
DISCRETE
APPLIED

ELSEVIER Discrete Applied Mathematics 84 (1998) 12 l-l 32
MATHEMATICS

Simple planar graph partition into three forests *

Roberto Grossi a,*, Elena Lodi b
aDipartimento di Sistemi e Informatica, Universith di Firenze, via Lombroso 6117, 50134 Firenze, Italy

bDipartimento di Matematica, Universitri di Siena, via de1 Capitano IS, 53100 Siena, Italy

Received 27 April 1996; received in revised form 28 October 1997; accepted 1 December 1997

Abstract

We describe a simple way of partitioning a planar graph into three edge-disjoint forests in
O(n log n) time, where n is the number of its vertices. We can use this partition in Kannan et al.‘s
graph representation (1992) to label the planar graph vertices so that any two vertices’ adjacency
can be tested locally by comparing their names in constant time. 0 1998 Elsevier Science B.V.
All rights reserved.

Keywords: Planar graphs; Forest partition; Edge coloring

1. Introduction

A number of ways of storing a graph compactly can be found in the literature

[2, 3, IO- 12, 14, 191. Among other things, this is useful to save space in distributed

environments where the adjacency matrix of the given graph cannot be stored in

each node. Kannan et al. [12] describe an elegant method for representing the ad-

jacency matrices of some graph families without having the whole adjacency informa-

tion available in every single vertex. Among the graph families examined, the authors

study the graphs with bounded arboricity k, i.e., the graphs which can be decomposed

into k edge-disjoint spanning forests for the minimum integer k (see Nash-Williams’

theorem [4, 151). Given one such graph G, Kannan et al. assign names to its ver-

tices so that the adjacency of any two vertices can be tested locally by comparing

their corresponding names. To this end, they prelabel the vertices with distinct integers

and partition G into k forests. A vertex’s name is then given by the (k + I)-tuple

made up of the vertex’s label and its parents’ labels in the k forests. The authors use

Picard and Queryranne’s algorithm to partition the graph into k edge-disjoint forests

* This work is partially supported by MIJRST of Italy
* Corresponding author. E-mail: grossi@dsi.unifi.it.

0166-218X/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved
PII SOl66-2lXX(98)00007-9

122 R Grossi, E. Lodi/ Discrete Applied Mathematics 84 (1998) 121-132

in 0(n2mlog2 n) time (or 0(n4) time for dense graphs), where n is the number of

vertices and m is the number of edges. A subsequent result by Gabow [6] gives a

faster partitioning algorithm whose running time is O(kndw).

In their paper, Kannan et al. examine the special case of planar graphs, that is,

graphs that can be drawn on the plane so that no two edges intersect (the result-

ing drawing is called planar embedding [93). Since planar graphs have m = O(n)

edges and k = 3 arboricity [161, their technique immediately produces vertex names

which are quadruples. In this case, we have to face the problem of partitioning a

planar graph into three forests. We can still use Gabow’s algorithm for this and

do the task in O(n&z) time. In this paper, we use the planarity hypothesis in

order to describe a simple O(nlogn)-time partitioning into three edge-disjoint forests.

We use a well-known corollary to Euler’s famous theorem on planar graphs (1750)

stating that every planar graph contains a vertex whose degree is five at most [161

(where a vertex degree is defined as the number of its incident edges) and the Jordan

curve theorem stating that a closed curve C with no crossings divides the plane into

two disjoint regions whose boundary is C. We also introduce a graph transformation

that maintains the planar embedding and a certain kind of edge coloring. Given a color

a and an edge color labeling, we say that there is an a-cycle if we find a cycle whose

edges are all the same color a. We label the edges with three colors, so that for any

color a there are no a-cycles. We call this kind of edge coloring three-color cycle-free

labeling (in short, 3CF coloring). Consequently, partitioning a planar graph into three

forests amounts to determining a 3CF coloring. Any two edges are the same color if

and only if they belong to the same forest.

Some comments are in order. Partitioning a planar graph into four forests can be

done in linear time while obtaining five or more forests is straightforward as we can

always choose a vertex with degree five at most (see [S]). In order to get k = 3 forests,

we can try some intuitive approaches, such as repeatedly removing all of the spanning

forest’s edges from the graph (see Fig. l), but they do not seem to work properly. Our

solution works for the problem regarding the three forests by a detailed case analysis.

We first show a graph reduction maintaining planar embedding in order to obtain a

3CF coloring. We then describe our planar graph partitioning algorithm. When treating

planar graphs, our algorithm can be used in Kannan et al.‘s representation [12] instead

of the aforementioned algorithms.

2. Graph reduction

We let G be an undirected planar graph having n vertices and m edges, with

m < 3n-6. We denote the set of G’s edges by E and fix one of G’s planar embeddings

(no two edges intersect each other in the plane). We assume that the embedding is

represented as follows: Each vertex u has an associated adjacency list that contains the

vertices adjacent to u taken clockwise. We define a graph transformation that maintains

this embedding.

R. Grossi, E. Lodil Discrete Applied Mathematics 84 (1998) 121-132 123

Cc) W

Fig. 1. A counterexample to partition a planar graph by repeatedly removing its spanning tree’s edges (shown

in boldface): as a result, we obtain the four trees shown in (a)-(d) (instead of three).

Given a vertex u E G with degree d < 5, let ~0,. . . , w&l be its adjacent vertices

(also called neighbors) in clockwise order. In this paper, we use the convention that

subscripted indices are modulo d; that is, wi denotes Wimodd for every integer i.

We now define operation Reduce(G, u) to handle u according to its degree d:

Case d 63: We remove u and the edges linking u to ~0,. . . , Wd_1 (see Fig. 2(i)).

Case d = 4: We find a pair wi, wi+2 of u’s neighbors, such that edge (Wi, Wi+2) does

not belong to E. This pair exists because of the Jordan curve theorem. We then remove

u and the edges linking it to ~0,. . . , ~3. We add a new edge (wi,w;+z) (see Fig. 2(ii)).

Case d = 5: We determine an edge, i.e., (wi-i,wi+i), that belongs to E. If this edge

does not exist, then we pick out an arbitrary pair wi_1, wi+i of u’s neighbors. We

then replace u and the edges linking it to wa,. . . , w4 with new edges (wi_2,wi) and

(wi, Wi+Z). Moreover, we install edges (wi- 1, wi) and (w,, wi+ I) if they do not already

exist (see Fig. 2(iii)).

Note that (Wi_2,wi) and (w:,w~+z) cannot belong to E. Indeed: (1) If (Wi-i,Wl+i)

does not exist for every i, then (wi_z,wi) and (wi,wi+z) cannot exist either. (2) If

(wi- 1, Wi+l) exists, then wi-1, u, wi+i are the vertices in a cycle that divides the plane

into two regions: wi must be in one of the two regions, while wi_2 and wi+2 must be

124 R Grossi, E. Lodi/ Discrete Applied Mathematics 84 (1998) 121-132

wo Y

\/
l4

wd-,

wi+2

I

wi-l

\;,_

wi+I

w. /“\,
r-2 r+2

[=3
6)

wo

W
d-l

ED
(ii)

[=3
(iii)

wi-l

wi-2 wi+2

Fig. 2. A node u and its neighbors in the embedding before (left) and after (right) the graph reduction

Reduce(G,u) according to U’S degree.

in the other region. The existence of either (wi_z,wi) or (Wi, wi+2) would contradict

the Jordan curve theorem (analogously to the case d = 4).

Our graph reduction maintains the initial graph embedding (this implies that the

resulting graph is planar).

Lemma 1. Every planar embedding for a graph G is also a planar embedding for

the graph obtained by applying Reduce(G,u).

Proof. By checking the three operations above, it is soon obtained. The details can be

found in [7]. 0

3. Graph 3CF coloring

We now take the sequence of graphs G,,, GE_,, . . . , Gt , such that G, = G and Gj-r

is obtained by applying Reduce(Gj, uj) (for j = n, . . . ,2), where uj denotes one of Gj’s

minimum-degree vertices. By the definition of Reduce, Gj has j vertices and is still

R. Grossi, E. Lodi/ Discrete Applied Mathematics 84 (1998) 121-132 125

wo Y

‘;i,A
‘j

C

W
d-l

a

wi.l __
b ‘i ~ wi+, c

a

cl
6)

wo

W
d-l

M:

a W-l a wi+,
(ii)

Fig. 3. 3CF coloring of the edges incident to a node Uj in graph G, (left) obtained by a 3CF coloring of

G,_ 1 (right) when u, ‘s degree is (i) d < 3 and (ii) d = 4.

planar by Lemma 1. Consequently, #j’s degree is five at most by Euler’s theorem and

G,,, G,_ 1,. . , G1 is a well-defined sequence of planar graphs.

Our basic idea in obtaining G’s 3CF coloring consists of processing the graphs in

reverse order: Gr , . , G,_ 1, G,. We use three colors (blue, green and red) and variables

a, b,c,x, y E {blue,green,red} to denote these colors. We show that G,‘s 3CF coloring

can be obtained from Gj_1 ‘s by induction for j = 2,3,. , n. The inductive basis holds

because Gr has no edges.

For j> 1, we let Ej be the set of Gj’s edges and their 3CF coloring be represented

by a mapping Cj : Ej + {blue, green, red} that assigns the colors to Gj’s edges, such

that for any color c(E {blue, green, red} there is no cc-cycle. We denote Uj’s neighbors

by WO, . . , w&_I (we have d < 5) and use ei = (Uj, wi) to indicate the edge in Ej linking

uj to its neighbor wi. Since we have Cj-r by induction, we show how to obtain Ci

according to uj’s degree d:

Case d<3: We have E/=Ej_1 U{eo,..., e&l} and three new edges eo,...,ed_I at

most. We define Cj to be the same as Cj_ 1 when its edges are in Ej_ 1 C: l?i and have

enough colors for assigning different colors to the remaining edges eo, , e& 1 in E,

(see Fig. 3(i)).

Case d =4: We have Ej =Ej_l - (1) U {eo,...,e3}, where 1 =(wi,wi+2). We let

a=C’-l(1) be l’s color in Gj-r (see Fig. 3(ii)). We define Cj to be the same as (I-1

when its edges are in Ej_1 - (1) s Ej. For the remaining edges in l?j, we set Cj as

follows: we assign color a to both ei and ei+2 and the other two colors to the edges

in {eo,...,e3} - {ei,ei+2>.

Case d=5: We have Ej=EJ_I -E’- {lI,Z2}U{eo,...,e~}, where Ir =(Wi-2,Wl),

lz=(w,,wi+2) and E’C{(wi-l,w;),(w wi+l)} denotes the set of edges added by i,

Reduce(Gj, uj) in order to link wi to wi_1 and wi+r when the corresponding edge

126 R Grossi, E. Lodi/ Discrete Applied Mathematics 84 (1998) 121-132

i =._._
--._

Y-l

/=J;
wi+I

w. Fj<_
r-2 t+2

Fig. 4. 3CF coloring of the edges incident

Gj_ .I (right) when Uj’s degree is d =5.

a
CW

c=l
(2b)

wi-2 Y+2

to a Uj in graph Gj (left) obtained by a 3CF coloring of

is not in Ej (see Fig. 4, right). Let a = Cj_t(2l) and b = Ci_t(Z2), and define Cj to be

the same as Cj-1 when its edges are in Ej- 1 - E’ - {ll, 12) & Ej. Note that the edges
in E’ U { I1,12} are discarded because they do not belong to Ei. We now have to define

cj
1.

2.

for the edges left: eo, . . . ,e4. There are two possible cases:

If a = b, then we assign color a to ei-2, ei and ei+2 and the other two colors to the

edges in {eo, . . .,Q} - {ei_-2,ei,ei+2} (see Fig. 4(l)).

If a # b, then we let c be the remaining color. We first define a boolean predicate

pathi- (01, ~2, a, I): it is true when there is a path of edges belonging to Ej_r - {I},

such that all the edges are color 01 and connect vertices ~1 and v2 together. We now

R. Crossi, E. Lodil Discrete Applied Mathematics 84 (1998) 121-132 127

need three subcases to assign colors to es,. . . , e4 according to pat/z_, (we also

need to change some previously assigned colors in the last subcase):

2a. If path,_i(wi_2,wi_i,a, 11) is false (see Fig. 4(2a)), then we assign color a to

ei_-2 and e;_l, color b to ei and ei+2, and color c to ei+l.

2b. If path,_,(Wi+l, wi+2, b, 12) is false (see Fig. 4(2b)), we assign the colors sym-

metrically as in subcase 2a: we assign color b to ej+l and ei+2, color a to e,

and e;_2, and color c to ei- 1.

2c. In all other cases, we take (wi_t,wi)‘s color x and (wi,wifl)‘s color y assigned

by C’-1 (see Fig. 4(2c)). These two edges exist in Ei-1 thanks to Reduce. If

they belong to E,, they are not discarded and their colors are changed by C,:

(wi_~,wi)‘s color becomes a and (wI, wi+t)‘s color becomes 6. We assign color

x to e,_l and color y to e,+t, and we assign color a to ei_2, color b to e;+2

and color c to e,.

We now prove that the above case analysis produces Gj’s 3CF coloring. We first

examine the more involved subcase 2c when d = 5 and then go on to the other cases

(Lemma 2).

Let us assume that C,_t is a 3CF coloring. We claim that in subcase 2c for A = 5,

no a-cycles traversing either (wi_l,wi) or (wi, wi+l), or one of uj’s incident edges are

possible, where a E {blue, green, red}. In order to see why, we let a, b and c denote the

three colors (without specifying them) and x and y the two (maybe equal) colors used

in subcase 2c (see Fig. 4(2c)). According to the Jordan curve theorem, we partition

the plane into an internal region that is delimited on the outside by the convex hull

of uj’s neighbors ~0,. .., w4 (i.e., the region delimited by the embedding of u, and

its neighbors, together with their linking edges) and an external region (i.e., what is

left by removing the internal region). We now prove our claim. Let us assume by

contradiction that an a-cycle exists in Gj and traverses either (w;_l,wi) or (wi, w,.+t),

or one of uj’s incident edges. Three cases follow according to color x (see Fig. 4(2c)):

(1) Case c(= c. Since Uj’s only incident edges having color c in Gj are the ones

linking Uj to wi_ 1, wi and wi+t at most, the c-cycle traverses two of these edges. Let

us assume that they are (wi-t,Uj) and (nj, wi) without any loss in generality (and SO

x = c). We can deduce that a path (whose edges are all color c) connects w,-1 to w,

in the external region. Since this path also exists in G,_ 1, and (wi_ 1, w,) is color x = c

in Gj_ 1, we obtain a c-cycle in Gj- 1 (a contradiction).

(2) Case CI = a. Color x satisfies x # a because of Cj_ l (see Fig. 4(2c), right). Let

us examine Gj. We deduce that (wi_1, wi), ei-2 and ei+t are the only edges whose

color can be a in the internal region. Therefore, the a-cycle traverses both (wi-t , w,)

and one of Uj’s incident edges, or it traverses either (w__, w,) or one of Ui’s incident

edges.

If the a-cycle traverses both (wi-1, w,) and one of ui’s incident edges, then y = a
because ej+t is the only edge (other than ei-2) incident to Uj whose color is a. We

deduce that wi and wi+l are connected by a path (in the external region) whose edges

are all color a. This path is also in Gi-1, and (We, w;+l)‘s color in Gi_1 is _Y = a;
therefore, we obtain an a-cycle in G,_t (a contradiction).

128 R Grossi, E. Lodil Discrete Applied Mathematics 84 (1998) 121-132

If the a-cycle only traverses one of uj’s incident edges, then y=a. We deduce that

wi-2 and wi+i are connected by a path (in the external region) whose edges are all

color a. Since this path is also in Gj_1 and both (wi-2, wi) and (wi,Wi+i) are color a

in Gj_1, we obtain an a-cycle in Gj_i (a contradiction).

If the a-cycle only traverses (wi_i, wi), then its endpoints are connected together

by a path (in the external region) whose edges are all color a. This path exists also

in Gj_1. Since pathj_,(wi_2,wi_l,a,lI) is true and (wi-2,wi) is color a, we have a

contradiction in Gj_ 1.

(3) Case a = b is analogous to case a = a (the b-cycle involves (wi, wi+i) and y #b).

Lemma 2. Given a 3CF coloring for Gj-1 ‘s edges, we can determine a 3CF coloring
for Gj’s edges, where 2 <j <n.

Proof. Since Cj-i is a 3CF coloring for Gj-i’s edges, we show that for any CI E {blue,

green, red} there are no a-cycles produced in Gj by Cj’s colors. Let us assume that

an a-cycle exists by contradiction. Since the edges that are added to form Ej are all

incident to uj, the cc-cycle must traverse at least two of uj’s incident edges (except

for the subcase 2c discussed previously). We go on to prove that we always obtain a

contradiction according to our case analysis.

In case d <3 (see Fig. 3(i)), we use different colors and so no two edges can be

incident to uj and be the same color. This means that no a-cycles can be created

at all.

In case d =4 (see Fig. 3(ii)), we can only have tx = a because it is the only color

assigned to two edges incident to uj. We previously saw that the two edges are ci

and ei+2. However, going on to replace the two edges with I= (Wi,Wi+z) would pro-

duce an a-cycle in Gj_i and therefore contradict the hypothesis that Cj_i is a 3CF

coloring.

In case d = 5, since subcase 1 is similar to case d =4 (see Figs. 3(ii) and 4.1), we

focus our attention on subcases 2a-2c. Let a, b and c be the different colors used. In

subcase 2a (see Fig. 4(2a), right), an a-cycle is not possible in Gj because it would

traverse ci-2 and ci-i and imply that pathj_,(wi_2,Wi-~,a,1~) is true in Gj-1, where

Ii = (wi-2, wi). A b-cycle would not be possible in Gj either because it would traverse

ei and ci+2 and imply the existence of a b-cycle in Gj_i traversing (Wi,Wi+z), which

contradicts the fact that Cj_1 is a 3CF coloring. Finally, no c-cycles exist because ei+i

is the only edge (incident to Uj) whose color is c. The same holds for the symmetrical

subcase 2b. Subcase 2c is special because we change two edges’ colors and so an

a-cycle can traverse them whether or not it also traverses Uj’s incident edges. However,

the claim discussed before this lemma shows that no such a-cycles are possible. This

completes our case analysis.

In brief, we showed that it is possible to build a 3CF coloring from Cj-i and we

proved the lemma’s statement. 0

Corollary 3. We can always determine a 3CF coloring for a planar graph G.

R. Grossi, E. Lodil Discrete Applied Mathematics 84 (1998) 121-132 129

Proof. The sequence G,, . . . , G1 is well formed by Lemma 1. G1 trivially has a 3CF col-

oring because it only contains one vertex. By induction and Lemma 2, we have that

G, = G and so G has a 3CF coloring. 0

4. Edge-disjoint forests’ construction

Our algorithm for building a partition into three forests applies the Reduce operation

to the input graph until a single vertex is obtained. Then, it examines the sequence of

intermediate planar graphs so obtained backward, and assigns the colors to their edges

following the case analysis discussed in Section 3. Its high-level description is shown

in Fig. 5. We give some comments below and specify the relevant implementation

details.

We first execute Hopcroft and Tarjan’s linear-time algorithm [9] for finding G’s

planar embedding in step (1). This is useful in step (2) to represent the adjacency

lists in G according to its embedding. The adjacency between any two vertices can

be verified in constant time and linear space (say, by an easy-to-compute partition

into k=5 forests and by Kannan et al.‘s adjacency method [12]). In steps (3)-(6),

we obtain the sequence of graphs G,, G,_ 1,. , G1. We maintain an array indexed by

the vertices’ degrees, in which the vertices of the same degree are kept in a doubly

linked list. We are able to determine uj in constant time by scanning the array’s first

five entries. When a vertex’s degree changes because of Reduce(Gj, Uj), we update the

array and the adjacency lists in constant time. We store u, and the 0(1) edges involved

by Reduce into a stack cell, so as to be able to obtain Gj from Gj-1 subsequently. We

spend a total of O(n) time in steps (3)-(6). We produce a 3CF coloring by means

of steps (7)-(10). Initially, Cl is empty as G1 is just an isolated vertex. In step (9),

we retrieve Uj and the edges that contributed to get Gj-1 from Gj, in constant time.

At this point, we execute step (10) to apply our case analysis presented in Section 3.

The efficient implementation of this step deserves more discussion below. Finally, we

give the three forests as output in step (11). Each forest consists of the edges in G = G,

whose colors are identical in the 3CF coloring C,,.

(1)
(‘4
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)

Execute Hopcroft-Tarjan algorithm to find G’s planar embedding;

G, := G; /* with its planar embedding ‘/
for j := n downto 2 do

Find a m°ree vertex u3 in G,:

G,_I := Redwe(G,, ~1~);
Push uj, its incident edges and the edges in CJ/G3_1 into a stack;

C, := empty; /* initial 3CF coloring */

for j := 2 to n do
Pop uJ and its companion edges from the stack;
Compute C, from C,_, by the case analysis on uJ given in Section 3;

Output the three forests, each forest identified by the edges with same color in C,.

Fig. 5. Pseudocode for partitioning an n-vertex planar graph G into three forests.

130 R. Grossi, E. Lodil Discrete Applied Mathematics 84 (1998) 121-132

In the rest of this section, we describe the data structures and the algorithms to

implement step (10) in O(logn) time. Let us therefore examine the corresponding case

analysis, presented in Section 3. Let d be Uj’s degree. When d 64, we only have to

treat the edges retrieved in step (9). When d = 5, we also need edges (wi-1, wi) and

(wi,wi+r) in Fig. 4(2c). However, we may have to check predicate pathj_,(ut, ~12, LX, I)

to see if there is a path of edges different from edge 1, such that all the edges are color

CI and connect vertices vr and v2 together. This motivates the following intermediate

subproblem: for a given color CI, mantain a forest (i.e., the edges color a) under

insertion and deletion of edges so as to answer queries pathj_l(vl, 02, c(, I).

We use Henzinger and King’s technique [8] to solve our subproblem. For each

(unrooted) tree T in the forest, we maintain its Euler tour ET(T): if T has q vertices,

then ET(T) is a sequence of 2q - 1 symbols, which are the vertices visited in preorder

after T is rooted at a vertex. Every edge is visited twice and every vertex of degree c

occurs c times in ET(T), except the root, which occurs c+ 1 times. We store ET(T) in

the leaves of a 2-3 tree (from left to right); we can split it at any leaf or concatenate

it to another 2-3 tree in logarithmic time [I]. By using this, Henzinger and King show

how to change the root, split a tree by means of an edge removal, merge two trees

by linking their roots together through an edge insertion, and establish whether or not

two vertices belong to the same tree, in logarithmic time per operation. We use these

operations in our subproblem as follows.

In order to insert an edge (u, u) in the forest, we take the tree T, containing u and

the tree T, containing v. We then make T, rooted at u and T, rooted at v. We merge

the two trees at their roots through edge (u,v). Deleting an edge (u,u) is analogous:

We take the tree T containing the edge and make it rooted at u. Then, we split the

subtree rooted at v (which a child of u). As a result, we obtain two smaller trees

from T. Both insertion and deletion take logarithmic time (see [8] for more details).

In order to answer pathj_ 1 (VI, ~2, a, I), where 1 is a forest edge, we delete 1. That is,

the tree T containing I = (u, u) is split in two subtrees T, and T,, the former containing

u and the latter containing v. Then, we check to see if both vi and t.2 belong to the

same tree in the forest where T is replaced by T, and T,. The answer is returned by

path,_,. We then re-insert 1 to get T in place of T,, and T, in the forest. The cost is

logarithmic time because it takes a constant number of operations on the Henzinger-

King data structure.

We now turn to our implementation of step (10) in the pseudocode shown in Fig. 5.

We assume to have inductively computed coloring Cj-1 for graph Gj-r (initially, for

j = 2, this holds vacuously). Let us therefore assume that we have three Henzinger-

King data structures, one per color. We only discuss how to implement case d = 5,

subcase 2c, as the other cases are easier to handle. We perform the path query necessary

to case d = 5. Subsequently, we have to remove edges lr,12 and the edges in E’

from Gj-1 (they were recorded in step (6) and retrieved in step (9)). We delete

them from the Henzinger-King data structures of the proper color (e.g., Ii is color a

and so we remove it from the data structure for a). We then change the color (i.e.,

remove from one of the Henzinger-King data structures and insert into another) of

R. Grossi, E. Lodi/ Discrete Applied Mathematics 84 (1998) 121-132 131

edges (Wi_ 1, wi) and (wi, Wi+l), if necessary. We insert eo, . , e4 into their proper data

structures after their color is given. The resulting Henzinger-King data structures are

correctly maintained for the next inductive step on j. This completes the algorithmic

description and shows that Cj can be obtained from Cj_i in logarithmic time. The total

cost of steps (7)-(10) is O(nlogn). According to Corollary 3, we obtain our result:

Theorem 4. A planar graph with II vertices can be partitioned into three forests in

O(n log n) time.

5. Concluding remarks

We showed that partitioning a planar graph with n vertices into three forests takes

O(n log n) time. The source for such a cost is due to the possiblity that the min-degree

vertex has degree d = 5. In this case, we have to answer the path query and maintain the

Henzinger-King data structures at a logarithmic cost (we can avoid all these problems

if we want to obtain four or more forests). If case d = 5 never occurs, our partitioning

algorithm clearly becomes linear time. It would be interesting to obtain a linear-time

algorithm that also works for the general case. An independent result presented in [181

shows how to find an acyclic 3-coloring of planar graphs in linear time, with the colors

assigned to the vertices. However, the resulting forests are vertex disjoint and so this

result does not seem to apply directly to our problem, in which we require that the

forests are edge disjoint, i.e., they can share some vertices.

Acknowledgements

We are in debt to Nicola Santoro for suggesting the problem to us. We also thank

Srecko Brlek, Sajal Das, Donatella Merlini, Ugo Vaccaro and Jeff Westbrook for giving

us some helpful references and research material.

References

[l] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-

Wesley, Reading, MA, 1974.

[2] M. Breuer, Coding vertices of a graph, IEEE Trans. Inform. Theory 12 (1966) 148-153.

[3] M. Breuer, J. Folkman, An unexpected result on coding vertices of a graph, J. Math. Anal. Appl. 20

(1967) 5833600.

[4] B. Chen, M. Matsumoto, J.F. Wang, Z.F. Zhang, J.X. Zhang, A short proof of Nash-Williams’ theorem

for the arboricity of a graph, Graphs Combinatorics 10 (1994) 27-28.

[5] W.R. Franklin (wrf@ecse.rpi.edu), Rensselaer Polytechnic Inst., messages posted on Theory-Net

(http://langevin.usc.edu/Ntheorynt/), February 16 and March 11, 1993.

[6] H.N. Gabow, A matroid approach to finding edge connectivity and packing arborescences, in:

Proc. ACM Symp. on Theory of Comp., ACM, 1991, pp. 112-122. Also in: J. Comput. Systems

Sci. 50 (1995) 259-273.

132 R. Grossi, E. Lodil Discrete Applied Mathematics 84 (1998) 121-132

[7] R. Grossi, E. Lodi, Simple planar graph partition into three forests, Technical Report 16/96,

Dipartimento di Sistemi e Informatica, Universita di Firenze, Italy, 1996.

[S] M. Henzinger Rauch, V. King, Randomized dynamic graph algorithms with polylogarithmic time per

operation, in: Proc. ACM Symp. on Theory of Comp., ACM 1995, pp. 519-527.

[9] J. Hopcroft, R.E. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549-568.

[IO] A. Itai, M. Rodeh, Representations of graphs, Acta Inform. 17 (1982) 215-219.

[I 1] G. Jacobson, Space-efficient static trees and graphs, in: Proc. IEEE Symp. on Foundat. of Comp. Sci.,

IEEE, 1989, pp. 549-554.

[12] S. Kannan, M. Naor, S. Rudich, Implicit representation of graphs, SIAM J. Disc. Math. 5 (1992)

596603.

[I31 K. Keeler, J. Westbrook, Short encodings of planar graphs and maps, Discrete Appl. Math. 58 (1995)

239-252.

[14] M. Naor, Succinct representations of general unlabeled graphs, Discrete Appl. Math. 28 (1990)

3033307.

[15] C. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Sot. 36 (1961) 445-

450.

[161 T. Nishizeki, N. Chiba, Planar Graphs: Theory and Algorithms, North-Holland, Amsterdam, 1988.

[171 J.C. Picard, M. Queyranne, A network flow solution to some non-linear O-l programming problems,

with applications to graph theory, Networks 12 (1982) 141-160.

[18] A. Roychoudhmy, S. Sur-Kolay, Efficient algorithms for vertex arboricity of planar graphs, in: Proc. of

Foundations of Software Technology and Theoretical Computer Science, India, 1995, Lecture Notes in

Computer Science, vol. 1026, pp. 37-51.

[19] G. Turan, Succinct representation of graphs, Discrete Appl. Math. 8 (1984) 2899294.

