2)$, and define C_j to be the same as C_{j-1} when its edges are in $E_{j-1} - E' - \{l_1, l_2\} \subseteq E_j$. Note that the edges in $E' \cup \{l_1, l_2\}$ are discarded because they do not belong to E_j. We now have to define C_j for the edges left: e_0, \ldots, e_4. There are two possible cases:

1. If $a = b$, then we assign color a to e_{i-2}, e_i and e_{i+2} and the other two colors to the edges in $\{e_0, \ldots, e_4\} - \{e_{i-2}, e_i, e_{i+2}\}$ (see Fig. 4(1)).

2. If $a \neq b$, then we let c be the remaining color. We first define a boolean predicate $\text{path}_{j-1}(v_1, v_2, x, l)$: it is true when there is a path of edges belonging to $E_{j-1} - \{l\}$, such that all the edges are color x and connect vertices v_1 and v_2 together. We now
need three subcases to assign colors to e_0, \ldots, e_4 according to path$_{j-1}$ (we also need to change some previously assigned colors in the last subcase):

2a. If path$_{j-1}(w_{i-2}, w_{i-1}, a, l_1)$ is false (see Fig. 4(2a)), then we assign color a to e_{i-2} and e_{i-1}, color b to e_i and e_{i+2}, and color c to e_{i+1}.

2b. If path$_{j-1}(w_{i+1}, w_{i+2}, b, l_2)$ is false (see Fig. 4(2b)), we assign the colors symmetrically as in subcase 2a: we assign color b to e_{i+1} and e_{i+2}, color a to e_i and e_{i-2}, and color c to e_{i-1}.

2c. In all other cases, we take (w_{i-1}, w_i)'s color x and (w_i, w_{i+1})'s color y assigned by C_{j-1} (see Fig. 4(2c)). These two edges exist in E_{j-1} thanks to Reduce. If they belong to E_j, they are not discarded and their colors are changed by C_j: (w_{i-1}, w_i)'s color becomes a and (w_i, w_{i+1})'s color becomes b. We assign color x to e_{i-1} and color y to e_{i+1}, and we assign color a to e_{i-2}, color b to e_{i+2}, and color c to e_i.

We now prove that the above case analysis produces G_j's 3CF coloring. We first examine the more involved subcase 2c when $d = 5$ and then go on to the other cases (Lemma 2).

Let us assume that C_{j-1} is a 3CF coloring. We claim that in subcase 2c for $d = 5$, no x-cycles traversing either (w_{i-1}, w_i) or (w_i, w_{i+1}), or one of u_j’s incident edges are possible, where $x \in \{\text{blue, green, red}\}$. In order to see why, we let a, b and c denote the three colors (without specifying them) and x and y the two (maybe equal) colors used in subcase 2c (see Fig. 4(2c)). According to the Jordan curve theorem, we partition the plane into an internal region that is delimited on the outside by the convex hull of u_j’s neighbors w_0, \ldots, w_4 (i.e., the region delimited by the embedding of u_j and its neighbors, together with their linking edges) and an external region (i.e., what is left by removing the internal region). We now prove our claim. Let us assume by contradiction that an x-cycle exists in G_j and traverses either (w_{i-1}, w_i) or (w_i, w_{i+1}), or one of u_j’s incident edges. Three cases follow according to color x (see Fig. 4(2c)):

(1) Case $x = c$. Since u_j’s only incident edges having color c in G_j are the ones linking u_j to w_{i-1}, w_i and w_{i+1} at most, the c-cycle traverses two of these edges. Let us assume that they are (w_{i-1}, u_j) and (u_j, w_i) without any loss in generality (and so $x = c$). We can deduce that a path (whose edges are all color c) connects w_{i-1} to w_i in the external region. Since this path also exists in G_{j-1}, and (w_{i-1}, w_i) is color $x = c$ in G_{j-1}, we obtain a c-cycle in G_{j-1} (a contradiction).

(2) Case $x = a$. Color x satisfies $x \neq a$ because of C_{j-1} (see Fig. 4(2c), right). Let us examine G_j. We deduce that (w_{i-1}, w_i), e_{i-2} and e_{i+1} are the only edges whose color can be a in the internal region. Therefore, the a-cycle traverses both (w_{i-1}, w_i) and one of u_j’s incident edges, or it traverses either (w_{i-1}, w_i) or one of u_j’s incident edges.

If the a-cycle traverses both (w_{i-1}, w_i) and one of u_j’s incident edges, then $y = a$ because e_{i+1} is the only edge (other than e_{i-2}) incident to u_j whose color is a. We deduce that w_i and w_{i+1} are connected by a path (in the external region) whose edges are all color a. This path is also in G_{j-1}, and (w_i, w_{i+1})’s color in G_{j-1} is $y = a$; therefore, we obtain an a-cycle in G_{j-1} (a contradiction).
If the a-cycle only traverses one of u_j’s incident edges, then $y = a$. We deduce that w_{i-2} and w_{i+1} are connected by a path (in the external region) whose edges are all color a. Since this path is also in G_{j-1} and both (w_{i-2}, w_i) and (w_i, w_{i+1}) are color a in G_{j-1}, we obtain an a-cycle in G_{j-1} (a contradiction).

If the a-cycle only traverses (w_{i-1}, w_i), then its endpoints are connected together by a path (in the external region) whose edges are all color a. This path exists also in G_{j-1}. Since $\text{path}_{j-1}(w_{i-2}, w_{i-1}, a, l_1)$ is true and (w_{i-2}, w_i) is color a, we have a contradiction in G_{j-1}.

(3) Case $a = b$ is analogous to case $a = a$ (the b-cycle involves (w_i, w_{i+1}) and $y \neq b$).

Lemma 2. Given a $3CF$ coloring for G_{j-1}’s edges, we can determine a $3CF$ coloring for G_j’s edges, where $2 < j \leq n$.

Proof. Since C_{j-1} is a $3CF$ coloring for G_{j-1}’s edges, we show that for any $\alpha \in \{\text{blue, green, red}\}$ there are no α-cycles produced in G_j by C_j’s colors. Let us assume that an α-cycle exists by contradiction. Since the edges that are added to form E_j are all incident to u_j, the α-cycle must traverse at least two of u_j’s incident edges (except for the subcase 2c discussed previously). We go on to prove that we always obtain a contradiction according to our case analysis.

In case $d \leq 3$ (see Fig. 3(i)), we use different colors and so no two edges can be incident to u_j and be the same color. This means that no α-cycles can be created at all.

In case $d = 4$ (see Fig. 3(ii)), we can only have $\alpha = a$ because it is the only color assigned to two edges incident to u_j. We previously saw that the two edges are e_i and e_{i+2}. However, going on to replace the two edges with $l = (w_i, w_{i+2})$ would produce an a-cycle in G_{j-1} and therefore contradict the hypothesis that C_{j-1} is a $3CF$ coloring.

In case $d = 5$, since subcase 1 is similar to case $d = 4$ (see Figs. 3(ii) and 4.1), we focus our attention on subcases 2a–2c. Let a, b and c be the different colors used. In subcase 2a (see Fig. 4(2a), right), an a-cycle is not possible in G_j because it would traverse e_{i-2} and e_{i-1} and imply that $\text{path}_{j-1}(w_{i-2}, w_{i-1}, a, l_1)$ is true in G_{j-1}, where $l_1 = (w_{i-2}, w_i)$. A b-cycle would not be possible in G_j either because it would traverse e_i and e_{i+2} and imply the existence of a b-cycle in G_{j-1} traversing (w_i, w_{i+2}), which contradicts the fact that C_{j-1} is a $3CF$ coloring. Finally, no c-cycles exist because e_{i+1} is the only edge (incident to u_j) whose color is c. The same holds for the symmetrical subcase 2b. Subcase 2c is special because we change two edges’ colors and so an a-cycle can traverse them whether or not it also traverses u_j’s incident edges. However, the claim discussed before this lemma shows that no such a-cycles are possible. This completes our case analysis.

In brief, we showed that it is possible to build a $3CF$ coloring from C_{j-1} and we proved the lemma’s statement. □

Corollary 3. We can always determine a $3CF$ coloring for a planar graph G.

Proof. The sequence \(G_n, \ldots, G_1 \) is well formed by Lemma 1. \(G_1 \) trivially has a 3CF coloring because it only contains one vertex. By induction and Lemma 2, we have that \(G_n = G \) and so \(G \) has a 3CF coloring.

4. Edge-disjoint forests' construction

Our algorithm for building a partition into three forests applies the Reduce operation to the input graph until a single vertex is obtained. Then, it examines the sequence of intermediate planar graphs so obtained backward, and assigns the colors to their edges following the case analysis discussed in Section 3. Its high-level description is shown in Fig. 5. We give some comments below and specify the relevant implementation details.

We first execute Hopcroft and Tarjan's linear-time algorithm [9] for finding \(G \)'s planar embedding in step (1). This is useful in step (2) to represent the adjacency lists in \(G \) according to its embedding. The adjacency between any two vertices can be verified in constant time and linear space (say, by an easy-to-compute partition into \(k = 5 \) forests and by Kannan et al.'s adjacency method [12]). In steps (3)–(6), we obtain the sequence of graphs \(G_n, G_{n-1}, \ldots, G_1 \). We maintain an array indexed by the vertices' degrees, in which the vertices of the same degree are kept in a doubly linked list. We are able to determine \(u_j \) in constant time by scanning the array's first five entries. When a vertex's degree changes because of \(\text{Reduce}(G_j, u_j) \), we update the array and the adjacency lists in constant time. We store \(u_j \) and the \(O(1) \) edges involved by \(\text{Reduce} \) into a stack cell, so as to be able to obtain \(G_j \) from \(G_{j-1} \) subsequently. We spend a total of \(O(n) \) time in steps (3)–(6). We produce a 3CF coloring by means of steps (7)–(10). Initially, \(C_1 \) is empty as \(G_1 \) is just an isolated vertex. In step (9), we retrieve \(u_j \) and the edges that contributed to get \(G_{j-1} \) from \(G_j \) in constant time. At this point, we execute step (10) to apply our case analysis presented in Section 3. The efficient implementation of this step deserves more discussion below. Finally, we give the three forests as output in step (11). Each forest consists of the edges in \(G - G_n \) whose colors are identical in the 3CF coloring \(C_n \).

1. Execute Hopcroft-Tarjan algorithm to find \(G \)'s planar embedding;
2. \(G_n := G; \quad /* \text{with its planar embedding} */
3. for \(j := n \) downto 2 do
 4. Find a min-degree vertex \(u_j \) in \(G_j \);
 5. \(G_{j-1} := \text{Reduce}(G_j, u_j); \)
 6. Push \(u_j \), its incident edges and the edges in \(G_j \) into a stack;
 7. \(C_1 := \text{empty}; \quad /* \text{initial 3CF coloring} */
8. for \(j := 2 \) to \(n \) do
 9. Pop \(u_j \) and its companion edges from the stack;
10. Compute \(C_j \) from \(C_{j-1} \) by the case analysis on \(u_j \) given in Section 3;
11. Output the three forests, each forest identified by the edges with same color in \(C_n \).

Fig. 5. Pseudocode for partitioning an \(n \)-vertex planar graph \(G \) into three forests.
In the rest of this section, we describe the data structures and the algorithms to implement step (10) in $O(\log n)$ time. Let us therefore examine the corresponding case analysis, presented in Section 3. Let d be u_j's degree. When $d \leq 4$, we only have to treat the edges retrieved in step (9). When $d = 5$, we also need edges (w_{i-1}, w_i) and (w_i, w_{i+1}) in Fig. 4(2c). However, we may have to check predicate $\text{path}_{j-1}(v_1, v_2, x, l)$ to see if there is a path of edges different from edge l, such that all the edges are color x and connect vertices v_1 and v_2 together. This motivates the following intermediate subproblem: for a given color x, maintain a forest (i.e., the edges color x) under insertion and deletion of edges so as to answer queries $\text{path}_{j-1}(v_1, v_2, x, l)$.

We use Henzinger and King's technique [8] to solve our subproblem. For each (unrooted) tree T in the forest, we maintain its Euler tour $ET(T)$: if T has q vertices, then $ET(T)$ is a sequence of $2q - 1$ symbols, which are the vertices visited in preorder after T is rooted at a vertex. Every edge is visited twice and every vertex of degree c occurs c times in $ET(T)$, except the root, which occurs $c + 1$ times. We store $ET(T)$ in the leaves of a 2-3 tree (from left to right); we can split it at any leaf or concatenate it to another 2-3 tree in logarithmic time [1]. By using this, Henzinger and King show how to change the root, split a tree by means of an edge removal, merge two trees by linking their roots together through an edge insertion, and establish whether or not two vertices belong to the same tree, in logarithmic time per operation. We use these operations in our subproblem as follows.

In order to insert an edge (u, v) in the forest, we take the tree T_u containing u and the tree T_v containing v. We then make T_u rooted at u and T_v rooted at v. We merge the two trees at their roots through edge (u, v). Deleting an edge (u, v) is analogous: we take the tree T containing the edge and make it rooted at u. Then, we split the subtree rooted at v (which a child of u). As a result, we obtain two smaller trees from T. Both insertion and deletion take logarithmic time (see [8] for more details).

In order to answer $\text{path}_{j-1}(v_1, v_2, x, l)$, where l is a forest edge, we delete l. That is, the tree T containing $l = (u, v)$ is split in two subtrees T_u and T_v, the former containing u and the latter containing v. Then, we check to see if both v_1 and v_2 belong to the same tree in the forest where T is replaced by T_u and T_v. The answer is returned by path_{j-1}. We then re-insert l to get T in place of T_u and T_v in the forest. The cost is logarithmic time because it takes a constant number of operations on the Henzinger–King data structure.

We now turn to our implementation of step (10) in the pseudocode shown in Fig. 5. We assume to have inductively computed coloring C_{j-1} for graph G_{j-1} (initially, for $j = 2$, this holds vacuously). Let us therefore assume that we have three Henzinger–King data structures, one per color. We only discuss how to implement case $d = 5$, subcase 2c, as the other cases are easier to handle. We perform the path query necessary to case $d = 5$. Subsequently, we have to remove edges l_1, l_2 and the edges in E' from G_{j-1} (they were recorded in step (6) and retrieved in step (9)). We delete them from the Henzinger–King data structures of the proper color (e.g., l_1 is color a and so we remove it from the data structure for a). We then change the color (i.e., remove from one of the Henzinger–King data structures and insert into another) of
edges \((w_{i-1}, w_i)\) and \((w_i, w_{i+1})\), if necessary. We insert \(e_0, \ldots, e_4\) into their proper data structures after their color is given. The resulting Henzinger–King data structures are correctly maintained for the next inductive step on \(j\). This completes the algorithmic description and shows that \(C_j\) can be obtained from \(C_{j-1}\) in logarithmic time. The total cost of steps (7)–(10) is \(O(n \log n)\). According to Corollary 3, we obtain our result:

Theorem 4. A planar graph with \(n\) vertices can be partitioned into three forests in \(O(n \log n)\) time.

5. Concluding remarks

We showed that partitioning a planar graph with \(n\) vertices into three forests takes \(O(n \log n)\) time. The source for such a cost is due to the possibility that the min-degree vertex has degree \(d = 5\). In this case, we have to answer the path query and maintain the Henzinger–King data structures at a logarithmic cost (we can avoid all these problems if we want to obtain four or more forests). If case \(d = 5\) never occurs, our partitioning algorithm clearly becomes linear time. It would be interesting to obtain a linear-time algorithm that also works for the general case. An independent result presented in [18] shows how to find an acyclic 3-coloring of planar graphs in linear time, with the colors assigned to the vertices. However, the resulting forests are vertex disjoint and so this result does not seem to apply directly to our problem, in which we require that the forests are edge disjoint, i.e., they can share some vertices.

Acknowledgements

We are in debt to Nicola Santoro for suggesting the problem to us. We also thank Srecko Brlek, Sajal Das, Donatella Merlini, Ugo Vaccaro and Jeff Westbrook for giving us some helpful references and research material.

References

