7 research outputs found

    Minimum Constraint Removal Problem for Line Segments is NP-hard

    Full text link
    In the minimum constraint removal (MCRMCR), there is no feasible path to move from the starting point towards the goal and, the minimum constraints should be removed in order to find a collision-free path. It has been proved that MCRMCR problem is NP−hardNP-hard when constraints have arbitrary shapes or even they are in shape of convex polygons. However, it has a simple linear solution when constraints are lines and the problem is open for other cases yet. In this paper, using a reduction from Subset Sum problem, in three steps, we show that the problem is NP-hard for both weighted and unweighted line segments

    How to Navigate Through Obstacles?

    Get PDF
    Given a set of obstacles and two points in the plane, is there a path between the two points that does not cross more than k different obstacles? This is a fundamental problem that has undergone a tremendous amount of work by researchers in various areas, including computational geometry, graph theory, wireless computing, and motion planning. It is known to be NP-hard, even when the obstacles are very simple geometric shapes (e.g., unit-length line segments). The problem can be formulated and generalized into the following graph problem: Given a planar graph G whose vertices are colored by color sets, two designated vertices s, t in V(G), and k in N, is there an s-t path in G that uses at most k colors? If each obstacle is connected, the resulting graph satisfies the color-connectivity property, namely that each color induces a connected subgraph. We study the complexity and design algorithms for the above graph problem with an eye on its geometric applications. We prove a set of hardness results, among which a result showing that the color-connectivity property is crucial for any hope for fixed-parameter tractable (FPT) algorithms, as without it, the problem is W[SAT]-hard parameterized by k. Previous results only implied that the problem is W[2]-hard. A corollary of this result is that, unless W[2] = FPT, the problem cannot be approximated in FPT time to within a factor that is a function of k. By describing a generic plane embedding of the graph instances, we show that our hardness results translate to the geometric instances of the problem. We then focus on graphs satisfying the color-connectivity property. By exploiting the planarity of the graph and the connectivity of the colors, we develop topological results that allow us to prove that, for any vertex v, there exists a set of paths whose cardinality is upper bounded by a function of k, that "represents" the valid s-t paths containing subsets of colors from v. We employ these structural results to design an FPT algorithm for the problem parameterized by both k and the treewidth of the graph, and extend this result further to obtain an FPT algorithm for the parameterization by both k and the length of the path. The latter result generalizes and explains previous FPT results for various obstacle shapes, such as unit disks and fat regions

    Improved Approximation Bounds for the Minimum Constraint Removal Problem

    Get PDF
    In the minimum constraint removal problem, we are given a set of geometric objects as obstacles in the plane, and we want to find the minimum number of obstacles that must be removed to reach a target point t from the source point s by an obstacle-free path. The problem is known to be intractable, and (perhaps surprisingly) no sub-linear approximations are known even for simple obstacles such as rectangles and disks. The main result of our paper is a new approximation technique that gives O(sqrt{n})-approximation for rectangles, disks as well as rectilinear polygons. The technique also gives O(sqrt{n})-approximation for the minimum color path problem in graphs. We also present some inapproximability results for the geometric constraint removal problem

    A Simple, but NP-Hard, Motion Planning Problem

    No full text
    Determining the existence of a collision-free path between two points is one of the most fundamental questions in robotics.  However, in situations where crossing an obstacle is costly but not impossible, it may be more appropriate to ask for the path that crosses the fewest obstacles.  This may arise in both autonomous outdoor navigation (where the obstacles are rough but not completely impassable terrain) or indoor navigation (where the obstacles are doors that can be opened if necessary).  This problem, the minimum constraint removal problem, is at least as hard as the underlying path existence problem.  In this paper, we demonstrate that the minimum constraint removal problem is NP-hard for navigation in the plane even when the obstacles are all convex polygons, a case where the path existence problem is very easy
    corecore