A Colored Path Problem and Its Applications*

EDUARD EIBEN, Royal Holloway, University of London, United Kingdom
IYAD KANJ, School of Computing, DePaul University, USA

Given a set of obstacles and two points in the plane, is there a path between the two points that does not cross more than k different obstacles? Equivalently, can we remove k obstacles so that there is an obstacle-free path between the two designated points? This is a fundamental problem that has undergone a tremendous amount of work by researchers in various areas, including computational geometry, graph theory, wireless computing, and motion planning. It is known to be NP-hard, even when the obstacles are very simple geometric shapes (e.g., unit-length line segments). The problem can be formulated and generalized into the following graph problem: Given a planar graph G whose vertices are colored by color sets, two designated vertices $s, t \in V(G)$, and $k \in \mathbb{N}$, is there an $s-t$ path in G that uses at most k colors? If each obstacle is connected, the resulting graph satisfies the color-connectivity property, namely that each color induces a connected subgraph.

We study the complexity and design algorithms for the above graph problem with an eye on its geometric applications. We prove a set of hardness results, among which a result showing that the color-connectivity property is crucial for any hope for fixed-parameter tractable (FPT) algorithms (even for various restrictions and parameterizations of the problem), as without it, the problem is W [SAT]-hard parameterized by k. Previous results only implied that the problem is W[2]-hard. A corollary of the aforementioned result is that, unless $\mathrm{W}[2]=\mathrm{FPT}$, the problem cannot be approximated in FPT time to within a factor that is a function of k. By describing a generic plane embedding of the graph instances, we show that our hardness results translate to the geometric instances of the problem.

We then focus on graphs satisfying the color-connectivity property. By exploiting the planarity of the graph and the connectivity of the colors, we develop topological results that reveal rich structural properties of the problem. These results allow us to prove that, for any vertex v in the graph, there exists a set of paths whose cardinality is upper bounded by some function of k, that "represents" the valid $s-t$ paths containing subsets of colors from v. We employ these structural results to design an FPT algorithm for the problem parameterized by both k and the treewidth of the graph, and extend this result further to obtain an FPT algorithm for the parameterization by both k and the length of the path. The latter result directly implies and explains previous FPT results for various obstacle shapes, such as unit disks and fat regions.

CCS Concepts: • Theory of computation \rightarrow Parameterized complexity and exact algorithms; Computational geometry; •Mathematics of computing \rightarrow Graph algorithms;

Additional Key Words and Phrases: parameterized complexity and algorithms, motion planning, barrier coverage, barrier resilience, colored path, minimum constraint removal, planar graphs

ACM Reference Format:
Eduard Eiben and Iyad Kanj. 2020. A Colored Path Problem and Its Applications. ACM Trans. Algor. , (October 2020), 48 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

[^0]
1 INTRODUCTION

We consider the following problem: Given a set of obstacles and two designated points in the plane, is there a path between the two points that does not cross more than k obstacles? Equivalently, can we remove k obstacles so that there is an obstacle-free path between the two designated points? We refer to this problem as Obstacle Removal, and to its restriction to instances in which each obstacle is connected as Connected Obstacle Removal.

By considering the auxiliary plane graph that is the dual of the plane subdivision determined by the obstacles, Obstacle Removal was formulated and generalized into the following graph problem, referred to as Colored Path (see Figure 1 for illustrations):
Colored Path
Given: A planar graph G; a set of colors $C ; \chi: V \longrightarrow 2^{C}$; two designated vertices $s, t \in V(G)$; and $k \in \mathbb{N}$
Question: Does there exist an $s-t$ path in G that uses at most k colors?
Denote by Colored Path-Con the restriction of Colored Path to instances in which each color induces a connected subgraph of G.

(a) An instance in which the optimal path crosses two obstacles, zigzagging between the other obstacles.

(b) An instance and its auxiliary plane graph.

Fig. 1. Illustration of instances of the problem under consideration.

As we discuss next, Connected Obstacle Removal and Colored Path are fundamental problems that have undergone a tremendous amount of work, albeit under different names and contexts, by researchers in various areas, including computational geometry, graph theory, wireless computing, and motion planning.

REMARK 1.1. An obstacle may or may not contain its interior. We assume that the regions formed by the obstacles can be computed in polynomial time. We also assume that each obstacle is a 2-D region (or the union of 2-D regions), as if an obstacle is not, then we can "thicken" its borders properly without changing the sets of obstacles it intersects. Clearly, this can be done in polynomial time. (More formally,
we can replace each point p of an obstacle with a small disk that is contained in the same regions as p, and define the obstacle to be the union of all these disks.)

1.1 Related Work

In motion planning, the goal is generally to move a robot from a starting position to a final position, while avoiding collision with a set of obstacles. This is usually referred to as the piano-mover's problem. Obstacle Removal is a variant of the piano-mover's problem, in which the obstacles are in the plane and the robot is represented as a point. Since determining if there is an obstacle-free path for the robot in this case is solvable in polynomial time, if no such path exists, it is natural to seek a path that intersects as few obstacles as possible. Motivated by planning applications, Connected Obstacle Removal and Colored Path were studied under the name Minimum Constraint Removal [13, 14, 17, 20]. Connected Obstacle Removal has also been studied extensively, motivated by applications in wireless computing, under the name Barrier Coverage or Barrier Resilience [$1,2,27,28,32,34$]. In such applications, we are given a field covered by sensors (usually simple shapes such as unit disks), and the goal is to compute a minimum set of sensors that need to fail before an entity can move undetected between two given sites.

Kumar et al. [28] were the first to study Connected Obstacle Removal. They showed that for unit-disk obstacles in some restricted setting, the problem can be solved in polynomial time. The complexity of the general case for unit-disk obstacles remains open. Several works showed the NP-hardness of the problem, even when the obstacles are very simple geometric shapes such as line segments (e.g., see [1,32,34]). The complexity of the problem when each obstacle intersects a constant number of other obstacles is open [14, 20].

Bereg and Kirkpatrick [2] designed approximation algorithms when the obstacles are unit disks by showing that the length, referred to as the thickness [2] (i.e., number of regions visited), of a shortest path that crosses k disks is at most $3 k$; this follows from the fact that a shortest path does not cross a disk more than a constant number of times.

Korman et al. [27] showed that Connected Obstacle Removal is FPT parameterized by k for unit-disk obstacles, and extended this result to similar-size fat-region obstacles with a constant overlapping number, which is the maximum number of obstacles having nonempty intersection. Their result draws the observation, which was also used in [2], that for unit-disk (and fat-region) obstacles, the length of an optimal path can be upper bounded by a linear function of the number of obstacles crossed (i.e., the parameter). This observation was then exploited by a branching phase that decomposes the path into subpaths in (simpler) restricted regions, enabling a similar approach to that of Kumar et al. [28].

Motivated by its applications to networking, among other areas, the problem of computing a minimum-colored path in a graph received considerable attention (e.g., see [3, 35]). In particular, the problem of computing a minimum-color path in mesh networks was studied in [35], motivated by its applications for finding a "reliable" path in the network. (Note that since a mesh is planar, this problem is a special case of Colored Path.) The problem of finding a minimum-color path in a graph was shown to be NP-hard in several works [3, 4, 20, 35]. ${ }^{1}$ Most of the NP-hardness reductions start from Set Cover, and result in instances of Colored Path (i.e., planar graphs), as was also observed by [2]. These reductions are FPT-reductions, implying the W[2]-hardness of Colored Path. Moreover, these reductions imply that, unless $P=N P$, the minimization version of Colored Path cannot be approximated to within a factor of $c \lg n$, for any constant $c<1$. Hauser [20], and Gorbenko and Popov [17], implemented exact and heuristic algorithms for the problem on general

[^1]graphs. Very recently, Eiben et al. [13] designed exact and heuristic algorithms for Colored Path and Obstacle Removal, and proved computational lower bounds on their subexponential-time complexity, assuming the Exponential Time Hypothesis.

The Colored Path problem also falls into the category of many computationally-hard problems on colored graphs, where the objective is to compute a graph structure (satisfying certain desired properties) that uses the minimum number of colors. These structures have applications in telecommunication/transportation networks, where they can be used as backbones that utilize few communication/transportation media (e.g., see [5,33] for more information).

Finally, we mention that there is a related problem that is solvable in polynomial time, which has received considerable attention [$6,21,22$], where the goal is to find a shortest path w.r.t. the Euclidean length between two given points in the plane that intersects at most k obstacles.

1.2 Our Results and Techniques

We study the complexity and parameterized complexity of Colored Path and Colored Path-Con, eyeing the implications on their geometric counterparts Obstacle Removal and Connected Obstacle Removal, respectively. We do not treat the problem on general graphs because, as we point out in Remark 6.14, this problem is computationally very hard, even when restricted to graphs satisfying the color-connectivity property.

Our first set of hardness results shows that both problems are NP-hard, even when restricted to graphs of small outerplanarity and pathwidth, and that it is unlikely that they can be solved in subexponential time:
(i) Colored Path is NP-complete, even for outerplanar graphs of pathwidth at most 2 and in which every vertex contains at most one color (Theorem 6.1).
(ii) Colored Path-Con is NP-complete even for 2-outerplanar graphs of pathwidth at most 3 (Corollary 6.2).
(iii) Unless ETH fails, Colored Path-Con (and hence Colored Path) is not solvable in subexponential time, even for 2-outerplanar graphs of pathwidth at most 3 and in which each color appears at most 4 times (Corollary 6.3).
The reduction used to prove (i) produces instances of Colored Path that can be realized as geometric instances of Obstacle Removal whose overlapping number is at most 2. Thus, this hardness result extends to the aforementioned restriction of Obstacle Removal. The same reduction is then modified to yield (ii) and (iii) for Colored Path-Con; this reduction produces instances of Colored Path that can be realized as geometric instances of Connected Obstacle Removal whose overlapping number is at most 4, again showing that the hardness results extend to these restrictions of Connected Obstacle Removal.

With respect to the parameterized complexity of Colored Path and Colored Path-Con, clearly, Colored Path is in the parameterized class XP. We show that the color-connectivity property is crucial for any hope for an FPT-algorithm, since even very restricted instances and combined parameterizations of Colored Path are W [1]-complete:
(iv) Colored Path, restricted to instances of pathwidth at most 4, and in which each vertex contains at most one color and each color appears on at most 2 vertices, is W [1]-complete parameterized by k (Theorem 6.8).
(v) Colored Path, parameterized by both k and the length of the sought path ℓ, is W [1]-complete (Theorem 6.7).
Without restrictions, the problem sits high in the parameterized complexity hierarchy:
(vi) Colored Path, parameterized by k, is W[SAT]-hard (Theorem 6.10) and is in W[P] (Theorem 6.9).

A corollary of (vi) is that, unless W[2] = FPT, Colored Path cannot be approximated in FPT time to within a factor that is a function of k (Corollary 6.13).

By producing a generic construction (Remark 6.4) that can be used to realize any graph instance of Colored Path as a geometric instance of Obstacle Removal, the hardness results in (iv)-(vi), and the inapproximability result discussed above, translate to Obstacle Removal. This geometric realization may slightly increase the overlapping number by at most 2. Previously, Colored Path was only known to be W[2]-hard, via the standard reduction from Set Cover [3, 20, 35]. Our results refine the parameterized complexity and approximability of Colored Path and Obstacle Removal.

As noted in Remark 6.14, the color-connectivity property without planarity is hopeless: We can tradeoff planarity for color-connectivity by adding a single vertex that serves as a color-connector, thus establishing the $\mathrm{W}[\mathrm{SAT}]$-hardness of the problem on apex graphs.

The above hardness results show that we can focus our attention on Colored Path-Con. We show the following algorithmic result:
(vii) Colored Path-Con, parameterized by both k and the treewidth ω of the input graph, is FPT (Theorem 4.12).

We remark that bounding the treewidth does not make Colored Path-Con much easier, as we show in this paper that Colored Path-Con is NP-hard even for 2-outerplanar graphs of pathwidth at most 3 (Corollary 6.2).

The folklore dynamic programming approach based on tree decomposition, used for the Hamiltonian Path/Cycle problems, does not work for Colored Path-Con to prove the result in (vii) for the following reasons. As opposed to the Hamiltonian Path/Cycle problems, where it is sufficient to keep track of how the path/cycle interacts with each bag in the tree decomposition, this is not sufficient in the case of Colored Path-Con because we also need to keep track of which color sets are used on both sides of the bag. Although (by color connectivity) any subset of colors appearing on both sides of a bag must appear on vertices in the bag as well, there can be too many such subsets (up to $|C|^{k}$, where C is the set of colors), and certainly we cannot afford to enumerate all of them if we seek an FPT algorithm. To overcome this issue, we develop in Section 3 topological structural results that exploit the planarity of the graph and the connectivity of the colors to show the following. For any vertex $w \in V(G)$, and for any pair of vertices $u, v \in V(G)$, the set of (valid) $u-v$ paths in $G-w$ that use colors appearing on vertices in the face of $G-w$ containing w can be "represented" by a minimal set of paths whose cardinality is a function of k.

In Section 4, we extend the notion of a minimal set of paths w.r.t. a single vertex to a "representative set" of paths w.r.t. a specific bag, and a specific enumerated configuration for the bag, in a tree decomposition of the graph. This enables us to use the upper bound on the size of a minimal set of paths, derived in Section 3, to upper bound the size of a representative set of paths w.r.t. a bag and a configuration. This, in turn, yields an upper bound on the size of the table stored at a bag, in the dynamic programming algorithm, by a function of both k and the treewidth of the graph, thus yielding the desired result.

In Section 5, we extend the FPT result for Colored Path-Con in (vii) w.r.t. the parameters k and ω, to the parameterization by both k and the length ℓ of the path:
(viii) Colored Path-Con, and hence Connected Obstacle Removal, parameterized by both k and ℓ is FPT (Theorem 5.15).

The dependency on both ℓ and k is essential for the result in (viii): If we parameterize only by k, or only by ℓ, then the problem becomes W[1]-hard (Theorem 5.1 and Theorem 5.2). By Remark 6.4, these two results translate to Connected Obstacle Removal.

The result in (viii) generalizes and explains Korman et al.'s results [27] showing that Connected Obstacle Removal is FPT parameterized by k for unit-disk obstacles, which they also generalized to similar-size fat-region obstacles with bounded overlapping number. Their results exploit the obstacle shape to upper bound the length of the path by a linear function of k, and then use branching to reduce the problems to a simpler setting. Our result directly implies that, regardless of the (connected) obstacle shapes, as long as the path length is upper bounded by some function of k (Corollary 5.16), the problem is FPT. The FPT result in (viii) also implies that:
(ix) For any computable function h, Colored Path-Con restricted to instances in which each color appears on at most $h(k)$ vertices, is FPT parameterized by k (Corollary 5.18).
Result (ix) has applications to Connected Obstacle Removal, in particular, to the interesting case when the obstacles are convex polygons, each intersecting a constant number of other polygons. The question about the complexity of this problem was posed in [14, 20], and remains open. The result in (ix) implies that this problem is FPT (Theorem 5.19).

We finally mention that it remains open whether Colored Path-Con and Connected Obstacle Removal are FPT parameterized by k only.

The paper is organized as follows. Section 2 presents some definitions and terminologies, in addition to a basic operation (Lemma 2.4), that are used throughout the paper. Section 3 presents the structural results needed to show that Colored Path-Con is FPT (Theorem 4.12). Section 4 presents the FPT algorithm for Colored Path-Con, and Section 5 presents extensions and applications of this algorithm. Section 6 presents hardness results for Colored Path, Colored Path-Con and their geometric counterparts Obstacle Removal and Connected Obstacle Removal, respectively. We conclude in Section 7 with some remarks and open questions.

2 PRELIMINARIES

We assume familiarity with the basic notations and terminologies in graph theory and parameterized complexity. We refer the reader to the standard books [11, 12] for more information on these subjects.

Graphs. All graphs in this paper are simple (i.e., loop-less and with no multiple edges).
Let $G=(V(G), E(G))$ be an undirected graph. For a subset $S \subseteq V(G)$ of vertices, we write $G[S]$ for the subgraph of G induced by S. We write $G-S$ for $G[V(G) \backslash S]$. If $S=\{v\}$ is a singleton, we write $G-v$ instead of $G-\{v\}$. For a subgraph H of G and a vertex $v \in V(G) \backslash V(H)$, we write $H+v$ for the subgraph of G whose vertex-set is $V(H) \cup\{v\}$ and edge-set is $E(H) \cup\{u v \mid u \in V(H) \wedge u v \in E(G)\}$. For a subset $E^{\prime} \subseteq E(G)$ of edges, we write $G-E^{\prime}$ for the subgraph $\left(V(G), E(G) \backslash E^{\prime}\right)$. If $E^{\prime}=\{e\}$ is a singleton, we write $G-e$ instead of $G-\{e\}$. For $E^{\prime} \subseteq V(G) \times V(G)$, we write $G+E^{\prime}$ for the graph $\left(V(G), E(G) \cup E^{\prime}\right)$; as above, if $E^{\prime}=\{e\}$, we write $G+e$ instead of $G+\{e\}$. For a subset of edges $E^{\prime} \subseteq E(G)$, the subgraph of G induced by E^{\prime} is the graph whose vertex-set is the set of endpoints of the edges in E^{\prime}, and whose edge-set is E^{\prime}.

For an edge $e=u v$ in G, contracting e means removing the two vertices u and v from G, replacing them with a new vertex w, and for every vertex y in the neighborhood of v or u in G, adding an edge $w y$ in the new graph, not allowing multiple edges. Given a vertex-set $S \subseteq V(G)$, contracting S means contracting the edges between the vertices in S; if S induces a connected subgraph of G, then contracting S results in a single vertex. A graph is planar if it can be drawn in the plane without edge intersections (except at the endpoints). An apex graph is a graph in which the removal of a single vertex results in a planar graph. A plane graph has a fixed drawing. Each maximal connected region of the plane minus the drawing is an open set; these are the faces. One is unbounded, called the outer face. A 1-outerplane graph, or simply an outerplane graph, is a plane graph for which every vertex is incident to the outer face; and a 1-outerplanar graph, or simply an outerplanar graph, is a graph that has such a plane embedding. An i-outerplane graph (resp. i-outerplanar graph),
for $i>1$, is defined inductively as a graph such that the removal of its outer face results in an ($i-1$)-outerplane graph (resp. $(i-1)$-outerplanar graph) graph.

Let S be a set of points in the plane, and let C_{1}, C_{2} be two non self-intersecting curves that meet S in precisely their common endpoints a and b. We say that C_{1} and C_{2} are isotopic w.r.t. S (also known as homotopic rel. boundary) if there is a continuous deformation from C_{1} to C_{2} through curves between a and b such that no intermediate curve in this deformation meets a vertex of S in its interior.

Let $W_{1}=\left(u_{1}, \ldots, u_{p}\right)$ and $W_{2}=\left(v_{1}, \ldots, v_{q}\right), p, q \in \mathbb{N}$, be two walks such that $u_{p}=v_{1}$. Define the gluing operation \circ that when applied to W_{1} and W_{2} produces that walk $W_{1} \circ W_{2}=$ $\left(u_{1}, \ldots, u_{p}, v_{2}, \ldots, v_{q}\right)$.

For a graph G and two vertices $u, v \in V(G)$, we denote by $d_{G}(u, v)$ the distance between u and v in G, which the length of a shortest path between u and v in G. For a graph G and two vertices $u, v \in V(G)$, Menger's theorem states that the minimum number of vertices separating u from v in G is equal to the maximum number of vertex-disjoint u-v paths in G (see [11] for a proof).

Treewidth, Pathwidth and Tree Decomposition.

Definition 2.1. Let $G=(V, E)$ be a graph. A tree decomposition of G is a pair $(\mathcal{V}, \mathcal{T})$ where \mathcal{V} is a collection of subsets of V such that $\bigcup_{X_{i} \in \mathcal{V}}=V$, and \mathcal{T} is a rooted tree whose node set is \mathcal{V}, such that:

1. For every edge $\{u, v\} \in E$, there is an $X_{i} \in \mathcal{V}$, such that $\{u, v\} \subseteq X_{i}$; and
2. for all $X_{i}, X_{j}, X_{k} \in \mathcal{V}$, if the node X_{j} lies on the path between the nodes X_{i} and X_{k} in the tree \mathcal{T}, then $X_{i} \cap X_{k} \subseteq X_{j}$.
The width of the tree decomposition $(\mathcal{V}, \mathcal{T})$ is defined to be $\max \left\{\left|X_{i}\right| \mid X_{i} \in \mathcal{V}\right\}-1$. The treewidth of the graph G is the minimum width over all tree decompositions of G.
A path decomposition of a graph G is a tree decomposition $(\mathcal{V}, \mathcal{T})$ of G, where \mathcal{T} is a path. The pathwidth of a graph G is the minimum width over all path decompositions of G.

A tree decomposition $(\mathcal{V}, \mathcal{T})$ is nice if it satisfies the following conditions:

1. Each node in the tree \mathcal{T} has at most two children.
2. If a node X_{i} has two children X_{j} and X_{k} in the tree \mathcal{T}, then $X_{i}=X_{j}=X_{k}$; in this case node X_{i} is called a join node.
3. If a node X_{i} has only one child X_{j} in the tree \mathcal{T}, then either $\left|X_{i}\right|=\left|X_{j}\right|+1$ and $X_{j} \subset X_{i}$, and in this case X_{i} is called an insert node; or $\left|X_{i}\right|=\left|X_{j}\right|-1$ and $X_{i} \subset X_{j}$, and in this case X_{i} is called a forget node.
4. If X_{i} is a leaf node or the root, then $X_{i}=\emptyset$.

Boolean Circuits and Parameterized Complexity. A circuit is a directed acyclic graph. The vertices of indegree 0 are called the (input) variables, and are labeled either by positive literals x_{i} or by negative literals \bar{x}_{i}. The vertices of indegree larger than 0 are called the gates and are labeled with Boolean operators AND or Or. A special gate of outdegree 0 is designated as the output gate. We do not allow not gates in the above circuit model, since by De Morgan's laws, a general circuit can be effectively converted into the above circuit model. A circuit is said to be monotone if all its input literals are positive. The depth of a circuit is the maximum distance from an input variable to the output gate of the circuit. A circuit represents a Boolean function in a natural way. The size of a circuit C, denoted $|C|$, is the size of the underlying graph (i.e., number of vertices and edges). An occurrence of a literal in C is an edge from the literal to a gate in C. Therefore, the total number of occurrences of the literals in C is the number of outgoing edges from the literals in C to its gates.

We say that a truth assignment τ to the variables of a circuit C satisfies a gate g in C if τ makes the gate g have value 1 , and that τ satisfies the circuit C if τ satisfies the output gate of C. A circuit
C is satisfiable if there is a truth assignment to the input variables of C that satisfies C. The weight of an assignment τ is the number of variables assigned value 1 by τ.

A parameterized problem Q is a subset of $\Omega^{*} \times \mathbb{N}$, where Ω is a fixed alphabet. Each instance of the parameterized problem Q is a pair (x, k), where $k \in \mathbb{N}$ is called the parameter. We say that the parameterized problem Q is fixed-parameter tractable (FPT) [12], if there is a (parameterized) algorithm, also called an FPT-algorithm, that decides whether an input (x, k) is a member of Q in time $f(k) \cdot|x|^{O(1)}$, where f is a computable function. Let FPT denote the class of all fixed-parameter tractable parameterized problems.

A parameterized problem Q is FPT-reducible to a parameterized problem Q^{\prime} if there is an algorithm, called an FPT-reduction, that transforms each instance (x, k) of Q into an instance $\left(x^{\prime}, k^{\prime}\right)$ of Q^{\prime} in time $f(k) \cdot|x|^{O(1)}$, such that $k^{\prime} \leq g(k)$ and $(x, k) \in Q$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in Q^{\prime}$, where f and g are computable functions. By FPT-time we denote time of the form $f(k) \cdot|x|^{O(1)}$, where f is a computable function and $|x|$ is the input instance size. Based on the notion of FPT-reducibility, a hierarchy of parameterized complexity, the W -hierarchy $\bigcup_{t \geq 0} \mathrm{~W}[t]$, where $\mathrm{W}[t] \subseteq \mathrm{W}[t+1]$ for all $t \geq 0$, has been introduced, in which the 0 -th level $\mathrm{W}[0]$ is the class FPT. The hardness and completeness have been defined for each level $\mathrm{W}[i]$ of the W-hierarchy for $i \geq 1$ [12]. It is commonly believed that $\mathrm{W}[1] \neq \mathrm{FPT}$ (see [12]). The $\mathrm{W}[1]$-hardness has served as the main working hypothesis of fixed-parameter intractability.

The class W[SAT] contains all parameterized problems that are FPT-reducible to the weighted satisfiability of Boolean formulas. It contains the classes $\mathrm{W}[\mathrm{t}]$, for every $t \geq 0$. Boolean formulas can be represented (in polynomial time) by Boolean circuits that are in the normalized form (see [12]). In the normalized form every (nonvariable) gate has outdegree at most 1 , and the gates are structured into alternating levels of ors-of-ANDS-of-ors.... Therefore, the underlying undirected graph of the circuit with the input variables removed is a tree; the input variables can be connected to any gate in the circuit, including the output gate. The class $W[P]$ contains all parameterized problems that are FPT-reducible to the weighted satisfiability of Boolean circuits of polynomial size, and contains the class $\mathrm{W}[\mathrm{SAT}]$.

Let O be a parameterized minimization problem, and $\rho: \mathbb{N} \rightarrow \mathbb{R}_{\geq 1}$ a computable function such that $\rho(k) \geq 1$ for every $k \geq 1$. A decision algorithm \mathbb{A} is an FPT cost approximation algorithm for O with approximation ratio ρ [8], if for every input $(x, k) \in \Sigma^{*} \times \mathbb{N}$, its output satisfies the following:

- If $k \leq O P T(x)$, then \mathbb{A} rejects (x, k), and
- if $k \geq \rho(O P T(x)) \cdot O P T(x)$, then \mathbb{A} accepts (x, k).

Furthermore, \mathbb{A} runs in FPT-time.
The Exponential Time Hypothesis (ETH) states that the satisfiability of k-cnF Boolean formulas, where $k \geq 3$, is not decidable in subexponential-time $O\left(2^{o(n)}\right)$, where n is the number of variables in the formula. ETH has become a standard hypothesis in complexity theory for proving hardness results that is closely related to the computational intractability of a large class of well-known NP-hard problems, measured from a number of different angles, such as subexponential-time complexity, fixed-parameter tractability, and approximation.

The asymptotic notation O^{*} suppresses a polynomial factor in the input length.
Colored Path and Colored Path-Con. For a set S, we denote by 2^{S} the power set of S. Let $G=(V, E)$ be a graph, let $C \subset \mathbb{N}$ be a finite set of colors, and let $\chi: V \longrightarrow 2^{C}$. A vertex v in V is empty if $\chi(v)=\emptyset$. A color c appears on, or is contained in, a subset S of vertices if $c \in \bigcup_{v \in S} \chi(v)$. For two vertices $u, v \in V(G), \ell \in \mathbb{N}$, a u-v path $P=\left(u=v_{0}, \ldots, v_{r}=v\right)$ in G is ℓ-valid if $\left|\bigcup_{i=0}^{r} \chi\left(v_{i}\right)\right| \leq \ell$; that is, if the total number of colors appearing on the vertices of P is at most ℓ. A color $c \in C$ is connected in G, or simply connected, if $\bigcup_{c \in \chi(v)}\{v\}$ induces a connected subgraph of G. The graph G is color-connected, if for every $c \in C, c$ is connected in G.

For an instance (G, C, χ, s, t, k) of Colored Path or Colored Path-Con, if s and t are nonempty vertices, we can remove their colors and decrement k by $|\chi(s) \cup \chi(t)|$ because their colors appear on every $s-t$ path. If afterwards k becomes negative, then there is no k-valid $s-t$ path in G. Moreover, if s and t are adjacent, then the path (s, t) is a path with the minimum number of colors among all $s-t$ paths in G. Therefore, we will assume:

Assumption 2.2. For an instance (G, C, χ, s, t, k) of Colored Path or Colored Path-Con, we can assume that s and t are nonadjacent empty vertices.

Definition 2.3. Let s, t be two designated vertices in G, and let x, y be two adjacent vertices in G such that $\chi(x)=\chi(y)$. We define the following operation to x and y, referred to as a color contraction operation, that results in a graph G^{\prime}, a color function χ^{\prime}, and two designated vertices s^{\prime}, t^{\prime} in G^{\prime}, obtained as follows:

- G^{\prime} is the graph obtained from G by contracting the edge $x y$, which results in a new vertex z;
- $s^{\prime}=s\left(\right.$ resp. $\left.t^{\prime}=t\right)$ if $s \notin\{x, y\}$ (resp. $\left.t \notin\{x, y\}\right)$, and $s^{\prime}=z$ (resp. $t^{\prime}=z$) otherwise; and
- $\chi^{\prime}: V\left(G^{\prime}\right) \longrightarrow 2^{C}$ is the function defined as $\chi^{\prime}(w)=\chi(w)$ if $w \neq z$, and $\chi^{\prime}(z)=\chi(x)=\chi(y)$.
G is irreducible if there does not exist two vertices in G to which the color contraction operation is applicable.

Lemma 2.4. Let G be a color-connected plane graph, C a color set, $\chi: V \longrightarrow 2^{C}, s, t \in V(G)$, and $k \in \mathbb{N}$. Suppose that the color contraction operation is applied to two vertices in G to obtain $G^{\prime}, \chi^{\prime}$, s^{\prime}, t^{\prime}, as described in Definition 2.3. Then G^{\prime} is a color-connected plane graph, and there is a k-valid $s-t$ path in G if and only if there is a k-valid $s^{\prime}-t^{\prime}$ path in G^{\prime}.

Proof. Let x and y be the two adjacent vertices in G to which the color contraction operation is applied, and let z be the new vertex resulting from this contraction. It is clear that after the contraction operation the obtained graph G^{\prime} is a plane color-connected graph.

Suppose that there is a k-valid $s-t$ path in G, and let $P=\left(s=v_{0}, \ldots, v_{r}=t\right)$ be such a path. We can assume that P is an induced path. If no vertex in $\{x, y\}$ is on P, then $P^{\prime}=P$ is a k-valid $s^{\prime}-t^{\prime}$ path in G^{\prime}. If exactly one vertex in $\{x, y\}$, say x, is on P, then since the color set of every vertex other than x on P is the same before and after the contraction operation, and since $\chi^{\prime}(z)=\chi(x)$, the path P^{\prime} obtained from P by replacing x with z is a k-valid $s^{\prime}-t^{\prime}$ in G^{\prime}. (Note that if $x=s$ then $s^{\prime}=z$, and replacing x with z on P is obsolete in this case.) Finally, if both x and y are on P, then since P is induced, x and y must appear consecutively on P. Without loss of generality, assume $x=v_{i}$ and $y=v_{i+1}$, for some $i \in\{0, \ldots, r-1\}$. Since the color set of every vertex other than x and y on P is the same before and after the operation, and since $\chi^{\prime}(z)=\chi(x)=\chi(y)$, the path $P^{\prime}=\left(s^{\prime}=v_{0}, \ldots, v_{i-1}, z, v_{i+1}, \ldots, t=v_{r}\right)$ is a k-valid $s^{\prime}-t^{\prime}$ path in G^{\prime}.

Conversely, suppose that there is a k-valid $s^{\prime}-t^{\prime}$ path in G^{\prime}, and let $P^{\prime}=\left(s^{\prime}=v_{0}^{\prime}, \ldots, v_{p}^{\prime}=\right.$ t^{\prime}), where $p>0$, be such a path. If z does not appear on P^{\prime} then P^{\prime} is a k-valid s - t path in G. Otherwise, $z=v_{i}^{\prime}$ for some $i \in\{0, \ldots, p\}$. If $i=0$ and P^{\prime} consists only of vertex z, then since $\chi(x)=\chi(y)=\chi^{\prime}(z)$, either $s=t$, and in which case there is a trivial k-valid s - t path in G, or $s \neq t$, and in this case $P=(x, y)$ is a k-valid s - t path in G. Otherwise, when $i=0$ we must have $s=x$ or $s=y, v_{i}^{\prime} \in G$ for $i \in[p]$, and $t^{\prime}=t$; without loss of generality, assume that $s=x$. Since z is adjacent to v_{1}^{\prime}, either $x=s$ or y (or both) is adjacent to v_{1}^{\prime}. Since $\chi(x)=\chi(y)=\chi^{\prime}(z)$, if x is adjacent to v_{1}^{\prime} then $P=\left(s=x, v_{1}^{\prime}, \ldots, v_{p}^{\prime}=t^{\prime}\right)$ is a k-valid $s-t$ path in G, and if y is adjacent to v_{1}^{\prime} then $P=\left(s=x, y, v_{1}^{\prime}, \ldots, v_{p}^{\prime}=t^{\prime}\right)$ is a k-valid s - t path in G. The case is similar if $i=p$. Suppose now that $i \neq 0$ and $i \neq p$. If x (resp. y) is adjacent to both v_{i-1}^{\prime} and v_{i-1}^{\prime}, then the path $P=\left(s, v_{1}^{\prime}, \ldots, v_{i-1}^{\prime}, x, v_{i+1}^{\prime}, \ldots, v_{p}^{\prime}=t\right)$ (resp. $P=\left(s, v_{1}^{\prime}, \ldots, v_{i-1}^{\prime}, y, v_{i+1}^{\prime}, \ldots, v_{p}^{\prime}=t\right)$ is a k-valid s - t-path in G; otherwise, one vertex in $\{x, y\}$, say x, must be adjacent to v_{i-1}^{\prime}, and the other vertex y
must be adjacent to v_{i+1}^{\prime}. In this case the path $P=\left(s, v_{1}^{\prime}, \ldots, v_{i-1}^{\prime}, x, y, v_{i+1}^{\prime}, \ldots, v_{p}^{\prime}=t\right)$ is a k-valid $s-t$-path in G.

3 STRUCTURAL RESULTS

Let G be a color-connected plane graph, C a set of colors, and $\chi: V \longrightarrow 2^{C}$. In this section, we present structural results that are the cornerstone of the FPT-algorithm for Colored Path-Con presented in the next section. We start by giving an intuitive description of the plan for this section.

As mentioned in Section 1, the main issue facing a dynamic programming algorithm based on tree decomposition, is how to upper bound, by a function of k and the treewidth, the number of k-valid paths between (any) two vertices u and v that use color sets contained in a certain bag. As it turns out, this number cannot be upper bounded as desired. Instead, we "represent" those paths using a minimal set \mathcal{P} of k-valid u-v paths, in the sense that any k-valid $u-v$ path can be replaced by a path from \mathcal{P} that is not "worse" than it. To do so, it suffices to represent the k-valid $u-v$ paths that use color sets contained in a third vertex w, by a set whose cardinality is a function of k. This will enable us to extend the notion of a minimal set of k-valid $u-v$ paths w.r.t. a single vertex to a representative set for the whole bag, which is the key ingredient of the dynamic programming FPT-algorithm-based on tree decomposition-in the next section.

As it turns out, the paths that matter are those that use "external" colors w.r.t. w (defined below), since those colors have the potential of appearing on both sides of a bag containing w. Therefore, the ultimate goal of this section is to define a notion of a minimal set \mathcal{P} of k-valid $u-v$ paths with respect to w (Definition 3.4), and to upper bound $|\mathcal{P}|$ by a function of k. Upper bounding $|\mathcal{P}|$ by a function of k turns out to be quite challenging, and requires ideas and topological results that will be discussed later in this section.

Throughout this section, we shall assume that G is color-connected. We start with the following simple observation:

Observation 3.1. Let $x, y \in V(G)$ be such that there exists a color $c \in C$ that appears on both x and y. Then any $x-y$ vertex-separator in G contains a vertex on which c appears.

Proof. This follows because color c is connected.
Observation 3.1 will be useful in the next section as well, in the dynamic programming algorithm based on tree decomposition, as every tree bag is a vertex-separator.

Let G^{\prime} be a plane graph, let $w \in V\left(G^{\prime}\right)$, and let H be a subgraph of $G^{\prime}-w$. Let f be the face in H such that w is interior to f; we call f the external face w.r.t. w in H, and the vertices incident to f external vertices w.r.t. w in H. A color $c \in C$ is an external color w.r.t. w in H, or simply external to w in H, if c appears on an external vertex w.r.t. w in H; otherwise, c is internal to w in H. See Figure 2 for illustration. The following observation is easy to see:

Observation 3.2. Let G be a color-connected plane graph, and let $w \in V(G)$. Let H be any subgraph of $G-w$. If c is an external color to w in $G-w$ and c appears on some vertex in H, then c is an external color to w in H. This also implies that the set of internal colors to w in H is a subset of the set of internal colors to w in $G-w$.

Proof. Since c is external to w in $G-w, c$ appears on a vertex v incident to the external face f w.r.t. w in $G-w$. Let f_{H} be the external face w.r.t. w in H (i.e., the face containing w). Let u be a vertex in H containing c. If either u or v is incident to f_{H}, then c is external to w in H. Otherwise, since v is incident to the external face f w.r.t. w in $G-w, f_{H}$ separates u from v in G, and by Observation 3.1, there exists a vertex incident to f_{H} that contains c.

Fig. 2. A plane graph $G^{\prime}, w \in V\left(G^{\prime}\right)$, and a subgraph H of G^{\prime} consisting of the black vertices and the black and red thick edges. The boundary of the external face f w.r.t. w in H is highlighted in red. The external vertices w.r.t. w in H are precisely the vertices incident to the highlighted (external) face.

Definition 3.3. Let $P=\left(w_{1}, \ldots, w_{r}\right)$ be a path in a graph G, and let $x, y \in V(G)$. Suppose that we apply the color contraction operation to x and y, and let z be the new vertex and G^{\prime} the new graph resulting from this contraction, respectively. We define an operation, denoted $\Lambda_{x y}$, that when applied to path P in G results in another path $\Lambda_{x y}(P)$ in G^{\prime} defined as follows:

1. If $\{x, y\} \cap\left\{w_{1}, \ldots, w_{r}\right\}=\emptyset$ then $\Lambda_{x y}(P)=P$.
2. If $\{x, y\} \cap\left\{w_{1}, \ldots, w_{r}\right\}=\left\{w_{i}\right\}$, where $i \in[r]$, then $\Lambda_{x y}(P)=\left(w_{1}, \ldots, w_{i-1}, z, w_{i+1}, \ldots, w_{r}\right)$.
3. If $\{x, y\} \cap\left\{w_{1}, \ldots, w_{r}\right\}=\left\{w_{i}, w_{j}\right\}$, where $i<j$, then $\Lambda_{x y}(P)=\left(w_{1}, \ldots, w_{i-1}, z, w_{j+1}, \ldots, w_{r}\right)$.

For a set of paths \mathcal{P}, we define $\Lambda_{x y}(\mathcal{P})=\left\{\Lambda_{x y}(P) \mid P \in \mathcal{P}\right\}$.
Definition 3.4. Let $u, v, w \in V(G)$. A set \mathcal{P} of k-valid $u-v$ paths in $G-w$ is said to be minimal w.r.t. w if:
(i) There do not exist two paths $P_{1}, P_{2} \in \mathcal{P}$ such that $\chi\left(P_{1}\right) \cap \chi(w)=\chi\left(P_{2}\right) \cap \chi(w)$;
(ii) there do not exist two paths $P_{1}, P_{2} \in \mathcal{P}$ such that $\chi\left(P_{1}\right) \subseteq \chi\left(P_{2}\right)$; and
(iii) for any $P \in \mathcal{P}$, there does not exist a $u-v$ path P^{\prime} in $G-w$ such that $\chi\left(P^{\prime}\right) \subsetneq \chi(P)$.

Clearly, for any $u, v, w \in V(G)$, a minimal set of k-valid $u-v$ paths in $G-w$ exists.
Observation 3.5. Let $u, v, w \in V(G)$. Any set of $u-v$ paths that is minimal w.r.t. w contains at most one path whose vertices contain only internal colors w.r.t. w in $G-w$.

Proof. Since the external face f of w in $G-w$ is a Jordan curve that separates w from any vertex in $G-w$ that is not incident to f, by Observation 3.1, any color that appears both on w and on a vertex in $G-w$ must appear on a vertex incident to f, and hence, must be external to w by definition. Therefore, any path P containing only internal colors to w satisfies $\chi(P) \cap \chi(w)=\emptyset$. The observation now follows from property (i) in Definition 3.4.

Lemma 3.6. Let $u, v, w \in V(G)$, and $\operatorname{let} \mathcal{P}$ be a minimal set of k-valid $u-v$ paths in $G-w$. Suppose that we apply the color contraction operation to an edge $x y \in G-w$, and let $G^{\prime}, \chi^{\prime}$ be the graph and color function obtained from the contraction operation, respectively. Let $\mathcal{P}^{\prime}=\Lambda_{x y}(\mathcal{P})$. Then \mathcal{P}^{\prime} is a minimal set of k-valid paths w.r.t w in G^{\prime}.

Proof. Let H^{\prime} be the subgraph of $G^{\prime}-w$ induced by the edges of the paths in \mathcal{P}^{\prime}, and denote by z the new vertex obtained from the contraction of the edge $x y$. We start by showing the following claim:

Claim 1. For every $P \in \mathcal{P}$, it holds that $\chi\left(\Lambda_{x y}(P)\right)=\chi(P)$.

Let $P=\left(u=w_{1}, \ldots, w_{r}=v\right)$. Since $\chi^{\prime}(z)=\chi(x)=\chi(y)$, it follows from Definition 3.3 that if $\left|\{x, y\} \cap\left\{w_{1}, \ldots, w_{r}\right\}\right| \leq 1$, then $\chi\left(\Lambda_{x y}(P)\right)=\chi(P)$. Now assume that $\{x, y\} \cap\left\{w_{1}, \ldots, w_{r}\right\}=$ $\left\{w_{i}, w_{j}\right\}$, where $i<j$, and suppose to get a contradiction that $\chi\left(\Lambda_{x y}(P)\right) \neq \chi(P)$. Since $\Lambda_{x y}(P)=$ $\left(w_{1}, \ldots, w_{i-1}, z, w_{j+1}, \ldots, w_{r}\right)$, it follows that $\chi\left(\Lambda_{x y}(P)\right) \subsetneq \chi(P)$. However, $G-w$ contains the u-v path $P^{\prime}=\left(w_{1}, \ldots, w_{i-1}, w_{i}, w_{j}, w_{j+1}, \ldots, w_{r}\right)$, which satisfies $\chi\left(P^{\prime}\right)=\chi\left(\Lambda_{x y}(P)\right) \subsetneq \chi(P)$; this, together with $P \in \mathcal{P}$, contradicts the minimality of \mathcal{P}.

We now proceed to verify that \mathcal{P}^{\prime} is indeed minimal w.r.t. w. Properties (i) and (ii) in Definition 3.4 follow directly from Claim 1 and the minimality of \mathcal{P}. To prove that property (iii) holds, assume that there is a path $P^{\prime} \in \mathcal{P}^{\prime}$, and a path Q^{\prime} in $G^{\prime}-w$ between the endpoints of P^{\prime} such that $\chi\left(Q^{\prime}\right) \subsetneq \chi\left(P^{\prime}\right)$. Let P be the path in \mathcal{P} such that $\Lambda_{x y}(P)=P^{\prime}$. It is straightforward to verify that $G-w$ contains a $u-v$ path Q that is either identical to Q^{\prime}, or obtained from Q^{\prime} by replacing z by either a single vertex x or y, or by the pair x, y. Clearly, $\chi(Q)=\chi\left(Q^{\prime}\right)$. Since $\chi\left(Q^{\prime}\right) \subsetneq \chi\left(P^{\prime}\right)=\chi(P)$ by Claim 1, it follows that $\chi(Q) \subsetneq \chi(P)$, contradicting the minimality of \mathcal{P}. It follows that Property (iii) holds, and the proof is complete.

To derive an upper bound on the cardinality of a minimal set \mathcal{P} of k-valid u-v paths w.r.t. a vertex w, we select a maximal set \mathcal{M} of color-disjoint paths in \mathcal{P}. We first upper bound $|\mathcal{M}|$ by a function of k, which requires developing several results of topological nature. The key ingredient for upper bounding $|\mathcal{M}|$ is showing that the subgraph M induced by the paths in \mathcal{M} has a $u-v$ vertex-separator of cardinality $O(k)$ (Lemma 3.11), after a constant number of $u-v$ paths in \mathcal{M} have been removed. To show the existence of such a separator, we prove some structural lemmas (Lemmas 3.7 and 3.8) that essentially imply that, for any set of paths in \mathcal{M} that each contains an external color w.r.t. w in M, there exist two paths P_{1}, P_{2} in this set that induce a Jordan curve separating the neighbors of u on the paths in this set, except those neighbors on P_{1}, P_{2}, from v. The aforementioned result is subsequently used to show that for any set of paths in \mathcal{M} that each contains an external color w.r.t. w in M, there exist two paths P_{1}, P_{2} in this set such that any u-v path in M intersects (at least) one of P_{1}, P_{2} at a vertex other than u or v. This result implies that there cannot be a set containing more than $O(k) k$-valid vertex-disjoint u-v paths in M that each contains an external color w.r.t. w in $G-w$; otherwise, one of the two paths P_{1}, P_{2} in this set, whose existence was alluded to earlier, would have to contain more than k colors, and hence, is not k-valid. The existence of the desired separator then follows by Menger's theorem. After establishing the existence of a small separator, we then upper bound $|\mathcal{M}|$ (Lemma 3.13) by upper bounding the number of different traces of the paths of \mathcal{M} on this small separator, and inducting on both sides of the separator. Finally, we show (Theorem 3.14) that $|\mathcal{P}|$ is upper bounded by a function of $|\mathcal{M}|$, which proves the desired upper bound on $|\mathcal{P}|$. We proceed to the details.

Lemma 3.7. Let G^{\prime} be a plane graph, and let $x, y, z \in V\left(G^{\prime}\right)$. Let $x_{1}, \ldots, x_{r}, r \geq 3$, be the neighbors of x in counterclockwise order. Suppose that, for each $i \in[r]$, there exists an $x-y$ path P_{i} containing x_{i} such that P_{i} does not contain z and does not contain any $x_{j}, j \in[r]$ and $j \neq i$. Then there exist two paths $P_{i}, P_{j}, i, j \in[r]$ and $i \neq j$, such that the two paths P_{i}, P_{j} induce a fordan curve separating $\left\{x_{1}, \ldots, x_{r}\right\} \backslash\left\{x_{i}, x_{j}\right\}$ from z.

Proof. We refer to Figure 3 for illustration of the lemma. The proof is by induction on $r \geq 3$. The base case is when $r=3$, see Figure 4 for illustration of this case. Consider the faces induced by the two paths P_{1} and P_{2} in the embedding. If z and x_{3} are in two separate faces, then clearly P_{1} and P_{2} induce a Jordan curve separating x_{3} from z, and we are done. Therefore, we can assume that z and x_{3} are in the same face induced by P_{1} and P_{2}. Since P_{1} does not contain x_{2}, we can continuously deform P_{1} into an isotopic non self-intersecting curve P_{1}^{\prime} w.r.t. x_{3}, x_{2}, z, that contains the edge $x x_{1}$, intersects edges $x x_{2}$ and $x x_{3}$ only at x, and intersects P_{2} only at x and y (see Subfigure 4b). Similarly,

Fig. 3. Illustration of Lemma 3.7. The paths P_{2} and P_{3} (red and blue, respectively) separate z from x_{1}, x_{4}, and x_{5}.

(a) The paths P_{1}, P_{2}, and P_{3} containing x_{1}, x_{2}, and x_{3}, respectively. The points x_{3} and z are not separated by P_{1} and P_{2} and points x_{1} and z are not separated by P_{2} and P_{3}.

(b) Deformation of P_{1} into an isotopic non self-intersecting curve P_{1}^{\prime}.

(c) Deformation of P_{3} into an isotopic non self-intersecting curve P_{3}^{\prime}.

Fig. 4. Illustration of the proof of Lemma 3.7 for 3 paths.
if P_{2} and P_{3} do not separate z from x_{1}, then z and x_{1} are in the same face induced by P_{2} and P_{3} and we can define a curve P_{3}^{\prime} that is isotopic to P_{3} w.r.t. x_{2}, x_{1}, z, and such that P_{3}^{\prime} contains $x x_{3}$, intersects $x x_{2}$ and $x x_{1}$ only at x, and intersects P_{2} only at x and y (see Subfigure 4c). Now if z and x_{2} are in different faces induced by P_{1}^{\prime} and P_{3}^{\prime}, then P_{1}^{\prime} and P_{3}^{\prime} separate z from x_{2}, and since P_{1} is isotopic to P_{1}^{\prime} w.r.t. z and x_{2}, and P_{3}^{\prime} is isotopic to P_{3} w.r.t. z and x_{2}, it follows that P_{1} and P_{3} induce a Jordan curve that separates x_{2} from z. Assume now that z and x_{2} are in the same face f induced by P_{1}^{\prime} and P_{3}^{\prime}. Since P_{2} intersects with each of P_{1}^{\prime} and P_{3}^{\prime} precisely at x and y, it follows that P_{2} splits f into two faces f_{1}, f_{2}, where $x x_{2}, x x_{1}$ are two consecutive edges on the boundary of f_{1} and $x x_{2}, x x_{3}$ are two consecutive edges on the boundary of f_{2}. Then, z must be interior to exactly one of the two faces f_{1}, f_{2}. If z is interior to f_{1}, let f_{1}^{\prime} be the face induced by P_{1}^{\prime} and P_{2} and containing z. Then f_{1}^{\prime} contains f_{1}, and does not contain x_{3} (because P_{1}^{\prime} intersects $x x_{3}$ only at x). Therefore, f_{1}^{\prime}, and hence, P_{1}^{\prime} and P_{2} induce a Jordan curve that separates z from x_{3}. It follows that P_{1}, which is isotopic to P_{1}^{\prime} w.r.t. x_{2}, x_{3}, z, and P_{2} induce a Jordan curve that separates z from x_{3}. Similarly, if z is interior to f_{2}, then P_{3}^{\prime}, P_{2} induce a Jordan curve that separates z from x_{1}, and hence, P_{3} and P_{2} induce a Jordan curve that separates z from x_{1}.

Assume inductively that the statement of the lemma is true for any $3 \leq \ell<r$. By the inductive hypothesis applied to x_{1}, \ldots, x_{r-1}, there exist two paths $P_{i}, P_{j}, i, j \in[r-1]$ and $i \neq j$, such that the two paths P_{i}, P_{j} induce a Jordan curve separating $\left\{x_{1}, \ldots, x_{r-1}\right\} \backslash\left\{x_{i}, x_{j}\right\}$ from z. If x_{r} and z are not in the same face induced by P_{i}, P_{j}, then P_{i}, P_{j} separate x_{r} from z as well, and we are done. Assume now that z and x_{r} are in the same face f induced by P_{i}, P_{j}. Since P_{i}, P_{j} separate z from $\left\{x_{1}, \ldots, x_{r-1}\right\} \backslash\left\{x_{i}, x_{j}\right\}$, none of $\left\{x_{1}, \ldots, x_{r-1}\right\} \backslash\left\{x_{i}, x_{j}\right\}$ is interior to f, and hence, x_{r} is the only neighbor of x between x_{i} and x_{j} w.r.t. the rotation system of G^{\prime}, which implies w.l.o.g. that
$x_{1}=x_{i}$ and $x_{r-1}=x_{j}$. By the inductive hypothesis applied to x_{1}, x_{r-1}, x_{r} there are two paths in P_{1}, P_{r-1}, P_{r} that induce a Jordan curve that separates z from one of x_{1}, x_{r-1}, x_{r}. Since P_{1} and P_{r-1} do not separate x_{r} from z, one of these two path must be P_{r}; assume, w.l.o.g., that the two paths are P_{1} and P_{r}. Since x_{1} and x_{r} are consecutive neighbors in the rotation system, and since P_{1}, P_{r} do not contain any of x_{2}, \ldots, x_{r-1}, it follows that x_{2}, \ldots, x_{r-1} are in the same face induced by P_{1}, P_{r}, and this face does not contain z because P_{1}, P_{r} separate z from x_{r-1}. It follows that P_{1}, P_{r} induce a Jordan curve that separates z from x_{2}, \ldots, x_{r-1}. This completes the inductive proof.

Lemma 3.8. Let G^{\prime} be a plane graph with a face f, and let $u, v \in V\left(G^{\prime}\right)$. Let $u_{1}, \ldots, u_{r}, r \geq 3$, be the neighbors of u. Suppose that, for each $i \in[r]$, there exists $a u-v$ path P_{i} in G^{\prime} containing u_{i} and a vertex incident to f different from v, and such that P_{i} does not contain any $u_{j}, j \in[r], j \neq i$. Then there exist two paths $P_{i}, P_{j}, i, j \in[r], i \neq j$, such that $V\left(P_{i}\right) \cup V\left(P_{j}\right)-\{v\}$ is a vertex-separator separating $\left\{u_{1}, \ldots, u_{r}\right\} \backslash\left\{u_{i}, u_{j}\right\}$ from v.

(a) The u-v paths P_{1}, \ldots, P_{5} containing u_{1}, \ldots, u_{5}, respectively. Each path has a vertex incident to the external face f.

(b) Adding a new vertex y inside f and making it adjacent to a vertex different from v on each P_{i}, results precisely in the situation described by Lemma 3.7, with $u-y$ paths, none of which containing v.

Fig. 5. Illustration of the proof of Lemma 3.8.

Proof. We refer to Figure 5 for illustration. Create a new vertex y interior to f. Each path P_{i}, $i \in[r]$, contains a vertex y_{i} incident to f and different from v; we define a new path P_{i}^{\prime} from u to y, consisting of the prefix of P_{i} up to y_{i}, and extending this prefix by adding a new edge between y_{i} and the new vertex y. Note that we can extend the rotation system of G^{\prime} in a straightforward manner to obtain a rotation system for the plane graph resulting from adding y and the edges $y_{i} y$ to $G^{\prime}, i \in[r]$. Since v is the endpoint of P_{i} and $v \neq y_{i}$, it follows that v is not contained in P_{i}^{\prime}, for $i \in[r]$. By Lemma 3.7, there exist two paths $P_{i}^{\prime}, P_{j}^{\prime}, i, j \in[r]$, and $i \neq j$, such that the two paths $P_{i}^{\prime}, P_{j}^{\prime}$ induce a Jordan curve separating $\left\{u_{1}, \ldots, u_{r}\right\} \backslash\left\{u_{i}, u_{j}\right\}$ from v in $G^{\prime}+y$. It follows that $V\left(P_{i}^{\prime}\right) \cup V\left(P_{j}^{\prime}\right)$ is a vertex-separator separating $\left\{u_{1}, \ldots, u_{r}\right\} \backslash\left\{u_{i}, u_{j}\right\}$ from v in $G^{\prime}+y$, and hence, $V\left(P_{i}^{\prime}\right) \cup V\left(P_{j}^{\prime}\right)-\{y\} \subseteq V\left(P_{i}\right) \cup V\left(P_{j}\right)-\{v\}$ is a vertex-separator separating $\left\{u_{1}, \ldots, u_{r}\right\} \backslash\left\{u_{i}, u_{j}\right\}$ from v in G^{\prime}.

Lemma 3.9. Let x, y be two vertices in an irreducible subgraph G^{\prime} of G, and let f be a face in G^{\prime}. Then there are at most two color-disjoint $x-y$ paths in G^{\prime} that contain only colors that appear on f.

Proof. We refer to Figure 6 for illustration. Suppose, to get a contradiction, that there are three color-disjoint $x-y$ paths P_{1}, P_{2}, P_{3} in G^{\prime} that contain only colors that appear on f. We create a new vertex z interior to f and add edges between z and each vertex incident to f. Note that we can extend the rotation system of G^{\prime} in a straightforward manner to obtain a rotation system for the

Fig. 6. Illustration of Lemma 3.9. Each vertex v_{i}, for $i \in[3]$, has a color that is unique to P_{i}. Hence, the vertex v_{i}, where $i \in\{1,2,3\}$, that is separated from f by the two paths not containing v_{i}, has a color that does not appear on f.
plane graph resulting from adding z and the edges incident to it to G^{\prime}. Clearly, none of P_{1}, P_{2}, P_{3} contains z. Because the paths P_{1}, P_{2}, P_{3} are color-disjoint, both x and y must be empty vertices. Let v_{1}, v_{2}, v_{3} be the neighbors of x on P_{1}, P_{2}, P_{3}, respectively. Since x is an empty vertex and G^{\prime} is irreducible, none of v_{1}, v_{2}, v_{3} is an empty vertex, and hence each $v_{i}, i \in$ [3], must contain a color c_{i} that appears on f. Since P_{1}, P_{2}, P_{3} are pairwise color-disjoint, it follows that no vertex in $\left\{v_{1}, v_{2}, v_{3}\right\} \backslash\left\{v_{i}\right\}$ is contained in P_{i}, for $i \in[3]$. By Lemma 3.7, there is a $v_{i}, i \in[3]$, such that the two paths in $\left\{P_{1}, P_{2}, P_{3}\right\}-P_{i}$ induce a Jordan curve in $G^{\prime}+z$ separating v_{i} and z, and hence separating v_{i} from each vertex incident to f. Since c_{i} appears on both v_{i} and a vertex incident to f, by Observation 3.1, it follows that c_{i} must appear on a vertex in $V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup V\left(P_{3}\right)-V\left(P_{i}\right)$. This is a contradiction since c_{i} appears on P_{i} and the paths P_{1}, P_{2}, P_{3} are pairwise color-disjoint.

Fig. 7. Illustration for the proof of Lemma 3.11. Each of the vertices $v_{1}, \ldots, v_{i}, \ldots, v_{r-1}$ contains at least one color. Moreover, these vertices are pairwise separated by paths Q_{1}, \ldots, Q_{r} that do not contain any color on P_{1} and $\chi\left(v_{i}\right) \cap \chi\left(v_{j}\right)=\emptyset$ for all $i \neq j$.

For the rest of this section, let $u, v, w \in V(G)$, and let \mathcal{P} be a set of minimal k-valid $u-v$ paths in $G-w$. Let \mathcal{M} be a set of minimal k-valid color-disjoint u-v paths in $G-w$, and let M be the subgraph of $G-w$ induced by the edges of the paths in \mathcal{M}.

Observation 3.10. If $P \in \mathcal{M}$ contains a color c that is external to w in M, then c appears on a vertex in P that is incident to the external face to w in M.

Proof. By definition, c appears on a vertex x incident to the external face w.r.t. w in M. Since the paths in \mathcal{M} are pairwise color-disjoint and c appears on P, it follows that x is a vertex of P.

Lemma 3.11. Suppose that M is irreducible, then there exist paths $P_{1}, P_{2}, P_{3} \in \mathcal{M}$ such that M $\left(E\left(P_{1}\right) \cup E\left(P_{2}\right) \cup E\left(P_{3}\right)\right)$ has a u-v vertex-separator of cardinality at most $2 k+3$.

Proof. By Observation 3.5 and Observation 3.2, \mathcal{M} contains at most one path that contains only internal colors w.r.t. w in M. Therefore, it suffices to show that \mathcal{M} contains two paths P_{1}, P_{2} such that $M-\left(E\left(P_{1}\right) \cup E\left(P_{2}\right)\right)$ has a u-v vertex-separator of cardinality at most $2 k+3$, assuming that every path in \mathcal{M} contains an external color w.r.t. w in M.

By Observation 3.10, every path in \mathcal{M} passes through an external vertex w.r.t. w in M that contains an external color to w in M. Because the paths in \mathcal{M} are pairwise color-disjoint and u and v are empty vertices, every path in \mathcal{M} passes through a vertex on the external face of w in M that is different from u and v. Let u_{1}, \ldots, u_{q} be the neighbors of u in M, and note that since u is empty and M is irreducible, each $u_{i}, i \in[q]$, contains a color. Let P_{1}, \ldots, P_{q} be the paths in \mathcal{M} containing u_{1}, \ldots, u_{q}, respectively, and note that since the paths in \mathcal{M} are color-disjoint, no P_{i} passes through u_{j}, for $j \neq i$. By Lemma 3.8, there are two paths in P_{1}, \ldots, P_{q}, say P_{1}, P_{2} without loss of generality, such that $V_{12}=V\left(P_{1}\right) \cup V\left(P_{2}\right)-\{v\}$ is a vertex-separator that separates $\left\{u_{3}, \ldots, u_{q}\right\}$ from v.

We proceed by contradiction and assume that $M^{-}=M-\left(E\left(P_{1}\right) \cup E\left(P_{2}\right)\right)$ does not have a $u-v$ vertex-separator of cardinality $2 k+3$. By Menger's theorem [11], there exists a set \mathcal{D} of $r^{\prime} \geq 2 k+3$ vertex-disjoint u-v paths in M^{-}. Since V_{12} separates $\left\{u_{3}, \ldots, u_{q}\right\}$ from v in M, every $u-v$ path in M^{-}intersects at least one of P_{1}, P_{2} at a vertex other than v. It follows that there exists a path in $\left\{P_{1}, P_{2}\right\}$, say P_{1}, that intersects at least $k+2$ paths in \mathcal{D} at vertices other than v. Since the paths in \mathcal{D} are vertex-disjoint and incident to u, we can order the paths in \mathcal{D} that intersect P_{1} around u (in counterclockwise order) as $\left\langle Q_{1}, \ldots, Q_{r}\right\rangle$, where $r \geq k+2$, and Q_{i+1} is counterclockwise from Q_{i}, for $i \in[r-1] . P_{1}$ intersects each path $Q_{i}, i \in[r]$, possibly multiple times. Moreover, since the paths in \mathcal{M} are pairwise color-disjoint, each intersection between P_{1} and a path $Q_{i}, i \in[r]$, must occur at an empty vertex. We choose $r-1$ subpaths, $P_{1}^{1}, \ldots, P_{1}^{r-1}$, of P_{1} satisfying the property that the endpoints of P_{1}^{i} are on Q_{i} and Q_{i+1}, for $i=1, \ldots, r-1$, and the endpoints of P_{1}^{i} are the only vertices on P_{1}^{i} that appear on a path Q_{j}, for $j \in[r]$. It is easy to verify that the subpaths $P_{1}^{1}, \ldots, P_{1}^{r-1}$ of P_{1} can be formed by following the intersection of P_{1} with the sequence of (ordered) paths Q_{1}, \ldots, Q_{r}. See Figure 7 for illustration.

Recall that the endpoints of $P_{1}^{1}, \ldots, P_{1}^{r-1}$ are empty vertices. Since M is irreducible, no two empty vertices are adjacent, and hence, each subpath P_{1}^{i} must contain an internal vertex v_{i} that contains at least one color. We claim that no two vertices $v_{i}, v_{j}, 1 \leq i<j \leq r-1$, contain the same color. Suppose not, and let $v_{i}, v_{j}, i<j$, be two vertices containing a color c. Since v_{i}, v_{j} are internal to P_{1}^{i} and P_{1}^{j}, respectively, Q_{1}, \ldots, Q_{r} are vertex-disjoint u-v paths, and by the choice of the subpaths $P_{1}^{1}, \ldots, P_{1}^{r-1}$, the paths Q_{i} and Q_{i+1} form a Jordan curve, and hence a vertex-separator in G, separating v_{i} from v_{j}. By Observation 3.1, color c must appear on a vertex in $Q_{p}, p \in\{i, i+1\}$, and this vertex is clearly not in P_{1} since P_{1} intersects Q_{p} at empty vertices. Since every vertex in M appears on a path in \mathcal{M}, and c appears on $P_{1} \in \mathcal{M}$ and on a vertex not in P_{1}, this contradicts that the paths in \mathcal{M} are pairwise color-disjoint, and proves the claim.

Since no two vertices $v_{i}, v_{j}, 1 \leq i<j \leq r$, contain the same color, the number $r-1$ of subpaths $P_{1}^{1}, \ldots, P_{1}^{r-1}$ is upper bounded by the number of distinct colors that appear on P_{1}, which is at most k. It follows that r is at most $k+1$, contradicting our assumption above and proving the lemma.

Lemma 3.12. Let S be a minimal $u-v$ vertex-separator in M. Let M_{u}, M_{v} be a partition of $M-S$ containing u and v, respectively, and such that there is no edge between M_{u} and M_{v}. For any vertex $x \in S, M_{u}$ is contained in a single face of $M_{v}+x$.

Proof. Let $x \in S$. It suffices to show that the subgraph F of M induced by $V\left(M_{u}\right) \cup(S \backslash\{x\})$ is connected. This suffices because $V(F)$ and $V\left(M_{v}+x\right)$ are disjoint, and hence every face in $M_{v}+x$ separates the vertices in $V(F)$ inside the face from those outside of it. We will show that F is connected by showing that there is a path in F from each vertex in F to $u \in V(F)$. Let $z \in V(F)$. If
$z \in S$, then by minimality of S, there is a path from u to z whose internal vertices are all in M_{u}, and hence this path is in F. If $z \notin S$, let P be a $u-v$ path containing z. If P passes through z before passing through any vertex in S, then clearly there is a path from u to z in F. Otherwise, P passes through a vertex $y \in S$ before passing through z. In this case, there exists a vertex $y^{\prime} \in S$, such that $y^{\prime} \neq y$ and P passes through y^{\prime} after passing through z. Either y or y^{\prime}, say y^{\prime}, is different from x. From the above discussion, there is a path P^{\prime} from u to y^{\prime} in F, which when combined with the subpath of P between y^{\prime} and z yields a path from u to z in F.
Lemma 3.13. $|\mathcal{M}| \leq g(k)$, where $g(k)=O\left(c^{k} k^{2 k}\right)$, for some constant $c>1$.
Proof. By Observation 3.5, there can be at most one path in \mathcal{M} that contains only internal colors w.r.t. w in $G-w$. Therefore, it suffices to upper bound the number of paths in \mathcal{M} that contain at least one external color to w in $G-w$. Without loss of generality, in the rest of the proof, we shall assume that \mathcal{M} does not include a path that contains only internal colors w.r.t. w in $G-w$, and upper bound $|\mathcal{M}|$ by $g(k)$; adding 1 to $g(k)$ we obtain an upper bound on $|\mathcal{M}|$ with this assumption lifted. Note that by Observation 3.2, the previous assumption implies that every path in \mathcal{M} contains a color that is external to w in M.

The proof is by induction on k, over every color-connected plane graph G, every triplet of vertices u, v, w in G, and every minimal set \mathcal{M} w.r.t. w of k-valid pairwise color-disjoint u-v paths in $G-w$. If $k=1$, then any path in \mathcal{M} contains exactly one external color w.r.t. w in M. By Lemma 3.9, at most two paths in \mathcal{M} contain only external colors. It follows that for $k=1,|\mathcal{M}| \leq 2 \leq g(1)$, if we choose the hidden constant in the O asymptotic notation to be at least 2 .

Suppose by the inductive hypothesis that for any $1 \leq i<k$, we have $|\mathcal{M}| \leq g(i)$. We can assume that M is irreducible; otherwise, we apply the color contraction operation to any edge $x y$ in \mathcal{M} to which the operation is applicable, and replace \mathcal{M} with the set of paths $\Lambda_{x y}(\mathcal{M})$, which is pairwise color-disjoint, contains the same number of paths as \mathcal{M}, and is minimal w.r.t. w by Lemma 3.6.

By Lemma 3.11, there are at most 3 paths in \mathcal{M}, such that the subgraph of M induced by the remaining paths of \mathcal{M} has a $u-v$ vertex-separator S satisfying $|S| \leq 2 k+3$. To simplify the argument, in what follows, we assume that we already removed these 3 paths from \mathcal{M} and that M already has a $u-v$ vertex-separator S satisfying $|S| \leq 2 k+3$. We will add 3 to the upper bound of $|\mathcal{M}|$ at the end to account for these removed paths. We can assume, without loss of generality, that S is minimal (w.r.t. containment). S separates M into two subgraphs M_{u} and M_{v} such that $u \in V\left(M_{u}\right)$, $v \in V\left(M_{v}\right)$, and there is no edge between M_{u} and M_{v}. We partition \mathcal{M} into the following groups, where each group excludes the paths satisfying the properties of the groups defined before it: (1) The set of paths in \mathcal{M} that contain a nonempty vertex in S; (2) the set of paths \mathcal{M}_{u}^{k} consisting of each path P in \mathcal{M} such that all colors on P appear on vertices in M_{u} (these colors could still appear on vertices in M_{v} as well); (3) the set of paths \mathcal{M}_{v}^{k} consisting of each path P in \mathcal{M} such that all colors on P appear on vertices in M_{v}; and (4) the set $\mathcal{M}^{<k}$ of remaining paths in \mathcal{M}, satisfying that each path contains a nonempty external vertex to w in M and contains less than k colors from each of M_{u} and M_{v}. Note that by Observation 3.10, each path in \mathcal{M} belongs to one of the 4 groups above. For the remainder of the proof, we refer the reader to Figure 8 for illustration.

Since the paths in \mathcal{M} are pairwise color-disjoint, no nonempty vertex in S can appear on two distinct paths from group (1). Therefore, the number of paths in group (1) is at most $|S| \leq 2 k+3$. Observe, that the vertices in S contained in any path in groups (2)-(4) are empty vertices.

To upper bound the number of paths in group (2), for each path P, there is a last vertex x_{P} (i.e., farthest from u) in P that is in S. Fix a vertex $x \in S$, and let us upper bound the number of paths P in group (2) for which $x=x_{P}$. Let P_{v} be the subpath of P from x to v. Note that since v is empty and all the vertices in S that are contained in paths in group (2) are empty, and since M is irreducible, P_{v} must contain at least one color. Since all colors appearing on P appear on vertices in M_{u}, all
colors appearing on P_{v} appear in M_{u}. By Lemma 3.12, M_{u} is contained in a single face f of $M_{v}+x$. Since f is a vertex-separator that separates $V\left(M_{u}\right)$ from $V\left(P_{v}\right)$ in G, by Observation 3.1, every color that appears on P_{v} appears on f. By Lemma 3.9, there are at most two $x-v$ paths that contain only colors that appear on f. This shows that there are at most two paths in group (2) for which x is the last vertex in S. Since $|S| \leq 2 k+3$, this upper bounds the number of paths in group (2) by $2(2 k+3)=4 k+6$. By symmetry, the number of paths in group (3) is upper bounded by $4 k+6$.

Group (1)

Groups (2) and (3)

Group (4)

Fig. 8. Illustration for bounding the number of paths in the different groups in the proof of Lemma 3.13.
Finally, we upper bound the number of paths in group (4). Let $S=\left\{s_{2}, \ldots, s_{r-1}\right\}$, where $r \leq 2 k+5$, and extend S by adding the two vertices $s_{1}=u$ and $s_{r}=v$ to form the set $A=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$. For every two (distinct) vertices $s_{j}, s_{j^{\prime}} \in A, j, j^{\prime} \in[r], j<j^{\prime}$, we define a set of paths $\mathcal{P}_{j j^{\prime}}$ in $G-w$ whose endpoints are s_{j} and $s_{j^{\prime}}$ as follows. For each path P in group (4), partition (the edges in) P into subpaths P_{1}, \ldots, P_{q} satisfying the property that the endpoints of each $P_{i}, i \in[q]$, are in A, and no internal vertex to P_{i} is in A. Since each P is a $u-v$ path, clearly, P can be partitioned as such. For each $P_{i}, i \in[q]$, such that P_{i} contains a vertex that contains an external color to w in $G-w$, let P_{i}^{\prime} (possibly equal to P_{i}) be a subpath in $G-w$ between the endpoints of P_{i} satisfying that $\chi\left(P_{i}^{\prime}\right) \subseteq \chi\left(P_{i}\right)$ and $\chi\left(P_{i}^{\prime}\right)$ is minimal w.r.t. containment (i.e., there does not exist a path $P_{i}^{\prime \prime}$ in $G-w$ between the endpoints of P_{i} satisfying $\left.\chi\left(P_{i}^{\prime \prime}\right) \subsetneq \chi\left(P_{i}^{\prime}\right)\right)$. Since P contains a vertex that contains an external color to w in $G-w$, there exists an $i \in[q]$ such that P_{i}^{\prime} contains a vertex that contains an external color to w in $G-w$; otherwise, by concatenating (in the right sequence) the P_{i} 's that do not contain an external color to w (in $G-w$), with the $P_{i}^{\prime \prime}$'s (instead of the P_{i} 's) of the P_{i} 's that contain an external color to w (in $G-w$), we would obtain a $u-v$ path P^{\prime} in $G-w$ satisfying $\chi\left(P^{\prime}\right) \subsetneq \chi(P)$ (since $\chi\left(P^{\prime}\right) \subseteq \chi(P)$ and P contains an external color to w and P^{\prime} does not), thus contradicting the minimality of \mathcal{M}. Pick any $i \in[q]$ satisfying that P_{i}^{\prime} contains a vertex that contains an external color to w in $G-w$, associate P with P_{i}^{\prime}, and assign P_{i}^{\prime} to the set of paths $\mathcal{P}_{j j^{\prime}}$ such that s_{j} and $s_{j^{\prime}}$ are the endpoints of P_{i}^{\prime}. Since each P_{i}^{\prime} contains an external color that appears on P and the paths in \mathcal{M} are pairwise-color disjoint, it follows that the map that maps each P to its P_{i}^{\prime} is a bijection.

Therefore, to upper bound the number of paths in group (4), it suffices to upper bound the number of paths assigned to the sets $\mathcal{P}_{j j^{\prime}}$, where $j, j^{\prime} \in[r], j<j^{\prime}$. Fix a set $\mathcal{P}_{j j^{\prime}}$. The paths in $\mathcal{P}_{j j^{\prime}}$ have $s_{j}, s_{j^{\prime}}$ as endpoints, and are pairwise color-disjoint. Moreover, each path in $\mathcal{P}_{j j^{\prime}}$ contains a vertex that contains an external color to w in $G-w$. It follows from the previous statements that $\mathcal{P}_{j j^{\prime}}$ satisfies properties (i) and (ii) of Definition 3.4 w.r.t. G and w. Moreover, from the definition of each path in $\mathcal{P}_{j j^{\prime}}, \mathcal{P}_{j j^{\prime}}$ satisfies property (iii) of Definition 3.4 as well. Finally, observe that each path $P_{i}^{\prime} \in \mathcal{P}_{j j^{\prime}}$ was constructed based on a subpath P_{i} of a path P in group 4 , and satisfying that P_{i} has endpoints $s_{j}, s_{j^{\prime}}$ and no internal vertex on P_{i} is in A. Since P is a $u-v$ path in \mathcal{M} and S is a vertex-separator of $M, V\left(P_{i}\right)$ is either contained in $V\left(M_{u}\right) \cup S$ or in $V\left(M_{v}\right) \cup S$. Since P is in group (4), P contains at most $k-1$ colors from each of M_{u} and M_{v}. Since the vertices in S are empty, we deduce that P_{i} contains at most $k-1$ colors. Since $\chi\left(P_{i}^{\prime}\right) \subseteq \chi\left(P_{i}\right), P_{i}^{\prime}$ contains at most $k-1$ colors as well, and hence, every path in $\mathcal{P}_{j j^{\prime}}$ contains at most $k-1$ colors. It follows that $\mathcal{P}_{j j^{\prime}}$ is a minimal
set of $(k-1)$-valid color-disjoint $s_{j}-s_{j^{\prime}}$ paths in $G-w$ w.r.t. w. By the inductive hypothesis, we have $\left|\mathcal{P}_{j j^{\prime}}\right| \leq g(k-1)$. Since the number of sets $\mathcal{P}_{j j^{\prime}}$ is at most $\binom{2 k+5}{2}$, the number of paths in group (4) is $O\left(k^{2}\right) \cdot g(k-1)$.

It follows from the above that $|\mathcal{M}| \leq g(k)$, where $g(k)$ satisfies the recurrence relation $g(k) \leq$ $3+(2 k+3)+2(4 k+6)+O\left(k^{2}\right) \cdot g(k-1)=O\left(k^{2}\right) \cdot g(k-1)$, where 3 accounts for the 3 paths we removed from \mathcal{M} at the beginning of the proof to get a small $u-v$ vertex-separator. Solving the aforementioned recurrence relation gives $g(k)=O\left(c^{k} k^{2 k}\right)$, where $c>1$ is a constant. Adding 1 to $g(k)$ to account for the single path in \mathcal{M} containing only internal colors w.r.t. w in M yields the same asymptotic upper bound.

Theorem 3.14. Let G be a plane color-connected graph, let $u, v, w \in V(G)$, and let \mathcal{P} be a set of minimal k-valid u-v paths w.r.t. w in $G-w$. Then $|\mathcal{P}| \leq h(k)$, where $h(k)=O\left(c^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c>1$.

Proof. The proof is by induction on k. If $k=1$, then by minimality of \mathcal{P}, we have $\mathcal{P}=\mathcal{M}$. Lemma 3.13 gives an upper bound of $O\left(c^{k} k^{2 k}\right)=O\left(c^{k^{2}} k^{2 k^{2}+k}\right)$ on $|\mathcal{P}|$.

Assume by the inductive hypothesis that the statement of the lemma is true for $1 \leq i<k$. Let \mathcal{M} be a maximal set of pairwise color-disjoint paths in \mathcal{P}. By Lemma 3.13, $|\mathcal{M}| \leq g(k)=O\left(c^{k} k^{2 k}\right)$. The number of colors contained in vertices of \mathcal{M} is at most $r \leq k \cdot g(k)$. We group the paths in \mathcal{P} into r groups $\mathcal{P}_{1}, \ldots, \mathcal{P}_{r}$, such that all the paths in $\mathcal{P}_{i}, i \in[r]$, share the same color c_{i}, where $i \in[r]$, that is distinct from each color c_{j} shared by the paths in \mathcal{P}_{j}, for $j \neq i$. We upper bound the number of paths in each $\mathcal{P}_{i}, i \in[r]$, to obtain an upper bound on $|\mathcal{P}|$.

Let G_{i} be the graph obtained by removing color c_{i} from each vertex in G that c_{i} appears on, and let \mathcal{P}_{i}^{\prime} be the set of paths obtained from \mathcal{P}_{i} by removing color c_{i} from each vertex in \mathcal{P}_{i} that c_{i} appears on. Clearly, every path in \mathcal{P}_{i}^{\prime} is a $(k-1)$-valid $u-v$ path. Moreover, it is easy to verify that \mathcal{P}_{i}^{\prime} satisfies properties (i)-(iii) in Definition 3.4, and hence, \mathcal{P}_{i}^{\prime} is minimal w.r.t. w in $G_{i}-w$. By the inductive hypothesis, we have $\left|\mathcal{P}_{i}^{\prime}\right| \leq h(k-1)$. It follows that the total number of paths in \mathcal{P} is at most $h(k)$, where $h(k)$ satisfies the recurrence relation $h(k) \leq r \cdot h(k-1) \leq k \cdot g(k) \cdot h(k-1)$. Solving the aforementioned recurrence relations yields $h(k)=O\left((k \cdot g(k))^{k}\right)=O\left(c^{k^{2}} k^{2 k^{2}+k}\right)$.

The result of Theorem 3.14 will be employed in the next section in the form presented in the following corollary:

Corollary 3.15. Let G be a plane color-connected graph, and let $w \in V(G)$. Let G^{\prime} be a subgraph of $G-w$, and let $u, v \in V\left(G^{\prime}\right)$. Every set \mathcal{P} of minimal k-valid $u-v$ paths in G^{\prime} w.r.t. w satisfies $|\mathcal{P}| \leq h(k)$, where $h(k)=O\left(c^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c>1$.

Proof. Contract every connected component of $(G-w)-G^{\prime}$ into a single vertex containing the union of the color-sets of the vertices in the component, and add $k+1$ new distinct colors to the resulting vertex. Denote the resulting graph by $G^{\prime \prime}$. Observe that the resulting graph is color-connected, and that every k-valid $u-v$ path in G^{\prime} w.r.t. w is a k-valid u-v path in $G^{\prime \prime}$ w.r.t. w, and vice versa. Therefore, every set \mathcal{P} of minimal k-valid u-v paths in G^{\prime} w.r.t. w is also a set of minimal k-valid u-v paths in $G^{\prime \prime}$ w.r.t. w. For any set \mathcal{P} of minimal k-valid u-v paths w.r.t. w in G^{\prime}, by applying Theorem 3.14 to \mathcal{P} in $G^{\prime \prime}-w$, the corollary follows.

4 THE ALGORITHM

In this section, we present an FPT algorithm for Colored Path-Con, parameterized by both k and the treewidth of the input graph. As pointed out in Section 3, there can be too many (i.e., more than FPT-many) subsets of colors that appear in a bag, and hence, that the algorithm may need to store/remember. To overcome this issue, we extend the notion of a minimal set of k-valid u-v paths
w.r.t. a vertex-from the previous section-to a "representative set" of paths w.r.t. a specific bag and a specific enumerated configuration for the bag. This allows us to upper bound the size of the table, in the dynamic programming algorithm, stored at a bag by a function of both k and the treewidth of the graph.

4.1 Representative sets of paths

Let (G, C, χ, s, t, k) be an instance of Colored Path-Con. The algorithm is a dynamic programming algorithm based on a tree decomposition of G. Let $(\mathcal{V}, \mathcal{T})$ be a nice tree decomposition of G. By Assumption 2.2, we can assume that s and t are nonadjacent empty vertices. We add s and t to every bag in \mathcal{T}, and now we have $\{s, t\} \subseteq X_{i}$, for every bag $X_{i} \in \mathcal{T}$. For a bag X_{i}, we say that $v \in X_{i}$ is useful if $|\chi(v)| \leq k$. Let U_{i} be the set of all useful vertices in X_{i} and let $\overline{U_{i}}=X_{i} \backslash U_{i}$. We denote by V_{i} the set of vertices in the bags of the subtree of \mathcal{T} rooted at X_{i}. For any two vertices $u, v \in X_{i}$, let $G_{u v}^{i}=G\left[\left(V_{i} \backslash X_{i}\right) \cup\{u, v\}\right]$. We extend the notion of a minimal set of k-valid $u-v$ paths w.r.t. a vertex, developed in the previous section, to the set of vertices in a bag of \mathcal{T}.

Definition 4.1. A set of k-valid $u-v$ paths $\mathcal{P}_{u v}$ in $G_{u v}^{i}$ is minimal w.r.t. X_{i} if it satisfies the following properties:
(i) There do not exist two paths $P_{1}, P_{2} \in \mathcal{P}_{u v}$ such that $\chi\left(P_{1}\right) \cap \chi\left(X_{i}\right)=\chi\left(P_{2}\right) \cap \chi\left(X_{i}\right)$;
(ii) there do not exist two paths $P_{1}, P_{2} \in \mathcal{P}_{u v}$ such that $\chi\left(P_{1}\right) \subseteq \chi\left(P_{2}\right)$; and
(iii) for any $P \in \mathcal{P}_{u v}$ there does not exist a $u-v$ path P^{\prime} in $G_{u v}^{i}$ such that $\chi\left(P^{\prime}\right) \subsetneq \chi(P)$.

The following lemma uses the upper bound on the cardinality of a minimal set of k-valid $u-v$ paths w.r.t. a vertex, derived in Corollary 3.15 in the previous section, to obtain an upper bound on the cardinality of a minimal set of k-valid u-v paths w.r.t. a bag of \mathcal{T} :

Lemma 4.2. Let X_{i} be bag, $u, v \in X_{i}$, and $\mathcal{P}_{u v}$ a set of k-valid $u-v$ paths in $G_{u v}^{i}$ that is minimal w.r.t. X_{i}. Then the number of paths in $\mathcal{P}_{u v}$ is at most $h(k)^{\left|X_{i}\right|}$, where $h(k)=O\left(c^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant c >1.

Proof. Let $X_{i} \backslash\{u, v\}=\left\{w_{1}, \ldots, w_{r}\right\}$, where $r=\left|X_{i}\right|-2$. For each $w_{j} \in X_{i}, j \in[r]$, let \mathcal{P}_{j} be a minimal set of k-valid u-v paths w.r.t. w_{j} in $G_{u v}^{i}$. Without loss of generality, we can pick \mathcal{P}_{j} such that there is no k-valid $u-v$ path P in $G_{u v}^{i}$ such that $\mathcal{P}_{j} \cup\{P\}$ is minimal. From Corollary 3.15, we have $\left|\mathcal{P}_{j}\right| \leq h(k)=O\left(c^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c>1$. For each $P \in \mathcal{P}_{u v}$, and each $j \in[r]$, define $C_{j}=\chi(P) \cap \chi\left(w_{j}\right)$. Define the signature of P (w.r.t. the colors of w_{1}, \ldots, w_{r}) to be the tuple $\left(C_{1}, \ldots, C_{r}\right)$. Observe that no two (distinct) paths $P_{1}, P_{2} \in \mathcal{P}_{u v}$ have the same signature; otherwise, since u and v appear on both $P_{1}, P_{2}, \chi\left(P_{1}\right) \cap \chi\left(X_{i}\right)=\chi\left(P_{2}\right) \cap \chi\left(X_{i}\right)$, which contradicts condition (i) of the minimality of $\mathcal{P}_{u v}$. For each $P \in \mathcal{P}_{u v}$, and each $j \in[r]$, there is a path $P^{\prime} \in \mathcal{P}_{j}$ such that $\chi\left(P^{\prime}\right) \cap \chi\left(w_{j}\right)=C_{j}$. If this were not true, then P would have been added to \mathcal{P}_{j} for the following reasons. Clearly, P does not contradict conditions (i) and (iii) of the minimality of \mathcal{P}_{j}. It cannot contradict (ii) either, because otherwise, and since P does not contradict (i), there would be a path $P^{\prime \prime} \in \mathcal{P}_{j}$ such that either $\chi\left(P^{\prime \prime}\right) \subsetneq \chi(P)$ or $\chi(P) \subsetneq \chi\left(P^{\prime \prime}\right)$, contradicting the minimality of $\mathcal{P}_{u v}$ or \mathcal{P}_{j}, respectively. It follows that the number of signatures of paths in $\mathcal{P}_{u v}$ is at most $\prod_{j=1}^{r}\left|\mathcal{P}_{j}\right| \leq h(k)^{\left|X_{i}\right|}$. Since no two distinct paths in $\mathcal{P}_{u v}$ have the same signature, it follows that $\left|\mathcal{P}_{u v}\right| \leq h(k)^{\left|X_{i}\right|}$.

Definition 4.3. Let X_{i} be a bag in \mathcal{T}. A pattern π for X_{i} is a sequence $\left(v_{1}=s, \sigma_{1}, v_{2}, \sigma_{2}, \ldots, \sigma_{r-1}, v_{r}=t\right)$, where $\sigma_{i} \in\{0,1\}$ and $v_{i} \in U_{i}$. For a bag X_{i}, and a pattern $\left(v_{1}=s, \sigma_{1}, v_{2}, \sigma_{2}, \ldots, \sigma_{r-1}, v_{r}=t\right)$ for X_{i}, we say that a sequence of walks $\mathcal{S}=\left(W_{1}, \ldots, W_{r-1}\right)$ conforms to (X_{i}, π) if:

- For each $j \in[r-1], \sigma_{j}=1$ implies that W_{j} is a walk from v_{j} to v_{j+1} whose internal vertices are contained in $V_{i} \backslash X_{i}$ and W_{j} is empty otherwise; and
- $|\chi(\mathcal{S})|=\left|\bigcup_{j \in[r-1]} \chi\left(W_{j}\right)\right| \leq k$.

Definition 4.4. Let X_{i} be a bag, π a pattern for X_{i}, and $\mathcal{S}_{1}, \mathcal{S}_{2}$ two sequences of walks that conform to $\left(X_{i}, \pi\right)$. We write $\mathcal{S}_{1} \leq_{i} \mathcal{S}_{2}$ if $\left|\chi\left(\mathcal{S}_{1}\right) \cup\left(\chi\left(\mathcal{S}_{2}\right) \cap \chi\left(X_{i}\right)\right)\right| \leq\left|\chi\left(\mathcal{S}_{2}\right)\right|$.

Lemma 4.5. Let X_{i} be a bag and π a pattern for X_{i}. The relation \leq_{i} is a transitive relation on the set of all sequences of walks that conform to $\left(X_{i}, \pi\right)$.

Proof. Let $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}$ be three sequences that conform to (X_{i}, π). Suppose that $\mathcal{S}_{1} \leq_{i} \mathcal{S}_{2}$ and $\mathcal{S}_{2} \leq_{i} \mathcal{S}_{3}$. We need to show that $\mathcal{S}_{1} \leq_{i} \mathcal{S}_{3}$. To simplify the notation in the proof, let $A=\chi\left(S_{1}\right), B=$ $\chi\left(S_{2}\right), C=\chi\left(S_{3}\right), X=X_{i}$. Since $\mathcal{S}_{1} \leq_{i} \mathcal{S}_{2}$, we have

$$
\begin{align*}
|A \cup B \cap X| & \leq|B| \\
|A|+|B \cap X|-|A \cap B \cap X| & \leq|B|, \tag{1}
\end{align*}
$$

and since $\mathcal{S}_{2} \leq_{i} \mathcal{S}_{3}$ we have:

$$
\begin{align*}
|B \cup C \cap X| & \leq|C| \\
|B|+|C \cap X|-|B \cap C \cap X| & \leq|C| . \tag{2}
\end{align*}
$$

From Inequalities (1) and (2) we get:

$$
\begin{aligned}
|A|+|B \cap X|+|C \cap X|-|A \cap B \cap X|-|B \cap C \cap X| & \leq|C| \\
|A|+|B \cap X|+|C \cap X|-(|A \cap B \cap X|+|B \cap C \cap X|-|A \cap B \cap C \cap X|+|A \cap B \cap C \cap X|) & \leq|C| \\
|A|+|B \cap X|+|C \cap X|-(|A \cap B \cap X \cup B \cap C \cap X|+|A \cap B \cap C \cap X|) & \leq|C| \\
|A|+|B \cap X|+|C \cap X|-(|(A \cup C) \cap(B \cap X)|+|A \cap B \cap C \cap X|) & \leq|C| \\
|A|+|B \cap X|+|C \cap X|-(|B \cap X|+|A \cap B \cap C \cap X|) & \leq|C| \\
|A|+|C \cap X|-|A \cap B \cap C \cap X| & \leq|C| \\
|A|+|C \cap X|-|A \cap C \cap X| & \leq|C| .
\end{aligned}
$$

The last inequality proves that $\mathcal{S}_{1} \leq_{i} \mathcal{S}_{3}$.

Using the relation \leq_{i} on the set of sequences that conform to $\left(X_{i}, \pi\right)$, we are now ready to define the key notion of representative sets that makes the dynamic programming approach work:

Definition 4.6. Let X_{i} be a bag and $\pi=\left(v_{1}, \sigma_{1}, v_{2} \ldots, \sigma_{r-1}, v_{r}\right)$ a pattern for X_{i}. A set \mathcal{R}_{π} of sequences of paths ${ }^{2}$ that conform to $\left(X_{i}, \pi\right)$ is a representative set for $\left(X_{i}, \pi\right)$ if:
(i) For every sequence $\mathcal{S}_{1} \in \mathcal{R}_{\pi}$, and for every sequence $\mathcal{S}_{2} \neq \mathcal{S}_{1}$ that conforms to (X_{i}, π), if $\mathcal{S}_{1} \leq_{i} \mathcal{S}_{2}$ then $\mathcal{S}_{2} \notin \mathcal{R}_{\pi}$;
(ii) for every sequence $\mathcal{S} \in \mathcal{R}_{\pi}$, and for every path $P \in \mathcal{S}$ between v_{j} and $v_{j+1}, j \in[r-1]$, there does not exist a $v_{j}-v_{j+1}$ path P^{\prime} in $G_{v_{j} v_{j+1}}^{i}$ such that $\chi\left(P^{\prime}\right) \subsetneq \chi(P)$; and
(iii) for every sequence of paths $\mathcal{S} \notin \mathcal{R}_{\pi}$ that conforms to $\left(X_{i}, \pi\right)$ and satisfies that no two paths in \mathcal{S} share a vertex that is not in X_{i}, there is a sequence $\mathcal{W} \in \mathcal{R}_{\pi}$ such that $\mathcal{W} \leq_{i} \mathcal{S}$.

Observation 4.7. Let X_{i} and X_{j} be two bags such that $X_{i} \subseteq X_{j}$, let π be a pattern for both X_{i} and X_{j}, and let $\mathcal{S}, \mathcal{S}^{\prime}$ be two sequences of walks that conform to both $\left(X_{i}, \pi\right)$ and $\left(X_{j}, \pi\right)$. If $\mathcal{S} \leq_{j} \mathcal{S}^{\prime}$ then $\mathcal{S} \leq_{i} \mathcal{S}^{\prime}$.

[^2]Proof. Since $X_{i} \subseteq X_{j}$, we have $\left|\chi(\mathcal{S}) \cup \chi\left(\mathcal{S}^{\prime}\right) \cap \chi\left(X_{i}\right)\right| \leq\left|\chi(\mathcal{S}) \cup \chi\left(\mathcal{S}^{\prime}\right) \cap \chi\left(X_{j}\right)\right|$.
Lemma 4.8. Let X_{i} be a bag, π a pattern for X_{i}, and $\mathcal{S}_{1}, \mathcal{S}_{1}^{\prime}, \mathcal{S}_{2}, \mathcal{S}_{2}^{\prime}, \mathcal{S}, \mathcal{S}^{\prime}$ sequences of walks that conform to $\left(X_{i}, \pi\right)$ and that satisfy the following: $\mathcal{S}_{1}^{\prime} \leq_{i} \mathcal{S}_{1}, \mathcal{S}_{2}^{\prime} \leq_{i} \mathcal{S}_{2}, \chi\left(\mathcal{S}_{1}\right) \cup \chi\left(\mathcal{S}_{2}\right)=\chi(\mathcal{S})$, $\chi\left(\mathcal{S}_{1}^{\prime}\right) \cup \chi\left(\mathcal{S}_{2}^{\prime}\right)=\chi\left(\mathcal{S}^{\prime}\right)$, and $\chi\left(\mathcal{S}_{1}\right) \cap \chi\left(\mathcal{S}_{2}\right) \subseteq \chi\left(X_{i}\right)$. Then $\mathcal{S}^{\prime} \leq_{i} \mathcal{S}$.

Proof. Let $A=\chi\left(\mathcal{S}_{1}\right), B=\chi\left(\mathcal{S}_{2}\right), C=\chi(\mathcal{S}), A^{\prime}=\chi\left(\mathcal{S}_{1}^{\prime}\right), B^{\prime}=\chi\left(\mathcal{S}_{2}^{\prime}\right), C^{\prime}=\chi\left(\mathcal{S}^{\prime}\right)$, and $X=\chi\left(X_{i}\right)$. Since $\mathcal{S}_{1}^{\prime} \preceq_{i} \mathcal{S}_{1}$ we have:

$$
\begin{align*}
\left|A^{\prime} \cup A \cap X\right| & \leq|A| \\
\left|A^{\prime}\right|+|A \cap X|-\left|A^{\prime} \cap A \cap X\right| & \leq|A| \tag{3}
\end{align*}
$$

Since $\mathcal{S}_{2}^{\prime} \leq_{i} \mathcal{S}_{2}$ we have:

$$
\begin{align*}
\left|B^{\prime} \cup B \cap X\right| & \leq|B| \\
\left|B^{\prime}\right|+|B \cap X|-\left|B^{\prime} \cap B \cap X\right| & \leq|B| \tag{4}
\end{align*}
$$

Adding Inequality (3) to (4) and subtracting $|A \cap B|$ from each side of the resulting inequality, we obtain:

$$
\begin{equation*}
\left|A^{\prime}\right|+\left|B^{\prime}\right|+|A \cap X|+|B \cap X|-\left|A^{\prime} \cap A \cap X\right|-\left|B^{\prime} \cap B \cap X\right|-|A \cap B| \leq|A \cup B| \tag{5}
\end{equation*}
$$

Replacing in the last Inequality (5) $\left|A^{\prime}\right|+\left|B^{\prime}\right|$ by $\left|A^{\prime} \cup B^{\prime}\right|+\left|A^{\prime} \cap B^{\prime}\right|$, and $|A \cap X|+|B \cap X|$ by $|(A \cup B) \cap X|+|A \cap B \cap X|$, observing that $A \cap B \cap X=A \cap B$ (because $A \cap B \subseteq X$), and simplifying, we get:

$$
\begin{array}{r}
\left|A^{\prime} \cup B^{\prime}\right|+|(A \cup B) \cap X|+\left|A^{\prime} \cap B^{\prime}\right|-\left|A^{\prime} \cap A \cap X\right|-\left|B^{\prime} \cap B \cap X\right| \leq|A \cup B| \\
\left|\left(A^{\prime} \cup B^{\prime}\right) \cup(A \cup B) \cap X\right|+\left|\left(A^{\prime} \cup B^{\prime}\right) \cap(A \cup B) \cap X\right|+\left|A^{\prime} \cap B^{\prime}\right|-\left|A^{\prime} \cap A \cap X\right|-\left|B^{\prime} \cap B \cap X\right| \leq|A \cup B| .
\end{array}
$$

Replacing $-\left|A^{\prime} \cap A \cap X\right|-\left|B^{\prime} \cap B \cap X\right|$ in the last inequality with $-\left(\left|\left(A^{\prime} \cap A \cup B^{\prime} \cap B\right) \cap X\right|+\right.$ $\left.\left|A^{\prime} \cap A \cap B^{\prime} \cap B \cap X\right|\right)=-\left(\left|\left(A^{\prime} \cap A \cup B^{\prime} \cap B\right) \cap X\right|+\left|A^{\prime} \cap A \cap B^{\prime} \cap B\right|\right)$ (because $A \cap B \subseteq X$), and observing that $\left|\left(A^{\prime} \cap A \cup B^{\prime} \cap B\right) \cap X\right| \leq\left|\left(A^{\prime} \cup B^{\prime}\right) \cap(A \cup B) \cap X\right|$, and $\left|A^{\prime} \cap A \cap B^{\prime} \cap B\right| \leq\left|A^{\prime} \cap B^{\prime}\right|$, we conclude that:

$$
\begin{equation*}
\left|\left(A^{\prime} \cup B^{\prime}\right) \cup(A \cup B) \cap X\right| \leq|A \cup B| \tag{6}
\end{equation*}
$$

Inequality (6) establishes that $\mathcal{S}^{\prime} \leq_{i} \mathcal{S}$.
Lemma 4.9. Let X_{i} be bag, π a pattern for X_{i}, and \mathcal{R}_{π} be a representative set for $\left(X_{i}, \pi\right)$. Then the number of sequences in \mathcal{R}_{π} is at most $h(k)^{\left|X_{i}\right|^{2}}$, where $h(k)=O\left(c^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c>1$.

Proof. Let $\pi=\left(v_{1}=s, \sigma_{1}, v_{2}, \sigma_{2}, \ldots, \sigma_{r-1}, v_{r}=t\right)$ and let v_{j} and v_{j+1} be two consecutive vertices in π such that $\sigma_{j}=1$. For each $j \in[r-1]$ such that $\sigma_{j}=1$, let \mathcal{P}_{j} be a minimal set of k-valid $v_{j}-$ v_{j+1} paths w.r.t. X_{i}. Without loss of generality, we can pick \mathcal{P}_{j} such that there is no k-valid $u-v$ path P in $G_{v_{j} v_{j+1}}^{i}$ such that $\mathcal{P}_{j} \cup\{P\}$ is minimal w.r.t. X_{i}. From Lemma 4.2, it follows that $\left|\mathcal{P}_{j}\right| \leq h(k)^{\left|X_{i}\right|}$, where $h(k)=O\left(c^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c>1$. For a sequence $\mathcal{S}=\left(P_{1}, \ldots, P_{r-1}\right)$ in \mathcal{R}_{π}, we define the signature of \mathcal{S} (w.r.t. X_{i}) to be the tuple $\left(\chi\left(P_{1}\right) \cap \chi\left(X_{i}\right), \ldots, \chi\left(P_{r-1}\right) \cap \chi\left(X_{i}\right)\right)$. Observe that if \mathcal{S}_{1} and \mathcal{S}_{2} have the same signature w.r.t. X_{i}, then $\chi\left(\mathcal{S}_{1}\right) \cup\left(\chi\left(\mathcal{S}_{2}\right) \cap \chi\left(X_{i}\right)\right)=\chi\left(\mathcal{S}_{1}\right)$ and $\chi\left(\mathcal{S}_{2}\right) \cup\left(\chi\left(\mathcal{S}_{1}\right) \cap \chi\left(X_{i}\right)\right)=\chi\left(\mathcal{S}_{2}\right)$; hence, either $\mathcal{S}_{1} \leq_{i} \mathcal{S}_{2}$ or $\mathcal{S}_{2} \leq_{i} \mathcal{S}_{1}$. It follows from property (i) of representative sets that no two sequences in \mathcal{R}_{π} have the same signature w.r.t. X_{i}. Now let $\mathcal{S}=\left(P_{1}, \ldots, P_{r-1}\right)$ be a sequence in \mathcal{R}_{π} with a signature $\left(C_{1}, \ldots, C_{r-1}\right)$. Note that if $C_{j} \neq \emptyset$, then P_{j}
is not the empty path, and hence $\sigma_{j}=1$. We show that for each $j \in[r-1]$ such that $C_{j} \neq \emptyset$, there is a path $P \in \mathcal{P}_{j}$ such that $\chi(P) \cap \chi\left(X_{i}\right)=C_{j}$. Suppose, for a contradiction, that this is not the case. Then for some $j \in[r-1]$ such that $C_{j} \neq \emptyset$, there is no path $P \in \mathcal{P}_{j}$ such that $\chi(P) \cap \chi\left(X_{i}\right)=C_{j}$. Clearly, $P_{j} \notin \mathcal{P}_{j}$, and therefore, by our choice of \mathcal{P}_{j}, the set $\mathcal{P}_{j} \cup\left\{P_{j}\right\}$ is not a minimal set w.r.t. X_{i}. By assumption, $\mathcal{P}_{j} \cup\left\{P_{j}\right\}$ does not contradict property (i) in the definition of minimal set of paths w.r.t. X_{i}. Moreover, since $\mathcal{S} \in \mathcal{R}_{\pi}$, it follows from property (ii) of representative sets that P_{j}, and hence $\mathcal{P}_{j} \cup\left\{P_{j}\right\}$, satisfies property (iii) of minimal set of paths w.r.t. X_{i}. Therefore, $\mathcal{P}_{j} \cup\left\{P_{j}\right\}$ has to contradict property (ii) in the definition of minimal set of paths w.r.t. X_{i}, and there are two paths $Q_{1}, Q_{2} \in \mathcal{P}_{j} \cup\left\{P_{j}\right\}$ such that $\chi\left(Q_{1}\right) \subseteq \chi\left(Q_{2}\right)$. However, if $\chi\left(Q_{1}\right)=\chi\left(Q_{2}\right)$, then Q_{1} and Q_{2} contradict property (i) of a minimal set of paths w.r.t. X_{i}, and if $\chi\left(Q_{1}\right) \subsetneq \chi\left(Q_{2}\right)$, then Q_{2} contradicts property (iii), and we already established that $\mathcal{P}_{j} \cup\left\{P_{j}\right\}$ satisfies properties (i) and (iii). Therefore, $\mathcal{P}_{j} \cup\left\{P_{j}\right\}$ is a set of minimal paths w.r.t. X_{i}, which is a contradiction. We conclude that, for each $j \in[r-1]$ such that $C_{j} \neq \emptyset$, there is a path $P \in \mathcal{P}_{j}$ such that $\chi(P) \cap \chi\left(X_{i}\right)=C_{j}$. It follows that the number of signatures of paths in $\mathcal{P}_{u v}$ is at most $\prod_{j=1}^{r-1}\left|\mathcal{P}_{j}\right| \leq h(k)^{\left|X_{i}\right|^{2}}$. Since no two distinct sequences in \mathcal{R}_{π} have the same signature, it follows that $\left|\mathcal{R}_{\pi}\right| \leq h(k)^{\left|X_{i}\right|^{2}}$.

For two vertices $u, v \in X_{i}$ and two $u-v$ walks W, W^{\prime} in $G_{u v}^{i}$, we say that W^{\prime} refines W if $\chi\left(W^{\prime}\right) \subseteq \chi(W)$. For two sequences $\mathcal{S}=\left(W_{1}, \ldots, W_{r-1}\right)$ and $\mathcal{S}^{\prime}=\left(W_{1}^{\prime}, \ldots, W_{r-1}^{\prime}\right)$ of walks that conform to $\left(X_{i}, \pi\right)$, we say that \mathcal{S}^{\prime} refines \mathcal{S} if each walk W_{j}^{\prime} refines W_{j}, for $j \in[r-1]$.

Lemma 4.10. Let X_{i} be a bag, $\pi=\left(v_{1}=s, \sigma_{1}, v_{2}, \sigma_{2}, \ldots, \sigma_{r-1}, v_{r}=t\right)$ a pattern for X_{i}, and $\mathcal{W}=\left(W_{1}, \ldots, W_{r-1}\right)$ a sequence of walks, where each W_{j} is a walk between vertices v_{j} and v_{j+1} in $G_{v_{j} v_{j+1}}^{i}$ satisfying $\chi\left(W_{j}\right) \leq k$. Then in time $O^{*}\left(2^{k}\right)$ we can compute a sequence $\mathcal{S}=\left(P_{1}, \ldots, P_{r-1}\right)$ of induced paths, where each P_{j} is an induced path between vertices v_{j} and v_{j+1} in $G_{v_{j} v_{j+1}}^{i}$ such that $\chi\left(P_{j}\right) \subseteq \chi\left(W_{j}\right)$, for $j \in[r-1]$, and such that \mathcal{S} satisfies property (ii) of representative sets.

Proof. For each walk $W_{j}, j \in[r-1]$, we do the following. For each subset $C^{\prime} \subseteq \chi\left(W_{j}\right)$ considered in a nondecreasing order of cardinality, we form the subgraph G^{\prime} from $G_{v_{j} v_{j+1}}^{i}$ by removing every vertex x in $G_{v_{j} v_{j+1}}^{i}$ that does not satisfy $\chi(x) \subseteq C^{\prime}$. We then check if there is a $v_{j}-v_{j+1}$ induced path in G^{\prime}, and set P_{j} to this path if it exists. It is clear that the path P_{j} satisfies $\chi\left(P_{j}\right) \subseteq \chi\left(W_{j}\right)$ and that the sequence $\mathcal{S}^{\prime}=\left(P_{1}, \ldots, P_{r-1}\right)$ conforms to π w.r.t. X_{i} and satisfies property (ii) of representative sets. Since each W_{j} satisfies $\chi\left(W_{j}\right) \leq k$, we can enumerate all subsets of $\chi\left(W_{j}\right)$ in time $O^{*}\left(2^{k}\right)$. Since checking if there is an induced $v_{j}-v_{j+1}$ path in G^{\prime} takes polynomial time, it follows that computing P_{j} from W_{j} takes $O^{*}\left(2^{k}\right)$, and so does the computation of \mathcal{S}.

For a bag X_{i}, pattern π for X_{i}, and a set of sequences \mathcal{R} that conform to (X_{i}, π), we define the procedure Refine(), given below, that takes a set \mathcal{W} of sequences of walks and outputs a set
\mathcal{R}^{\prime} of sequences of paths that conform to $\left(X_{i}, \pi\right)$, and does not violate properties (i) and (ii) of representative sets:

```
ALGORITHM 1: The procedure Refine()
Data: A set \(\mathcal{W}\) of sequences of walks
Result: a set \(\mathcal{R}^{\prime}\) of sequences of paths
1. For each sequence \(\mathcal{S}\) in \(\mathcal{W}\), compute a sequence \(\mathcal{S}^{\prime}\) that refines \(\mathcal{S}\) and satisfies property (ii) of
    representative sets (using Lemma 4.10), and replace \(\mathcal{S}\) with \(\mathcal{S}^{\prime}\) in \(\mathcal{W}\);
2. \(\mathcal{R}^{\prime}:=\emptyset\);
3. Order the sequences in \(\mathcal{W}\) w.r.t. the relation \(\leq_{i}\), where ties are broken arbitrarily \({ }^{3}\);
4. for each sequence \(\mathcal{S}_{p}\) in \(\mathcal{W}\) considered in order do
    Add \(\mathcal{S}_{p}\) to \(\mathcal{R}^{\prime}\) if there is no sequence \(\mathcal{S}\) already in \(\mathcal{R}^{\prime}\) such that \(\mathcal{S} \leq_{i} \mathcal{S}_{p}\);
end
5. Output \(\mathcal{R}^{\prime}\).
```

Lemma 4.11. Let X_{i} be a bag, $\pi=\left(v_{1}=s, \sigma_{1}, v_{2}, \sigma_{2}, \ldots, \sigma_{r-1}, v_{r}=t\right)$ a pattern for X_{i}, and $\mathcal{W}=\left(W_{1}, \ldots, W_{r-1}\right)$ a sequence of walks, where each W_{j}, for $j \in[r-1]$, is a walk between vertices v_{j} and v_{j+1} in $G_{v_{j} v_{j+1}}^{i}$ satisfying $\chi\left(W_{j}\right) \leq k$. The procedure $\operatorname{Refine()}$) on input \mathcal{W} produces a set \mathcal{R}^{\prime} of sequences of paths that conform to (X_{i}, π) satisfying properties (i) and (ii) of representative sets, and such that, for each sequence $\mathcal{S} \in \mathcal{W}$, there is a sequence $\mathcal{S}^{\prime} \in \mathcal{R}^{\prime}$ satisfying $\mathcal{S}^{\prime} \leq_{i} \mathcal{S}$. Moreover, the procedure runs in time $O^{*}\left(2^{k}|\mathcal{W}|+|\mathcal{W}|^{2}\right)$.

Proof. From Lemma 4.10, it follows that the step 1 can be implemented in overall time of $O^{*}\left(2^{k}|\mathcal{W}|\right)$ and afterwards, every sequence in \mathcal{W} satisfies property (ii) of representative sets. To prove that property (i) of representative sets is satisfied, assume to get a contradiction that there are two sequences \mathcal{S}_{1} and \mathcal{S}_{2} in \mathcal{W} such that $\mathcal{S}_{1} \leq_{i} \mathcal{S}_{2}$ and \mathcal{S}_{1} and \mathcal{S}_{2} are both in \mathcal{R}^{\prime}. From step 4 in the algorithm, since $\mathcal{S}_{1} \leq_{i} \mathcal{S}_{2}, \mathcal{S}_{2}$ must appear before \mathcal{S}_{1} in the ordering, which implies that $\mathcal{S}_{2} \leq_{i} \mathcal{S}_{1}$. This is a contradiction, since in this case \mathcal{S}_{1} would not be added to \mathcal{R}^{\prime}. Now if a sequence \mathcal{S} is not added to \mathcal{R}^{\prime}, then from step 4 in the algorithm, \mathcal{R}^{\prime} already contains a sequence \mathcal{S}^{\prime} such that $\mathcal{S}^{\prime} \leq_{i} \mathcal{S}$. Finally, it is easy to see that we can implement step 4 in $O^{*}\left(|\mathcal{W}|^{2}\right)$ time, and the lemma follows.

4.2 The dynamic programming algorithm

For each bag X_{i}, the algorithm maintains a table Γ_{i} that contains, for each pattern π for X_{i}, a representative set $\Gamma_{i}[\pi]$ for $\left(X_{i}, \pi\right)$. We describe next how to update the table stored at a bag X_{i}, based on the tables stored at its children in \mathcal{T}. We distinguish the following cases based on the type of bag X_{i}.

If a bag X_{i} is a leaf in \mathcal{T}, then $X_{i}=V_{i}=\{s, t\}$, and there are only two patterns $(s, 0, t)$ and $(s, 1, t)$ for X_{i}. Clearly, the only sequence that conforms to $(s, 0, t)$ is the sequence (()) containing exactly one empty path. Moreover, there is no edge $s t \in E(G)$. Therefore, there is no sequence that conforms to ($s, 1, t$), and the following claim holds:

Claim 2. If a bag X_{i} is a leaf in \mathcal{T}, then $\Gamma_{i}=\{((s, 0, t),\{(())\}),((s, 1, t), \emptyset)\}$ contains, for each pattern for X_{i}, a representative set for $\left(X_{i}, \pi\right)$.

Case 1. X_{i} is an introduce node with child X_{j}. Let $X_{i}=X_{j} \cup\{v\}$.
For every pattern π for X_{i} that does not contain v, we set $\Gamma_{i}[\pi]=\Gamma_{j}[\pi]$.

[^3]Now let $\pi=\left(v_{1}=s, \sigma_{1}, v_{2}, \sigma_{2}, \ldots, \sigma_{r-1}, v_{r}=t\right)$ be a pattern such that $v_{q}=v, q \in\{2, \ldots, r-1\}$, and let $\pi^{\prime}=\left(v_{1}, \sigma_{1}, \ldots v_{q-1}, 0, v_{q+1}, \sigma_{q+1}, \ldots, \sigma_{r-1}, v_{r}\right)$. Note that since X_{j} is a separator between v and V_{j}, the only possibility for a path from v to a different vertex in X_{i} to have all internal vertices in $V_{i} \backslash X_{i}$ is if it is a direct edge. Therefore, if $\sigma_{q-1}=1$ (resp. $\sigma_{q}=1$) then $v_{q-1} v\left(\right.$ resp. $\left.v_{q} v\right)$ is an edge in G. Otherwise, there is no sequence that conforms to $\left(X_{i}, \pi\right)$.

We obtain $\Gamma_{i}[\pi]$ from $\Gamma_{j}\left[\pi^{\prime}\right]$ as follows. For every $\mathcal{S}^{\prime}=\left(P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{r-2}^{\prime}\right) \in \Gamma_{j}\left[\pi^{\prime}\right]$, we replace the empty path corresponding to 0 between v_{q-1} and v_{q+1} in π^{\prime} by two paths P_{q-1}, P_{q} such that $P_{q-1}=()\left(\right.$ resp. $\left.P_{q}=()\right)$ if $\sigma_{q-1}=0\left(\right.$ resp. $\left.\sigma_{q}=0\right)$ and $P_{q-1}=\left(v_{q-1}, v\right)\left(\right.$ resp. $\left.P_{q-1}=\left(v, v_{q}\right)\right)$ otherwise and we obtain $\mathcal{S}=\left(P_{1}^{\prime}, \ldots, P_{q-2}^{\prime}, P_{q-1}, P_{q}, P_{q}^{\prime}, \ldots, P_{r-2}^{\prime}\right)$. Denote by \mathcal{R}_{π} the set of all formed sequences \mathcal{S}. Finally, we set $\Gamma_{i}[\pi]=\operatorname{Refine}\left(\mathcal{R}_{\pi}\right)$. We claim that $\Gamma_{i}[\pi]$ is a representative set for $\left(X_{i}, \pi\right)$.

Claim 3. If X_{i} is an introduce node with child X_{j}, and Γ_{j} contains for each pattern π^{\prime} for X_{j} a representative set for $\left(X_{j}, \pi^{\prime}\right)$, then $\Gamma_{i}[\pi]$ defined above is a representative set for $\left(X_{i}, \pi\right)$.

Proof. If the pattern π does not contain v, then $\Gamma_{j}[\pi]$ is a representative set for $\left(X_{i}, \pi\right)$ for the following reasons: (i) follows because every color in $\chi\left(X_{i}\right) \backslash \chi\left(X_{j}\right)$ does not appear in V_{j}, since X_{j} is a vertex-separator in G separating v and V_{j} and colors are connected. Hence, if two sequences in $\Gamma_{j}[\pi]$ that conform to $\left(X_{i}, \pi\right)$ contradicted (i), then they would contradict (i) w.r.t. (X_{j}, π) as well, but we have that $\Gamma_{j}[\pi]$ is a representative set for $\left(X_{j}, \pi\right)$. Furthermore, since v does not appear on any path between two vertices in π having internal vertices in $V_{i} \backslash X_{i}$, properties (ii) and (iii) are inherited from the child node X_{j}.

For the rest of the proof, we assume that the pattern π contains v. It is clear from the application of Refine() that $\Gamma_{i}[\pi]$ does not contradict properties (i) and (ii) of the definition of representative sets. Assume now that there exists a sequence $\mathcal{S} \notin \Gamma_{i}[\pi]$ that conforms to (X_{i}, π) such that \mathcal{S} violates property (iii). We define the sequence \mathcal{S}^{\prime} that conforms to π^{\prime} and contains all the paths in \mathcal{S} whose endpoints do not contain v. Since no two paths in \mathcal{S} share a vertex that is not in X_{i} (since \mathcal{S} violates (iii)), and all paths in \mathcal{S}^{\prime} are also in \mathcal{S}, it follows that no two paths in \mathcal{S}^{\prime} share a vertex that is not in X_{j}. Since $\Gamma_{j}\left[\pi^{\prime}\right]$ is a representative set for $\left(X_{j}, \pi^{\prime}\right)$, it follows that there exists $\mathcal{S}_{1}^{\prime} \in \Gamma_{j}\left[\pi^{\prime}\right]$ such that $\mathcal{S}_{1}^{\prime} \leq_{j} \mathcal{S}^{\prime}$. Let \mathcal{S}_{1} be the sequence obtained from \mathcal{S}_{1}^{\prime}, in the manner described above Claim 3, and conforming to (X_{i}, π). Then $\mathcal{S}_{1} \in \mathcal{R}_{\pi}$, and hence by Lemma 4.11, there is a sequence $\mathcal{S}_{2} \in \Gamma_{i}[\pi]$ such that $\mathcal{S}_{2} \leq_{i} \mathcal{S}_{1}$. Since both \mathcal{S}_{1} and \mathcal{S} contain v, we have $\mathcal{S}_{1} \leq_{i} \mathcal{S}$. By transitivity of \leq_{i} (Lemma 4.5), it follows that $\mathcal{S}_{2} \leq_{i} \mathcal{S}$. This contradicts the assumption that \mathcal{S} violates property (iii).

Case 2. X_{i} is a forget node with child X_{j}. Let $X_{i}=X_{j} \backslash\{v\}$.
Let $\pi=\left(s=v_{1}, \sigma_{1}, \ldots, \sigma_{r-1}, v_{r}=t\right)$ be a pattern for the vertices in X_{i}. For $q \in[r-1]$, such that $\sigma_{q}=1$, we define $\pi^{q}=\left(s=v_{1}^{\prime}, \sigma_{1}^{\prime}, \ldots, \sigma_{r}^{\prime}, v_{r+1}^{\prime}=t\right)$ to be the pattern obtained from π by inserting v between v_{q} and v_{q+1} and setting $\sigma_{q}^{\prime}=\sigma_{q+1}^{\prime}=1$. More precisely, we set $v_{p}^{\prime}=v_{p}$ and $\sigma_{p}^{\prime}=\sigma_{p}$ for $1 \leq p \leq q, v_{q+1}^{\prime}=v$ and $\sigma_{q+1}^{\prime}=1$, and finally $v_{p}^{\prime}=v_{p-1}$ and $\sigma_{p}^{\prime}=\sigma_{p-1}$ for $q+2 \leq p \leq r$. We define \mathcal{R}_{π} as follows:

$$
\mathcal{R}_{\pi}=\Gamma_{j}[\pi] \cup\left\{\mathcal{S}=\left(P_{1}, \ldots, P_{q-1}, P_{q} \circ P_{q+1}, P_{q+2}, \ldots, P_{r}\right) \mid\left(P_{1}, \ldots, P_{r}\right) \in \Gamma_{j}\left[\pi^{q}\right], q \in[r-1] \wedge \sigma_{q}=1\right\} .
$$

Finally, we set $\Gamma_{i}[\pi]=\operatorname{Refine}\left(\mathcal{R}_{\pi}\right)$ and we claim that $\Gamma_{i}[\pi]$ is a representative set for $\left(X_{i}, \pi\right)$.
Claim 4. If X_{i} is a forget node with child X_{j}, and Γ_{j} contains for each pattern π^{\prime} for X_{j} a representative set for $\left(X_{j}, \pi^{\prime}\right)$, then $\Gamma_{i}[\pi]$ defined above is a representative set for $\left(X_{i}, \pi\right)$.

Proof. It is straightforward to see that $\Gamma_{i}[\pi]$ satisfies properties (i) and (ii) due to the way procedure Refine() works. Assume for a contradiction that there exists a sequence \mathcal{S} that violates property (iii). We distinguish two cases.

First, suppose that no path in \mathcal{S} contains the vertex v. Then this path conforms to the pattern π in X_{j}. Since no two paths in \mathcal{S} share a vertex that is not in X_{i}, and since $\Gamma_{j}[\pi]$ is a representative set, there exists $\mathcal{S}_{1} \in \Gamma_{j}[\pi]$ such that $\mathcal{S}_{1} \leq_{j} \mathcal{S}$. Then $\mathcal{S}_{1} \in \mathcal{R}_{\pi}$, and hence by Lemma 4.11, $\Gamma_{i}[\pi]$ contains a sequence \mathcal{S}_{2} such that $\mathcal{S}_{2} \leq_{i} \mathcal{S}_{1}$. Since $\mathcal{S}_{1} \leq_{j} \mathcal{S}$ and $X_{i} \subsetneq X_{j}$, it follows from Observation 4.7 that $\mathcal{S}_{1} \leq_{i} \mathcal{S}$. By transitivity of \leq_{i}, it follows that $\mathcal{S}_{2} \leq_{i} \mathcal{S}$, which is a contradiction to the assumption that \mathcal{S} violates property (iii).

Second, suppose that there is a path P_{q} in \mathcal{S} between v_{q} and v_{q+1} that contains v. We form a sequence \mathcal{S}^{\prime} from \mathcal{S} by keeping every path $P \neq P_{q}$ in \mathcal{S}, and replacing P_{q} in the sequence by the two subpaths of $P_{q}, P_{q}^{\prime}=\left(v_{q}, \ldots, v\right)$ and $P_{q+1}^{\prime}=\left(v, \ldots, v_{q+1}\right)$. The sequence \mathcal{S}^{\prime} conforms to (X_{j}, π^{q}), and since no two paths in \mathcal{S} share a vertex that is not in X_{i}, no two paths in \mathcal{S}^{\prime} share a vertex that is not in X_{j}. Since $\Gamma_{j}\left[\pi^{q}\right]$ is a representative set for $\left(X_{j}, \pi^{q}\right)$, it follows that there exists a sequence $\mathcal{S}_{1}^{\prime} \in \Gamma_{j}\left[\pi^{q}\right]$ such that $\mathcal{S}_{1}^{\prime} \leq_{j} \mathcal{S}^{\prime}$. Let \mathcal{S}_{1} be the sequence conforming to $\left(X_{i}, \pi\right)$ obtained from \mathcal{S}_{1}^{\prime} by applying the operation o to the two paths in \mathcal{S}_{1}^{\prime} that share v. Then $\mathcal{S}_{1} \in \mathcal{R}_{\pi}$. Therefore, by Lemma 4.11, $\Gamma_{i}[\pi]$ contains a sequence \mathcal{S}_{2} such that $\mathcal{S}_{2} \leq_{i} \mathcal{S}_{1}$. Since $\mathcal{S}_{1}^{\prime} \leq_{j} \mathcal{S}^{\prime}, \chi\left(\mathcal{S}^{\prime}\right)=\chi(\mathcal{S})$, $\chi\left(\mathcal{S}_{1}^{\prime}\right)=\chi\left(\mathcal{S}_{1}\right)$, and $X_{i} \subsetneq X_{j}$, it follows that $\mathcal{S}_{1} \leq_{i} \mathcal{S}$. By transitivity of \leq_{i}, it follows that $\mathcal{S}_{2} \leq_{i} \mathcal{S}$, which is a contradiction to the assumption that \mathcal{S} violates property (iii).

Case 3. X_{i} is a join node with children $X_{j}, X_{j^{\prime}}$.
Let $\pi=\left(s=v_{1}, \sigma_{1}, \ldots, \sigma_{r-1}, v_{r}=t\right)$ be a pattern for X_{i}. Initialize $\mathcal{R}_{\pi}=\emptyset$. For every two patterns $\pi_{1}=\left(s=v_{1}, \tau_{1}, \ldots, \tau_{r-1}, v_{r}=t\right)$ and $\pi_{2}=\left(s=v_{1}, \mu_{1}, \ldots, \mu_{r-1}, v_{r}=t\right)$ such that $\sigma_{q}=\tau_{q}+\mu_{q}$, and for every two sequences $\mathcal{S}_{1}=\left(P_{1}^{1}, \ldots, P_{1}^{r-1}\right) \in \Gamma_{j}\left[\pi_{1}\right]$ and $\mathcal{S}_{2}=\left(P_{2}^{1}, \ldots, P_{2}^{r-1}\right) \in \Gamma_{j^{\prime}}\left[\pi_{2}\right]$, we add the sequence $\mathcal{S}=\left(P_{1}, \ldots, P_{r-1}\right)$ to \mathcal{R}_{π}, where $P_{q}=P_{1}^{q}$ if P_{2}^{q} is the empty path, otherwise, $P_{q}=P_{2}^{q}$, for $q \in[r-1]$. We set $\Gamma_{i}[\pi]=\operatorname{Refine}\left(\mathcal{R}_{\pi}\right)$, and we claim that $\Gamma_{i}[\pi]$ is a representative set for $\left(X_{i}, \pi\right)$.

Claim 5. If X_{i} is a join node with children $X_{j}, X_{j^{\prime}}$, and Γ_{j} (resp. $\Gamma_{j^{\prime}}$) contains for each pattern π^{\prime} for $X_{j}=X_{j^{\prime}}=X_{i}$ a representative set for $\left(X_{j}, \pi^{\prime}\right)\left(\right.$ resp. $\left.\left(\pi^{\prime}, X_{j^{\prime}}\right)\right)$, then $\Gamma_{i}[\pi]$ defined above is a representative set for $\left(X_{i}, \pi\right)$.

Proof. Clearly $\Gamma_{i}[\pi]$ satisfies properties (i) and (ii) due to the application of the procedure Refine(). To argue that $\Gamma_{i}[\pi]$ satisfies property (iii), suppose not, and let $\mathcal{S}=\left(P_{1}, \ldots, P_{r-1}\right)$ be a sequence that violates property (iii). Notice that every path $P_{q}, q \in[r-1]$, is either an edge between two vertices in X_{i}, or a path between two vertices in X_{i} such that its internal vertices are either all in $V_{j} \backslash X_{i}$ or in $V_{j^{\prime}} \backslash X_{i}$; this is true because X_{i} is a vertex-separator separating $V_{j} \backslash X_{i}$ from $V_{j^{\prime}} \backslash X_{i}$ in G. Define the two sequences $\mathcal{S}_{1}=\left(P_{1}^{1}, \ldots, P_{1}^{r-1}\right)$ and $\mathcal{S}_{2}=\left(P_{2}^{1}, \ldots, P_{2}^{r-1}\right)$ as follows. For $q \in[r-1]$, if P_{q} is empty then set both P_{1}^{q} and P_{2}^{q} to the empty path; if P_{q} is an edge then set $P_{1}^{q}=P_{q}$ and P_{2}^{q} to the empty path. Otherwise, P_{q} is either a path in $G\left[V_{j}\right]$ or in $G\left[V_{j^{\prime}}\right]$; in the former case set $P_{1}^{q}=P_{q}$ and P_{2}^{q} to the empty path, and in the latter case set $P_{2}^{q}=P_{q}$ and P_{1}^{q} to the empty path. Since no two paths in \mathcal{S} share a vertex that is not in X_{i}, and $X_{i}=X_{j}=X_{j^{\prime}}$, no two paths in \mathcal{S}_{1} (resp. \mathcal{S}_{2}) share a vertex that is not in X_{j} (resp. $X_{j^{\prime}}$). Let $\pi_{1}=\left(s=v_{1}, \tau_{1}, \ldots, \tau_{r-1}, v_{r}=t\right)$ and $\pi_{2}=\left(s=v_{1}, \mu_{1}, \ldots, \mu_{r-1}, v_{r}=t\right)$ be the two patterns that \mathcal{S}_{1} and \mathcal{S}_{2} conform to, respectively, and observe that, for every $q \in[r-1]$, we have $\sigma_{q}=\tau_{q}+\mu_{q}$. Since $\Gamma_{j}\left[\pi_{1}\right]$ and $\Gamma_{j^{\prime}}\left[\pi_{2}\right]$ are representative sets, it follows that there exist $\mathcal{S}_{1}^{\prime}=\left(Y_{1}^{\prime}, \ldots, Y_{r-1}^{\prime}\right)$ in $\Gamma_{j}\left[\pi_{1}\right]$ and $\mathcal{S}_{2}^{\prime}=\left(Z_{1}^{\prime}, \ldots, Z_{r-1}^{\prime}\right)$ in $\Gamma_{j^{\prime}}\left[\pi_{2}\right]$ such that $\mathcal{S}_{1}^{\prime} \leq_{j} \mathcal{S}_{1}$ and $\mathcal{S}_{2}^{\prime} \leq_{j^{\prime}} \mathcal{S}_{2}$. Let $\mathcal{S}^{\prime}=\left(P_{1}^{\prime}, \ldots, P_{r-1}^{\prime}\right)$, where $P_{q}^{\prime}=Y_{q}^{\prime}$ if Z_{q}^{\prime} is the empty path, otherwise, $P_{q}=Z_{q}^{\prime}$, for $q \in[r-1]$. The sequence \mathcal{S}^{\prime} conforms to π and is in \mathcal{R}_{π}. By Lemma 4.11, $\Gamma_{i}[\pi]$ contains a sequence $\mathcal{S}^{\prime \prime}$ such that $\mathcal{S}^{\prime \prime} \leq_{i} \mathcal{S}^{\prime}$. From Observation 4.7, since $X_{i}=X_{j}=X_{j^{\prime}}$, from
$\mathcal{S}_{1}^{\prime} \leq_{j} \mathcal{S}_{1}$ and $\mathcal{S}_{2}^{\prime} \leq_{j^{\prime}} \mathcal{S}_{2}$ it follows that $\mathcal{S}_{1}^{\prime} \leq_{i} \mathcal{S}_{1}$ and $\mathcal{S}_{2}^{\prime} \leq_{i} \mathcal{S}_{2}$. Since $\chi\left(\mathcal{S}_{1}\right) \cup \chi\left(\mathcal{S}_{2}\right)=\chi(\mathcal{S})$ and $\chi\left(\mathcal{S}_{1}^{\prime}\right) \cup \chi\left(\mathcal{S}_{2}^{\prime}\right)=\chi\left(\mathcal{S}^{\prime}\right)$, and since $\chi\left(\mathcal{S}_{1}\right) \cap \chi\left(\mathcal{S}_{2}\right) \subseteq \chi\left(X_{i}\right)$, by Lemma 4.8, it follows that $\mathcal{S}^{\prime} \leq_{i} \mathcal{S}$. Since $\mathcal{S}^{\prime \prime} \leq_{i} \mathcal{S}^{\prime}$, by transitivity of \leq_{i}, it follows that $\mathcal{S}^{\prime \prime} \leq_{i} \mathcal{S}$, which concludes the proof.

We can now conclude with the following theorem:
Theorem 4.12. There is an algorithm that on input (G, C, χ, s, t, k) of Colored Path-Con, either outputs a k-valid s-t path in G or decides that no such path exists, in time $O^{\star}\left(f(k)^{6 \omega^{2}}\right)$, where ω is the treewidth of G and $f(k)=O\left(c^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c>1$. Therefore, Colored Path-Con parameterized by both k and the treewidth of the input graph is in FPT.

Proof. First, in time $O\left(|V(G)|^{4}\right)$, we can compute a branch decomposition of G, and hence a tree decomposition, of width at most $3 \omega / 2$, where ω is the treewidth of G [23,30,31]. From this tree decomposition, in polynomial time we can compute a nice tree decomposition $(\mathcal{V}, \mathcal{T})$ of G whose width is at most $3 \omega / 2$ and satisfying $|\mathcal{V}|=O(|V(G)|)$ [26]. The algorithm starts by removing the colors of s and t from G, and decrements k by $|\chi(s) \cup \chi(t)|$ (see Assumption 2.2). Afterwards, if $k<0$, the algorithm concludes that there is no k-valid s - t path in G. If $s t \in E(G)$ and $k \geq 0$, the algorithm outputs the path (s, t). Now we know that s and t are not adjacent, and that $\chi(s)=\chi(t)=\emptyset$. The algorithm then adds s and t to every bag in \mathcal{T}, and executes the dynamic programming algorithm based on $(\mathcal{V}, \mathcal{T})$, described in this section, to compute a table Γ_{i} for each bag X_{i} in \mathcal{T}, that contains, for each pattern π for X_{i}, a representative set \mathcal{R}_{π} for $\left(X_{i}, \pi\right)$.

From Claims 2, 3, 4, 5, it follows, by induction on the height of the tree-decomposition $(\mathcal{V}, \mathcal{T})$ (the base case corresponds to the leaves), that the root node X_{r} contains a representative set $\Gamma_{r}[\pi]$ for the sequence $\pi=(s, 1, t)$. If $\Gamma_{r}[\pi]$ is empty, the algorithm concludes that there is no k-valid s-t path in G. Otherwise, noting that there is only one sequence \mathcal{S} in the representative set $\Gamma_{r}[\pi]$ since $X_{r}=\{s, t\}$ and s and t are empty, the algorithm outputs the k-valid s - t path P formed by \mathcal{S}. The correctness follows from the following argument, which shows that if there is a k-valid s - t path in G, then the algorithm outputs such a path. Suppose that P^{\prime} is a k-valid induced $s-t$ path such that there does not exist an s - t path $P^{\prime \prime}$ in G satisfying $\chi\left(P^{\prime \prime}\right) \subsetneq \chi\left(P^{\prime}\right)$, and let $\mathcal{S}^{\prime}=\left(P^{\prime}\right)$. Since $G_{s t}^{r}=G$, it follows that \mathcal{S}^{\prime} conforms to $\left(X_{r}, \pi\right)$. Since \mathcal{S}^{\prime} contains exactly one path that is induced, no two paths in \mathcal{S}^{\prime} share a vertex. Therefore, by property (iii) of representative sets, there exists a sequence \mathcal{S} in $\Gamma_{r}[\pi]$ satisfying $\mathcal{S} \leq_{r} \mathcal{S}^{\prime}$. Noting that a sequence in $\Gamma_{r}[\pi]$ must consist of a single k-valid s - t path, it follows that the algorithm correctly outputs such a path.

Next, we analyze the running time of the algorithm. We observe that among the three types of bags in \mathcal{T}, the worst running time is for a join bag. Therefore, it suffices to upper bound the running time for a join bag, and since $|\mathcal{V}|=O(n)$, the upper bound on the overall running time would follow.

Consider a join bag X_{i} with children $X_{j}, X_{j^{\prime}}$. Let ω^{\prime} be the width of \mathcal{T} plus 1 , which serves as an upper bound on the bag size in \mathcal{T}, and note that $\omega^{\prime} \leq 3 \omega / 2+3$, where the (additional) plus 2 is to account for the vertices s and t that were added to each bag. The algorithm starts by enumerating each pattern π for X_{i}. The number of such patterns is at most $2^{\omega^{\prime}} \cdot \omega^{\prime} \cdot \omega^{\prime}!=O^{*}\left(2^{\omega^{\prime}} \cdot \omega^{\prime}!\right)$, where $\omega^{\prime} \cdot \omega^{\prime}!$ is an upper bound on the number of ordered selections of a subset of vertices from the bag, and $2^{\omega^{\prime}}$ is an upper bound on the number of combinations for the σ_{i} 's in the selected pattern. Fix a pattern π for X_{i}. To compute $\Gamma_{i}[\pi]$, the algorithm enumerates all ways of partitioning π into pairs of patterns π_{1}, π_{2} for the children bags; there are $2^{\omega^{\prime}}$ ways of partitioning π into such pairs, because for each $\sigma_{i}=1$ in π, the path between v_{i} and v_{i+1} is either reflected in π_{1} or in π_{2}. For a fixed pair π_{1}, π_{2}, the algorithm iterates through all pairs of sequences in the two tables $\Gamma_{j}\left[\pi_{1}\right]$ and $\Gamma_{j^{\prime}}\left[\pi_{2}\right]$. Since each table contains a representative set, by Lemma 4.9, the size of each table is $O\left(h_{1}(k)^{\omega^{\prime 2}}\right)$, where $h_{1}(k)=O\left(c_{1}^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c_{1}>1$, and hence iterating over all pairs of sequences in
the two tables can be done in $O\left(h_{1}(k)^{2 \omega^{\prime 2}}\right)$ time. From the above, it follows that the set \mathcal{R}_{π} can be computed in time $2^{\omega^{\prime}} \cdot O\left(h_{1}(k)^{2 \omega^{\prime 2}}\right)=O\left(h_{2}(k)^{2 \omega^{\prime 2}}\right)$, where $h_{2}(k)=O\left(c_{2}^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c_{2}>1$, which is also an upper bound on the size of \mathcal{R}_{π}. By Lemma 4.11, applying Refine() to \mathcal{R}_{π} takes time $O^{*}\left(2^{k} h_{2}(k)^{2 \omega^{\prime 2}}+h_{2}(k)^{4 \omega^{\prime 2}}\right)=O^{*}\left(h_{3}(k)^{4 \omega^{\prime 2}}\right)$, where $h_{3}(k)=O\left(c_{3}^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c_{3}>1$. It follows from all the above that the running time taken by the algorithm to compute Γ_{i} is $O^{*}\left(h_{3}(k)^{4 \omega^{\prime 2}} \cdot 2^{\omega^{\prime}} \cdot \omega^{\prime}!\right)=O^{*}\left(h_{4}(k)^{4 \omega^{\prime 2}}\right)$, where $h_{4}(k)=O\left(c_{4}^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c_{4}>1$, and hence the running time of the algorithm is $O^{\star}\left(f(k)^{6 \omega^{2}}\right)$, where $f(k)=O\left(c^{k^{2}} k^{2 k^{2}+k}\right)$, for some constant $c>1$.

5 EXTENSIONS AND APPLICATIONS

In this section, we extend the FPT results for Colored Path-Con w.r.t. the combined parameters k and ω-the treewidth of the input graph, to show that Colored Path-Con parameterized by both k and the length ℓ of the sought path is FPT. We also present applications of these FPT results. We formally define the problem Bounded-length Colored Path-Con:
Bounded-length Colored Path-Con
Given: A planar graph G; a set of colors $C ; \chi: V \longrightarrow 2^{C}$; two designated vertices $s, t \in V(G)$; and $k, \ell \in \mathbb{N}$
Question: Does there exist a k-valid $s-t$ path of length at most ℓ in G ?
We first start by showing that if we parameterize only by one of ℓ, k then the problem is $\mathrm{W}[1]-$ hard.

Theorem 5.1. Bounded-length Colored Path-Con is W[1]-hard parameterized by k.

Proof. We reduce from the W[1]-hard problem Clique. The reduction is similar to that in the proof of Theorem 6.1. Let (G, k) be an instance of Clique, where $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$. We assume that the edges in $E(G)$ are incident to at least $k+3$ different vertices. This assumption is safe because Clique is trivially FPT for instances where the edges in $E(G)$ are incident to at most $k+2$ different vertices. Similarly to the proof of Theorem 6.1, we start by describing the instance I of Connected Obstacle Removal whose associated graph is the desired instance of Bounded-length Colored Path-Con.
The regions of I are $O \cup\left\{Z_{0}, \ldots, Z_{m}\right\} \cup \bigcup_{i=1}^{m}\left\{O_{i}^{1}, O_{i}^{2}, O_{i}^{3}\right\}$, depicted in Figure 9. The obstacles of I are defined as follows. For each vertex $v_{j} \in V(G)$, the obstacle V_{j} corresponding to v_{j} is the polygon whose boundary is the boundary of the region formed by the union of O, and each O_{i}^{3} such that v_{j} is incident to e_{i}. More formally, the obstacle corresponding to v_{j} is $\partial\left(O \cup \bigcup_{v_{j} \in e_{i}} O_{i}^{3}\right)$. Besides the obstacles corresponding to the vertices of G, there are two auxiliary obstacles $A_{1}=\partial\left(O \cup \bigcup_{i \in[m]} O_{i}^{1}\right)$ and $A_{2}=\partial\left(O \cup \bigcup_{i \in[m]} O_{i}^{2}\right)$. Finally, we place s in Z_{0}, t in Z_{m}, and ask whether there is a path from s to t that intersects at most $k+2$ obstacles and visits at most $3 m-\binom{k}{2}+1$ regions (including Z_{0} and Z_{m}).

Suppose that H is a complete subgraph of G with exactly k vertices. We define an s-t path P as follows. P starts at s in Z_{0}. If for $i \in[m], P$ enters Z_{i-1} and $e_{i} \in E(H)$, then P goes to Z_{i} through O_{i}^{3}; otherwise, P goes to Z_{i} through O_{i}^{1} and O_{i}^{2}. Since P does not enter the region O, and enters region O_{i}^{3} if and only if edge e_{i} is part of the clique H, P intersects an obstacle V_{j} if and only if $v_{j} \in V(H)$. Hence, together with A_{1} and A_{2}, P intersects at most $k+2$ obstacles. Moreover, P visits regions Z_{0}, \ldots, Z_{m}, regions O_{i}^{3} for $e_{i} \in E(H)\binom{k}{2}$ times $)$, and regions O_{i}^{1}, O_{i}^{2} for $e_{i} \notin E(H)\left(m-\binom{k}{2}\right.$ times $)$. Therefore, P visits exactly $3 m-\binom{k}{2}+1$ regions.

Conversely, suppose that there is an $s-t$ path P that visits at most $3 m-\binom{k}{2}+1$ regions and intersects at most $k+2$ obstacles. It is easy to see that P does not visit region O. Furthermore, by
our assumption, the edges of G are incident to at least $k+3$ vertices, and hence P cannot intersect all the O_{i}^{3} 's, for $i \in[m]$. Therefore, P visits O_{i}^{1} and O_{i}^{2} for some $i \in[m]$, and hence intersects A_{1} and A_{2}. Furthermore, since P visits at most $3 m-\binom{k}{2}+1$ regions, P visits at least $\binom{k}{2}$ different O_{i}^{3}, s. Since each O_{i}^{3} contains a pair of two obstacles $V_{j_{1}}, V_{j_{2}}$ such that $e_{i}=v_{j_{1}} v_{j_{2}}$, there are no multiple edges in G (and hence, no two O_{i}^{3} 's have the same set of obstacles), and P intersects at most k obstacles that corresponds to vertices of G, it follows that P intersects exactly k obstacles that correspond to vertices, and visits exactly $\binom{k}{2}$ different O_{i}^{3} 's. Moreover, for each pair of obstacles $V_{j_{1}}, V_{j_{2}}$ that P intersects, there must be an O_{i}^{3} that contains exactly these two obstacles. This means that there is an edge $v_{j_{1}} v_{j_{2}}$ in G for each such pair, and hence a k-clique in G.

Fig. 9. Illustration for the proof of Theorem 5.1.

Theorem 5.2. Bounded-length Colored Path-Con is W[1]-hard parameterized only by ℓ.
Proof. The proof is similar to the proof of Lemma 6.5. We will describe the reduction from Multi-Colored Clique and point out the differences.

Let (G, k) be an instance of Multi-Colored Clique, where $V(G)$ is partitioned into the color classes C_{1}, \ldots, C_{k}. We assume that all color classes have the same cardinality N. Let $C_{j}=\left\{u_{i}^{j} \mid i \in\right.$ $[N]\}$. We describe how to construct an instance ($G^{\prime}, C^{\prime}, \chi^{\prime}, s, t, k^{\prime}, \ell$) of Bounded-length Colored Path-Con. For an edge $e \in G$, associate a distinct color c_{e}, and define $C^{\prime}=\left\{c_{e} \mid e \in E(G)\right\}$. Moreover, for convenience, we denote by $C_{i, j}^{\prime}$ the set $\left\{c_{e} \mid e=u v \in E(G) \wedge u \in C_{i} \wedge v \in C_{j}\right\}$. To simplify the description of the construction, we start by defining a gadget that will serve as a building block for this construction.

For a vertex u_{i}^{j} in color class C_{j}, we define the gadget $G_{i, j}$, which is very similar to the one in Lemma 6.5, as follows. First, we create a copy of each color class $C_{j^{\prime}}, j^{\prime} \neq j$. Let the resulting copies of the color classes be $C_{1}^{\prime}, \ldots, C_{k-1}^{\prime}$. We define the color of a copy v^{\prime} of a vertex $u_{i^{\prime}}^{i^{\prime}}$ as $\chi^{\prime}\left(v^{\prime}\right)=C_{j, j^{\prime}}^{\prime} \backslash\left\{c_{e}\right\}$ if there is an edge $e=u_{i}^{j} u_{i^{\prime}}^{j^{\prime}}$, and define $\chi^{\prime}\left(v^{\prime}\right)=C_{j, j^{\prime}}^{\prime}$, otherwise. Moreover, for each $i^{\prime} \in[N-1]$ we connect the copies of vertices $u_{i^{\prime}}^{i^{\prime}}$ and $u_{i^{\prime}+1}^{j^{\prime}}$ by an edge.

Next, we introduce $k-2$ empty vertices $y_{r}, r \in[k-2]$. For $r \in[k-2]$, we connect all vertices in C_{r}^{\prime} to y_{r}, and connect y_{r} to all vertices in C_{r+1}^{\prime}. This completes the construction of gadget $G_{i, j}$; we refer to C_{1}^{\prime} and C_{k-1}^{\prime} as the first and last color classes in gadget $G_{i, j}$, respectively. Observe that each color c_{e} for an edge $e=u_{i}^{j} u_{i^{\prime}}^{j^{\prime}}$ appears exactly on

- all vertices in the copies of $C_{j^{\prime}}$ in the gadgets $G_{i^{*}, j}$ for $i^{*} \neq i$,
- all vertices in the copies of C_{j} in the gadgets $G_{i^{*}, j^{\prime}}$ for $i^{*} \neq i^{\prime}$,
- all vertices but the copy of $u_{i^{\prime}}^{j^{\prime}}$ in the copies of $C_{j^{\prime}}$ in the gadget $G_{i, j}$, and
- all vertices but the copy of u_{i}^{j} in the copies of C_{j} in the gadget $G_{i^{\prime}, j^{\prime}}$.

Furthermore, every path from a vertex in C_{1}^{\prime} to a vertex in C_{k-1}^{\prime} of length at most $2 k-2$ contains exactly one vertex from each $C_{r}^{\prime}, r \in[k-1]$, and contains all vertices $y_{r}, r \in[k-2]$. Moreover, each such path contains all but at most one color from each $C_{j, j^{\prime}}$, for all j^{\prime} such that $j^{\prime} \neq j$ and if the path does not contain a color $c_{e} \in C_{j, j^{\prime}}$, then it contains a copy of a vertex $u_{i^{\prime}}^{j^{\prime}}$ such that there is an edge $e=u_{i}^{j} u_{i^{\prime}}^{j^{\prime}}$ in G.

We continue the construction similarly as in Lemma 6.5 by introducing $k+1$ new empty vertices z_{0}, \ldots, z_{k}, and connecting them as follows. For each color class $C_{j}, j \in[k]$, and each vertex $u_{i}^{j} \in C_{j}$, we create the gadget $G_{i, j}$, connect z_{j-1} to each vertex in the first color class of $G_{i, j}$, and connect each vertex in the last color class of $G_{i, j}$ to z_{j}. Let G^{\prime} be the resulting graph. We now set $s=z_{0}$, $t=z_{k}, k^{\prime}=|E(G)|-\binom{k}{2}$, and $\ell=2 k^{2}$. We are nearly finished with the reduction. However, we need to make the colors in G^{\prime} connected. To achieve this, we first introduce a new vertex o such that $\chi(o)=C^{\prime}$. Now for each $j \in[k]$, each $j^{\prime} \neq j$, and each $i \in[N-1]$ we connect the copy of $u_{N}^{i^{\prime}}$ in $G_{i, j}$ with the copy of $u_{1}^{j^{\prime}}$ in $G_{i+1, j}$, and we connect the vertex o with the copies of $u_{1}^{j^{\prime}}$ in $G_{1, j}$ and of $u_{N}^{j^{\prime}}$ in $G_{N, j}$, respectively. It is not hard to see that every color is now connected. See Figure 10 for an illustration of the construction, and Figure 11, which highlights the subgraph induced by one color.

This completes the construction of the instance ($G^{\prime}, C^{\prime}, \chi^{\prime}, s, t, k^{\prime}, \ell$) of Bounded-length Colored Path-Con.

Clearly, the reduction that takes an instance (G, k) of Multi-Colored Clique and produces the instance ($G^{\prime}, C^{\prime}, \chi^{\prime}, s, t, k^{\prime}, \ell$) of Bounded-Length Colored Path-Con is computable in FPT-time. To show its correctness, suppose that (G, k) is a yes-instance of Multi-Colored Clique, and let Q be a k-clique in G. Then Q contains a vertex from each C_{j}, for $j \in[k]$. For a vertex $u_{i}^{j} \in Q$, let $G_{i, j}$ be its gadget, and define the path P_{j} as follows. In each color class in $G_{i, j}$, pick the unique vertex that is a copy of a neighbor of u_{i}^{j} in Q; define P_{j} to be the path in $G_{i, j}$ induced by the picked vertices, plus the empty vertices $y_{r}, r \in[k-2]$, that appear in $G_{i, j}$. Finally, define P to be the $s-t$ path in G^{\prime} whose edges are: the (unique) edge between z_{r-1} and an endpoint of P_{r}, P_{r}, and the (unique) edge between an endpoint of P_{r} and z_{r}, for $r \in[k]$. Clearly, the length of P is exactly $(2 k-2) k+2 k=2 k^{2}=\ell$. To show that P is k^{\prime}-valid, observe that none of the nonempty vertices in P contains a color of an edge between two vertices in Q. This shows that the number of colors that appear on P is at most $k^{\prime}=|E(G)|-\binom{k}{2}$, and hence, P is k^{\prime}-valid. It follows that $\left(G^{\prime}, C^{\prime}, \chi^{\prime}, s, t, k^{\prime}\right)$ is a yes-instance of Bounded-length Colored Path-Con.

Conversely, suppose that P is a k^{\prime}-valid $s-t$ path in G^{\prime} of length at most $2 k^{2}$. It is easy to see that P does not contain o, because $|\chi(o)|=|E(G)|$. Moreover, notice that the shortest path from s to t in $G-o$ has length $2 k^{2}$ and each $s-t$ path of length $2 k^{2}$ must start at s, visit the gadgets of exactly k vertices $u_{i_{j}}^{j} \in C_{j}$, for $j \in[k], i_{j} \in[N]$, and end at t. Furthermore, the subpath of the path in each gadget $G_{i, j}$ has length exactly $2 k-2$. We claim that $Q=\left\{u_{i_{j}}^{j} \mid j \in[k]\right\}$ is a clique in G. Recall that the subpath of P that traverses a gadget $G_{i, j}$ contains all but at most one color from each $C_{j, j^{\prime}}$, for all j^{\prime} such that $j^{\prime} \neq j$, and if such a path does not contain a color $c_{e} \in C_{j, j^{\prime}}$, then it contains a copy of a vertex $u_{i^{\prime}}^{j^{\prime}}$ such that $e=u_{i}^{j} i_{i^{\prime}}^{j^{\prime}}$ is in G. It follows that if P does not contain the color c_{e}, for an edge $e=u_{i}^{j} u_{i^{\prime}}^{j^{\prime}}$, then it has to traverse the gadget for u_{i}^{j} and the gadget for $u_{i^{\prime}}^{j^{\prime}}$. Since P traverses at most k gadgets and it does not contain $\binom{k}{2}$ colors, it follows that there has to be an edge between every pair of vertices in G for which P traverses the corresponding gadgets, and Q is a clique in G. Since $|Q|=k$, it follows that Q is a k-clique in G, and that (G, k) is a yes-instance of Multi-Colored Clique.

Fig. 10. Illustration of the reduced instance for the proof of Theorem 5.2.

Fig. 11. Illustration for the proof of Theorem 5.2. The red highlights a color representing the edge between vertices u_{i}^{1} in C_{1} and $u_{i^{\prime}}^{j}$ in C_{j}.

We now switch our attention to showing that Bounded-length Colored Path-Con parameterized by both k and ℓ is FPT. We start with the following lemma that enables us to upper bound the treewidth of the input graph by a function of the parameter ℓ :

Lemma 5.3. Let $(G, C, \chi, s, t, k, \ell)$ be an instance of Bounded-length Colored Path-Con, and let v be a vertex in G such that $d_{G}(s, v)>\ell+1$. Let G^{\prime} be the graph obtained from G by contracting any edge uv that is incident to v, and let $\chi^{\prime}(x)=\chi(u) \cup \chi(v)$, where x is the new vertex resulting from contracting $u v$, and $\chi^{\prime}(w)=\chi(w)$ for every $w \in V(G) \backslash\{u, v\}$. Then $\left(G^{\prime}, C, \chi^{\prime}, s, t, k, \ell\right)$ is a yes-instance of Bounded-length Colored Path-Con if and only if $(G, C, \chi, s, t, k, \ell)$ is.

Proof. Since G is color-connected and $\chi(x)=\chi(u) \cup \chi(v)$, it is easy to see that G^{\prime} is colorconnected as well. Because $d_{G}(s, v)>\ell+1$, any solution to ($G, C, \chi, s, t, k, \ell$) does not contain any of u, v, and hence, is a solution to $\left(G^{\prime}, C, \chi^{\prime}, s, t, k, \ell\right)$. Conversely, because $d_{G}(s, v)>\ell+1$, any solution to ($G^{\prime}, C, \chi^{\prime}, s, t, k, \ell$) does not contain x, and hence is a solution to $(G, C, \chi, s, t, k, \ell)$.

By Lemma 5.3, we may assume w.l.o.g. that in an instance ($G, C, \chi, s, t, k, \ell$) of Bounded-LengTh Colored Path-Con, every vertex $v \in V(G)$ satisfies $d_{G}(s, v) \leq \ell+1$. Therefore, we may assume that G has radius at most $\ell+1$, and hence G has treewidth at most $3 \cdot(\ell+1)+1=3 \ell+4$ [30].

At this point we draw the following observation. Although the treewidth of G is bounded by a function of ℓ, we cannot use the FPT algorithm for Colored Path, parameterized by k and the treewidth of G, to solve Bounded-length Colored Path-Con because the k-valid path returned by the algorithm for Colored Path-Con may have length exceeding the desired upper bound ℓ. In fact, extending the FPT results for Colored Path to Bounded-length Colored Path-Con turns out to be a nontrivial task that necessitates a nontrivial extension of the structural results in Section 3, as well as the dynamic programming algorithm in Section 4. In particular, the color contraction operation, on which the structural results developed in Section 3 hinge, is no longer
applicable since contracting an edge may decrease the distance between s and t in the resulting instance, and hence, may not result in an equivalent instance of the problem. However, we will show in the next subsection that we can extend the notion of a minimal set of k-valid paths between two vertices to incorporate the length of these paths, while still be able to upper bound the size of such a set by a function of both k and the length of these paths. We omit the proofs of some of the extended results that are very similar to those in the previous section to avoid repetition.

5.1 Extended Structural Results

We start with the following definition:
Definition 5.4. Let $u, v, w \in V(G)$, and let $\lambda \in[\ell]$. Let \mathcal{P} be a set of k-valid $u-v$ paths in $G-w$, each of length λ. The set \mathcal{P} is said to be λ-minimal w.r.t. w if there does not exist two paths $P_{1}, P_{2} \in \mathcal{P}$ such that $\chi\left(P_{1}\right) \cap \chi(w)=\chi\left(P_{2}\right) \cap \chi(w)$.

Let $u, v, w \in V(G), \lambda \in[\ell]$, and let \mathcal{P} be a set of λ-minimal k-valid u-v paths in $G-w$. Let \mathcal{M} be a set of λ-minimal k-valid color-disjoint u-v paths in $G-w$. Let H be the subgraph of $G-w$ induced by the edges of the paths in \mathcal{P}, and let M be that induced by the edges of the paths in \mathcal{M}.

Lemma 5.5. M has a $u-v$ vertex-separator of cardinality at most $2(\lambda+1)$.
Proof. We proceed by contradiction, and assume that M does not have a u-v vertex-separator of cardinality at most $2(\lambda+1)$. By Menger's theorem [11], there exists a set $\mathcal{D}=\left\{P_{1}, \ldots, P_{r}\right\}$, where $r \geq 2 \lambda+3$, of vertex-disjoint u-v paths in M. Let u_{1}, \ldots, u_{r} be the neighbors of u in counterclockwise order such that P_{i} contains $u_{i}, i \in[r]$, and let Q_{i} be a path in \mathcal{M} containing u_{i}.

Since all paths in \mathcal{M} have the same length λ, Definition 5.4 implies that Observation 3.5 holds. Therefore, at most one path in \mathcal{M} contains only internal colors w.r.t. w in M. By Observation 3.10, any vertex on a path in \mathcal{M} such that the vertex contains an external color w.r.t. w in M must be incident to the external face to w in M. Choose $r^{\prime} \in[r]$ such that $\left|r^{\prime}-\left\lfloor\frac{r}{2}\right\rfloor\right|$ is minimum and $Q_{r^{\prime}}$ contains an external color w.r.t. w in M. Since $Q_{r^{\prime}}$ contains an external color w.r.t. w in $M, Q_{r^{\prime}}$ contains a vertex incident to the external face to w in M. Since all paths in \mathcal{D} are u-v vertex-disjoint paths, $Q_{r^{\prime}}$ contains vertices other than u and v from at least $\lfloor r / 2\rfloor-1$ distinct paths (including itself) in \mathcal{D}. Since the paths in \mathcal{D} are all vertex disjoint, it follows that $\left|Q_{r^{\prime}}\right| \geq r / 2-1$, and hence $\lambda \geq r / 2-1$, which implies that $r \leq 2(\lambda+1)$. This contradicts our assumption that $r \geq 2 \lambda+3$.

Lemma 5.6. $|\mathcal{M}| \leq g(\lambda)$, where $g(\lambda)=O\left(c^{\lambda} \lambda^{3 \lambda}\right)$, for some constant $c>1$.
Proof. As in the proof of Lemma 5.5, Definition 5.4 implies that Observation 3.5 holds, and hence, at most one path in \mathcal{M} contains only internal colors w.r.t. w in $G-w$. Therefore, we upper bound the number of paths in \mathcal{M} that each contains at least one external color to w in $G-w$, and add 1 to $g(\lambda)$ at the end. Henceforth, we shall assume that every path in \mathcal{M} contains a color that is external to w in M.

The proof is by induction on λ, over every color-connected plane graph G, every triplet of vertices u, v, w in G, and every λ-minimal set \mathcal{M} w.r.t. w in $G-w$ of k-valid pairwise color-disjoint u - v paths. If $\lambda=1$, then $|\mathcal{M}| \leq 1 \leq g(1)$, if we choose $g(1)$ to be at least 1 .

Suppose, by the inductive hypothesis, that for any $1 \leq i<\lambda$, we have $|\mathcal{M}| \leq g(i)$. By Lemma 5.5, M has a u-v vertex-separator S satisfying $|S| \leq 2 \lambda+2 . S$ separates M into two subgraphs M_{u} and M_{v} such that $u \in V\left(M_{u}\right), v \in V\left(M_{v}\right)$, and there is no edge between M_{u} and M_{v}. We partition \mathcal{M} into two groups: (1) The set of paths in \mathcal{M} that each contains a nonempty vertex in S; and (2) the set of remaining paths \mathcal{M}_{\emptyset}, which contains each path in \mathcal{M} whose intersection with S consists of only empty vertices. Since the paths in \mathcal{M} are pairwise color-disjoint, no nonempty vertex in S can
appear on two distinct paths from group (1). Therefore, the number of paths in group (1) is at most $|S| \leq 2 \lambda+2$.

To upper bound the number of paths in group (2), suppose that $S=\left\{s_{2}, \ldots, s_{r-1}\right\}$, where $r \leq 2 \lambda+4$, and extend S by adding the two vertices $s_{1}=u$ and $s_{r}=v$ to form the set $A=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$. For every two (distinct) vertices $s_{j}, s_{j^{\prime}} \in A, j, j^{\prime} \in[r], j<j^{\prime}$, we define a set of paths $\mathcal{P}_{j j^{\prime}}$ in $G-w$ whose endpoints are s_{j} and $s_{j^{\prime}}$ as follows. For each path P in group (2), partition P into subpaths P_{1}, \ldots, P_{q} satisfying the property that the endpoints of each $P_{i}, i \in[q]$, are in A, and no internal vertex to P_{i} is in A. Since P contains a vertex that contains an external color to w in $G-w$, there exists an $i \in[q]$ such that P_{i} contains a vertex that contains an external color to w in $G-w$; pick any such $i \in[q]$, and assign P_{i} to the set of paths $\mathcal{P}_{j j^{\prime}}$ such that s_{j} and $s_{j^{\prime}}$ are the endpoints of P_{i}. Since each P_{i} contains an external color that appears on P and the paths in \mathcal{M} are pairwise-color disjoint, it follows that the map that maps each P to its P_{i} is a bijection. Moreover, since each path P must intersect $S \backslash\{u, v\}$, the length of each path in $\mathcal{P}_{j j^{\prime}}$, for $j, j^{\prime} \in[r], j<j^{\prime}$, is strictly smaller than λ.

Fix a set $\mathcal{P}_{j j^{\prime}}$. For any fixed length $i^{\prime} \in[\lambda-1]$, the subset of paths in $\mathcal{P}_{j j^{\prime}}$ of length $i^{\prime}, \mathcal{P}_{j j^{\prime}}^{i^{\prime}}$, have $s_{j}, s_{j^{\prime}}$ as endpoints, and are pairwise color-disjoint. Moreover, each path in $\mathcal{P}_{j j^{\prime}}^{i^{\prime}}$ contains a vertex that contains an external color to w in $G-w$. It follows from the previous statements that $\mathcal{P}_{j j^{\prime}}^{i^{\prime}}$ satisfies Definition 5.4 w.r.t. G and w, and hence $\mathcal{P}_{j j^{\prime}}^{i^{\prime},} i^{\prime} \in[\lambda-1]$, is an i^{\prime}-minimal set of k-valid $s_{j}-S_{j^{\prime}}$ paths in G w.r.t. w. By the inductive hypothesis, we have $\left|\mathcal{P}_{j j^{\prime}}^{i^{\prime}}\right| \leq g\left(i^{\prime}\right)$. Since the number of sets $\mathcal{P}_{j j^{\prime}}$ is at most $\binom{2 \lambda+4}{2}, i^{\prime} \leq \lambda-1$, and assuming w.l.o.g. that g is an increasing function, the number of paths in group (2) is $O\left(\lambda^{2}\right) \cdot(\lambda-1) \cdot g(\lambda-1)=O\left(\lambda^{3}\right) \cdot g(\lambda-1)$.

It follows from the above that $|\mathcal{M}| \leq g(\lambda)$, where $g(\lambda)$ satisfies the recurrence relation $g(\lambda) \leq$ $(2 \lambda+2)+O\left(\lambda^{3}\right) \cdot g(\lambda-1)=O\left(\lambda^{3}\right) \cdot g(\lambda-1)$. Solving the aforementioned recurrence relation gives $g(\lambda)=O\left(c^{\lambda} \lambda^{3 \lambda}\right)$, where $c>1$ is a constant. Adding 1 to $g(\lambda)$ to account for the single path in \mathcal{M} containing only internal colors w.r.t. w in M yields the same asymptotic upper bound.

Using Lemma 5.6, the theorem below follows in a very similar manner to that of Theorem 3.14:
Theorem 5.7. Let G be a plane color-connected graph, let $u, v, w \in V(G)$, let $\lambda \in[\ell]$, and let \mathcal{P} be a set of λ-minimal k-valid u-v paths w.r.t. w in $G-w$. Then $|\mathcal{P}| \leq h(k, \lambda)$, where $h(k, \lambda)=$ $O\left(c^{\lambda k} \cdot k^{k} \cdot \lambda^{3 \lambda k}\right)$, for some constant $c>1$.

The result of Theorem 5.7 will be employed in the next section in the form presented in the following corollary, whose proof follows using the same arguments as in Corollary 3.15:

Corollary 5.8. Let G be a plane color-connected graph, let $w \in V(G)$, and let $\lambda \in[\ell]$. Let G^{\prime} be a subgraph of $G-w$, and let $u, v \in V\left(G^{\prime}\right)$. Every set \mathcal{P} of λ-minimal k-valid u-v paths in G^{\prime} w.r.t. w satisfies $|\mathcal{P}| \leq h(k, \lambda)$, where $h(k, \lambda)=O\left(c^{\lambda k} \cdot k^{k} \cdot \lambda^{3 \lambda k}\right)$, for some constant $c>1$.

5.2 The Extended Algorithm

Let ($G, C, \chi, s, t, k, \ell$) be an instance of Bounded-length Colored Path-Con. The algorithm is a dynamic programming algorithm based on a tree decomposition of G. Let $(\mathcal{V}, \mathcal{T})$ be a nice tree decomposition of G. By Assumption 2.2, we can assume that s and t are nonadjacent empty vertices. We add s and t to every bag in \mathcal{T}, and from now on, we assume that $\{s, t\} \subseteq X_{i}$, for every bag $X_{i} \in \mathcal{T}$. For a bag X_{i}, we say that $v \in X_{i}$ is useful if $|\chi(v)| \leq k$. Let U_{i} be the set of all useful vertices in X_{i} and let $\overline{U_{i}}=X_{i} \backslash U_{i}$. We denote by V_{i} the set of vertices in the bags of the subtree of \mathcal{T} rooted at X_{i}. For any two vertices $u, v \in X_{i}$, let $G_{u v}^{i}=G\left[\left(V_{i} \backslash X_{i}\right) \cup\{u, v\}\right]$. We extend the notion of a λ-minimal set of k-valid u - v paths w.r.t. a vertex, developed in the previous section, to the set of vertices in a bag of \mathcal{T}.

Definition 5.9. Let $\lambda \in[\ell]$. A set of k-valid $u-v$ paths $\mathcal{P}_{u v}$ in $G_{u v}^{i}$ is λ-minimal w.r.t. X_{i} if each path in $\mathcal{P}_{u v}$ has length exactly λ and there does not exist two paths $P_{1}, P_{2} \in \mathcal{P}_{u v}$ such that $\chi\left(P_{1}\right) \cap \chi\left(X_{i}\right)=\chi\left(P_{2}\right) \cap \chi\left(X_{i}\right)$.
The lemma below follows from Corollary 5.8 using a similar proof to that of Lemma 4.2:
Lemma 5.10. Let X_{i} be bag, $u, v \in X_{i}, \lambda \in[\ell]$ and $\mathcal{P}_{u v}$ a λ-minimal set ofk-valid u-v paths w.r.t. X_{i} in $G_{u v}^{i}$. Then the number of paths in $\mathcal{P}_{u v}$ is at most $h(k, \lambda)^{\left|X_{i}\right|}$, where $h(k, \lambda)=O\left(c^{\lambda k} \cdot k^{k} \cdot \lambda^{3 \lambda k}\right)$, for some constant c >1.

We define the length of a sequence \mathcal{S} of walks, denoted by $|\mathcal{S}|$, to be the sum of the lengths of the walks in \mathcal{S}.

Definition 5.11. Let X_{i} be a bag and $\pi=\left(v_{1}, \sigma_{1}, v_{2} \ldots, \sigma_{r-1}, v_{r}\right)$ a pattern for X_{i}. A set \mathcal{R}_{π} of sequences of paths, each of length at most ℓ, that conform to $\left(X_{i}, \pi\right)$ is a representative set for $\left(X_{i}, \pi\right)$ if:
(i) For every sequence $\mathcal{S}_{1} \in \mathcal{R}_{\pi}$, and for every sequence $\mathcal{S}_{2} \neq \mathcal{S}_{1}$ that conforms to (X_{i}, π), if $\mathcal{S}_{1} \leq_{i} \mathcal{S}_{2}$ and $\left|\mathcal{S}_{1}\right| \leq\left|\mathcal{S}_{2}\right|$ then $\mathcal{S}_{2} \notin \mathcal{R}_{\pi}$; and
(ii) for every sequence $\mathcal{S} \notin \mathcal{R}_{\pi},|\mathcal{S}| \leq \ell$, that conforms to (X_{i}, π) and satisfies that no two paths in \mathcal{S} share a vertex that is not in X_{i}, there is a sequence $\mathcal{W} \in \mathcal{R}_{\pi}$ such that $\mathcal{W} \leq_{i} \mathcal{S}$ and $|\mathcal{W}| \leq|S|$.

We mention that Lemma 4.5 and Observation 4.7 extend as they are to the current setting.
Lemma 5.12. Let X_{i} be bag, π a pattern for X_{i}, and \mathcal{R}_{π} a representative set for $\left(X_{i}, \pi\right)$. Then the number of sequences in \mathcal{R}_{π} is at most $h(k, \ell)^{\left|X_{i}\right|^{2}}$, where $h(k, \ell)=O\left(c^{\ell k} \cdot k^{k} \cdot \ell^{3 \ell k}\right)$, for some constant $c>1$.

Proof. Let $\pi=\left(v_{1}=s, \sigma_{1}, v_{2}, \sigma_{2}, \ldots, \sigma_{r-1}, v_{r}=t\right)$, and let $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{r-1}\right)$ be such that, for each $j \in[r-1]:$ (1) $\lambda_{j}=0$ if $\sigma_{j}=0$ and $\lambda_{j} \in[\ell]$ otherwise, and (2) $\sum_{j=1}^{r-1} \lambda_{j} \leq \ell$. For each $\lambda \in[\ell]$, the number of tuples $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{r-1}\right)$ satisfying $\sum_{j=1}^{r-1} \lambda_{j}=\lambda$ is the number of weak compositions of λ into $r-1$ parts, which is $\binom{\lambda+r-2}{r-2}$. It follows that the number of tuples $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{r-1}\right)$ satisfying $\sum_{j=1}^{r-1} \lambda_{j} \leq \ell$ is upper bounded by $\binom{\ell+r-1}{r-1}$ [18], which is at most $\binom{\left|X_{i}\right|+\ell}{r-2} \leq 2^{\left|X_{i}\right|+\ell}$. Therefore, if we upper bound the number of sequences in \mathcal{R}_{π} corresponding to some fixed tuple Λ by $h_{1}(k, \ell)^{\left|X_{i}\right|^{2}}=O\left(c_{1}^{\ell k} \cdot k^{k} \cdot \ell^{3 \ell k}\right)$ for some constant $c_{1}>1$, then we obtain $\mathcal{R}_{\pi} \leq 2^{\left|X_{i}\right|+\ell} \cdot h_{1}(k, \ell)^{\left|X_{i}\right|^{2}} \leq h(k, \ell)^{\left|X_{i}\right|^{2}}$, where $h(k, \ell)=O\left(c^{\ell k} \cdot k^{k} \cdot \ell^{3 \ell k}\right)$, for some constant $c>1$. For the rest of the proof, we fix $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{r-1}\right)$ and we let $\mathcal{R}_{\pi}^{\Lambda}$ be the subset of \mathcal{R}_{π} such that for each sequence $\mathcal{S}=\left(P_{1}, \ldots, P_{r-1}\right)$ in $\mathcal{R}_{\pi}^{\Lambda}$ it holds that the length of P_{j} is λ_{j} for each $j \in[r-1]$ such that $\sigma_{j}=1$.
For each $j \in[r-1]$ such that $\sigma_{j}=1$, let \mathcal{P}_{j} be a λ_{j}-minimal set of k-valid $v_{j}-v_{j+1}$ paths w.r.t. X_{i}. Without loss of generality, we can pick \mathcal{P}_{j} such that there is no k-valid $u-v$ path P of length λ_{j} in $G_{v_{j} v_{j+1}}^{i}$ such that $\mathcal{P}_{j} \cup\{P\}$ is λ_{j}-minimal w.r.t. X_{i}. From Lemma 5.10, it follows that $\left|\mathcal{P}_{j}\right| \leq h_{1}\left(k, \lambda_{j}\right)^{\left|X_{i}\right|}$, where $h_{1}\left(k, \lambda_{j}\right)=O\left(c_{1}^{\lambda_{j} k} \cdot k^{k} \cdot \lambda_{j}^{3 \lambda_{j} k}\right)$, for some constant $c_{1}>1$. From this point on, the proof proceeds in the same fashion as in Lemma 4.9.
We recall the definition of a sequence of walks refining another from the previous section. We have the following lemma:

Lemma 5.13. Let X_{i} be a bag, $\pi=\left(v_{1}=s, \sigma_{1}, v_{2}, \sigma_{2}, \ldots, \sigma_{r-1}, v_{r}=t\right)$ a pattern for X_{i}, and $\mathcal{W}=$ $\left(W_{1}, \ldots, W_{r-1}\right)$ a sequence such that each W_{j} is a walk between vertices v_{j} and v_{j+1} in $G_{v_{j} v_{j+1}}^{i}$ satisfying $\chi\left(W_{j}\right) \leq k$. Then in time $O(r \cdot(|V(G)|+|V(E)|))$ we can compute a sequence $\mathcal{S}=\left(P_{1}, \ldots, P_{r-1}\right)$, where
for each $j \in[r-1], P_{j}$ is an induced path between v_{j} and v_{j+1} in $G_{v_{j} v_{j+1}}^{i}$ such that $\chi\left(P_{j}\right) \subseteq \chi\left(W_{j}\right)$ and the length of P_{j} is at most the length of W_{j}.

Proof. For each walk $W_{j}, j \in[r-1]$, we do the following. We form the subgraph G^{\prime} from $G_{v_{j} v_{j+1}}^{i}$ by removing every vertex x in $G_{v_{j} v_{j+1}}^{i}$ that does not satisfy $\chi(x) \subseteq \chi\left(W_{j}\right)$. Clearly, W_{j} is a subgraph of G^{\prime}, and hence there exists a $v_{j}-v_{j+1}$ path of length at most the length of W_{j} in G^{\prime}. We find a shortest $v_{j}-v_{j+1}$ path in G^{\prime} in time $O(|V(G)|+|E(G)|)$ and set P_{j} to this path. Clearly, the computation of \mathcal{S} takes time $O(r \cdot(|V(G)|+|E(G)|))$.

For a bag X_{i}, pattern π for X_{i}, and a set of sequences (of walks) \mathcal{R} that conform to (X_{i}, π), we define the procedure Refine() that takes the set \mathcal{R} and outputs a set \mathcal{R}^{\prime} of sequences of length at most ℓ that conform to (X_{i}, π), and does not violate property (i) of Definition 5.11. First, for each sequence \mathcal{S} in \mathcal{R}, we compute a sequence \mathcal{S}^{\prime} that refines \mathcal{S} and has length at most the length of \mathcal{S}, and replace \mathcal{S} with \mathcal{S}^{\prime} in \mathcal{R}. Afterwards, we initialize $\mathcal{R}^{\prime}=\emptyset$, and order the sequences in \mathcal{R} first w.r.t. \leq_{i} and, in case of ties, w.r.t. the lengths of the sequences afterwards (where ties w.r.t. both \leq_{i} and length are broken arbitrarily). We iterate through the sequences in \mathcal{R} in order, and add a sequence \mathcal{S}_{p} to \mathcal{R}^{\prime} if $\left|\mathcal{S}_{p}\right| \leq \ell$, there is no sequence \mathcal{S} already in \mathcal{R}^{\prime} such that $\mathcal{S} \leq_{i} \mathcal{S}_{p}$ and $|\mathcal{S}| \leq\left|\mathcal{S}_{p}\right|$. The proof of the following lemma is similar to that of Lemma 4.11:

Lemma 5.14. Let X_{i} be a bag, π a pattern for X_{i}, and \mathcal{W} be a set of sequences of walks that conforms to (X_{i}, π). The procedure $\mathbf{R e f i n e () , ~ o n ~ i n p u t ~ ' ~} \mathcal{W}$, produces a set of sequences of induced paths \mathcal{R}^{\prime} that conform to $\left(X_{i}, \pi\right)$ and satisfy property (i) of Definition 5.11, and such that for each sequence $\mathcal{S} \in \mathcal{W}$ with $|\mathcal{S}| \leq \ell$, there is a sequence $\mathcal{S}^{\prime} \in \mathcal{R}^{\prime}$ satisfying $\mathcal{S}^{\prime} \leq_{i} \mathcal{S}$ and $\left|\mathcal{S}^{\prime}\right| \leq|\mathcal{S}|$. Moreover, the procedure runs in time $O^{*}\left(|\mathcal{W}|^{2}\right)$.

Using the above procedure Refine(), the dynamic programming algorithm is the same as that in Section 4. For each bag X_{i}, it maintains a table Γ_{i} that contains, for each pattern π for X_{i}, a representative set $\Gamma_{i}[\pi]$ for $\left(X_{i}, \pi\right)$. For illustration, we present the case of a join node, and omit the other cases to avoid repetition.
Case X_{i} is a join node with children $X_{j}, X_{j^{\prime}}$.
Let $\pi=\left(s=v_{1}, \sigma_{1}, \ldots, \sigma_{r-1}, v_{r}=t\right)$ be a pattern for X_{i}. Initialize $\mathcal{R}_{\pi}=\emptyset$. For every two patterns $\pi_{1}=\left(s=v_{1}, \tau_{1}, \ldots, \tau_{r-1}, v_{r}=t\right)$ and $\pi_{2}=\left(s=v_{1}, \mu_{1}, \ldots, \mu_{r-1}, v_{r}=t\right)$ such that $\sigma_{q}=\tau_{q}+\mu_{q}$, and for every two sequences $\mathcal{S}_{1}=\left(P_{1}^{1}, \ldots, P_{1}^{r-1}\right) \in \Gamma_{j}\left[\pi_{1}\right]$ and $\mathcal{S}_{2}=\left(P_{2}^{1}, \ldots, P_{2}^{r-1}\right) \in \Gamma_{j^{\prime}}\left[\pi_{2}\right]$, we add the sequence $\mathcal{S}=\left(P_{1}, \ldots, P_{r-1}\right)$ to \mathcal{R}_{π}, where $P_{q}=P_{1}^{q}$ if P_{2}^{q} is the empty path, otherwise, $P_{q}=P_{2}^{q}$, for $q \in[r-1]$. We set $\Gamma_{i}[\pi]=\operatorname{Refine}\left(\mathcal{R}_{\pi}\right)$, and we claim that $\Gamma_{i}[\pi]$ is a representative set for $\left(X_{i}, \pi\right)$.

Claim 6. If X_{i} is a join node with children $X_{j}, X_{j^{\prime}}$, and Γ_{j} (resp. $\Gamma_{j^{\prime}}$) contains for each pattern π^{\prime} for $X_{j}=X_{j^{\prime}}=X_{i}$ a representative set for $\left(X_{j}, \pi^{\prime}\right)\left(\right.$ resp. $\left(\pi^{\prime}, X_{j^{\prime}}\right)$, then $\Gamma_{i}[\pi]$ defined above is a representative set for $\left(X_{i}, \pi\right)$.

Proof. Clearly $\Gamma_{i}[\pi]$ satisfies property (i) due to the application of the procedure Refine(). To argue that $\Gamma_{i}[\pi]$ satisfies properties (ii), suppose not, and let $\mathcal{S}=\left(P_{1}, \ldots, P_{r-1}\right)$ be a sequence that violates property (ii). Notice that every path $P_{q}, q \in[r-1]$ is either an edge between two vertices in X_{i}, or is a path between two vertices in X_{i} such that its internal vertices are either all in $V_{j} \backslash X_{i}$ or in $V_{j^{\prime}} \backslash X_{i}$; this is true because X_{i} is a vertex-separator separating $V_{j} \backslash X_{i}$ from $V_{j^{\prime}} \backslash X_{i}$ in G. Define the two sequences $\mathcal{S}_{1}=\left(P_{1}^{1}, \ldots, P_{1}^{r-1}\right)$ and $\mathcal{S}_{2}=\left(P_{2}^{1}, \ldots, P_{2}^{r-1}\right)$ as follows. For $q \in[r-1]$, if P_{q} is empty then set both P_{1}^{q} and P_{2}^{q} to the empty path; if P_{q} is an edge then set $P_{1}^{q}=P_{q}$ and P_{2}^{q} to the empty path. Otherwise, P_{q} is either a path in $G\left[V_{j}\right]$ or in $G\left[V_{j^{\prime}}\right]$; in the former case set $P_{1}^{q}=P_{q}$ and P_{2}^{q} to the empty path, and in the latter case set $P_{2}^{q}=P_{q}$ and P_{1}^{q} to the empty path. Since no two paths in \mathcal{S} share a vertex that is not in X_{i}, and $X_{i}=X_{j}=X_{j^{\prime}}$, no two paths in \mathcal{S}_{1} (resp. \mathcal{S}_{2})
share a vertex that is not in X_{j} (resp. $X_{j^{\prime}}$). Moreover, it is easy to see that $\left|\mathcal{S}_{1}\right|+\left|\mathcal{S}_{2}\right|=|\mathcal{S}| \leq \ell$. Let $\pi_{1}=\left(s=v_{1}, \tau_{1}, \ldots, \tau_{r-1}, v_{r}=t\right)$ and $\pi_{2}=\left(s=v_{1}, \mu_{1}, \ldots, \mu_{r-1}, v_{r}=t\right)$ be the two patterns that \mathcal{S}_{1} and \mathcal{S}_{2} conform to, respectively, and observe that, for every $q \in[r-1]$, we have $\sigma_{q}=\tau_{q}+\mu_{q}$. Since $\Gamma_{j}\left[\pi_{1}\right]$ and $\Gamma_{j^{\prime}}\left[\pi_{2}\right]$ are representative sets, it follows that there exist $\mathcal{S}_{1}^{\prime}=\left(Y_{1}^{\prime}, \ldots, Y_{r-1}^{\prime}\right)$ in $\Gamma_{j}\left[\pi_{1}\right]$ and $\mathcal{S}_{2}^{\prime}=\left(Z_{1}^{\prime}, \ldots, Z_{r-1}^{\prime}\right)$ in $\Gamma_{j^{\prime}}\left[\pi_{2}\right]$ such that $\mathcal{S}_{1}^{\prime} \leq_{j} \mathcal{S}_{1},\left|\mathcal{S}_{1}^{\prime}\right| \leq\left|\mathcal{S}_{1}\right|$ and $\mathcal{S}_{2}^{\prime} \leq_{j^{\prime}} \mathcal{S}_{2},\left|\mathcal{S}_{2}^{\prime}\right| \leq\left|\mathcal{S}_{2}\right|$. Let $\mathcal{S}^{\prime}=\left(P_{1}^{\prime}, \ldots, P_{r-1}^{\prime}\right)$, where $P_{q}^{\prime}=Y_{q}^{\prime}$ if Z_{q}^{\prime} is the empty path, otherwise, $P_{q}=Z_{q}^{\prime}$, for $q \in[r-1]$. The sequence \mathcal{S}^{\prime} conforms to π, is in \mathcal{R}_{π}, and $\left|\mathcal{S}^{\prime}\right|=\left|\mathcal{S}_{1}^{\prime}\right|+\left|\mathcal{S}_{2}^{\prime}\right| \leq|\mathcal{S}|$. By Lemma $5.14, \Gamma_{i}[\pi]$ contains a sequence $\mathcal{S}^{\prime \prime}$ such that $\mathcal{S}^{\prime \prime} \leq_{i} \mathcal{S}^{\prime}$ and $\left|\mathcal{S}^{\prime \prime}\right| \leq\left|\mathcal{S}^{\prime}\right|$. From Observation 4.7, since $X_{i}=X_{j}=X_{j^{\prime}}$, from $\mathcal{S}_{1}^{\prime} \leq_{j} \mathcal{S}_{1}$ and $\mathcal{S}_{2}^{\prime} \leq_{j^{\prime}} \mathcal{S}_{2}$ it follows that $\mathcal{S}_{1}^{\prime} \leq_{i} \mathcal{S}_{1}$ and $\mathcal{S}_{2}^{\prime} \leq_{i} \mathcal{S}_{2}$. Since $\chi\left(\mathcal{S}_{1}\right) \cup \chi\left(\mathcal{S}_{2}\right)=\chi(\mathcal{S})$ and $\chi\left(\mathcal{S}_{1}^{\prime}\right) \cup \chi\left(\mathcal{S}_{2}^{\prime}\right)=\chi\left(\mathcal{S}^{\prime}\right)$, and since $\chi\left(\mathcal{S}_{1}\right) \cap \chi\left(\mathcal{S}_{2}\right) \subseteq \chi\left(X_{i}\right)$, by Lemma 4.8, it follows that $\mathcal{S}^{\prime} \leq_{i} \mathcal{S}$. Since $\mathcal{S}^{\prime \prime} \leq_{i} \mathcal{S}^{\prime}$, by transitivity of \leq_{i}, it follows that $\mathcal{S}^{\prime \prime} \leq_{i} \mathcal{S}$. Moreover $\left|\mathcal{S}^{\prime \prime}\right| \leq|\mathcal{S}|$, which concludes the proof.

We can now conclude with the following theorem:
Theorem 5.15. There is an algorithm that on input ($G, C, \chi, s, t, k, \ell$) of Bounded-Length Colored Path-Con, either outputs a k-valid s - t path of length at most ℓ in G, or decides that no such path exists, in time $O^{\star}\left(f(k, \ell)^{37 \ell^{2}}\right)$, where $f(k, \ell)=O\left(c^{\ell k} \cdot k^{k} \cdot \ell^{3 \ell k}\right)$, for some constant $c>1$. Therefore, Bounded-length Colored Path-Con parameterized by both k and ℓ is FPT.

Proof. If $d_{G}(s, t)>\ell$, then, by definition, there is no $s-t$ path of length at most ℓ. Hence, we assume that $d_{G}(s, t) \leq \ell$. By Lemma 5.3, if there exists a vertex v such that $d_{G}(s, v)>\ell+1$, we can contract any edge incident to v and obtain an equivalent instance. The contraction of a single edge can be done in time polynomial in the size of the instance, and after applying Lemma $5.3|E|$ times, we would get a trivial instance. Moreover, from the proof of Lemma 5.3, it follows that we can obtain a solution for the original instance from a solution in the contracted instance in polynomial time. Therefore, we can assume for the rest of the proof that we applied Lemma 5.3 exhaustively, and hence G has radius at most $\ell+1$ and treewidth ω that is at most $3 \ell+4$ [30]. Moreover, a tree decomposition of G of width ω can be computed in (polynomial) time $O(\ell \cdot n)$ [25]. From such a tree decomposition, in polynomial time we can compute a nice tree decomposition $(\mathcal{V}, \mathcal{T})$ of G whose width is at most $\omega \leq 3 \ell+4$ and satisfying $|\mathcal{V}|=O(|V(G)|)$ [26].

The algorithm starts by removing the colors of s and t from G, and decrements k by $|\chi(s) \cup \chi(t)|$ (see Assumption 2.2). Afterwards, if $k<0$, the algorithm concludes that there is no k-valid s - t path in G. If $s t \in E(G)$ and $k \geq 0$, the algorithm outputs the path (s, t). Now we know that s and t are not adjacent, and that $\chi(s)=\chi(t)=\emptyset$. The algorithm then adds s and t to every bag in \mathcal{T}, and executes the dynamic programming algorithm based on $(\mathcal{V}, \mathcal{T})$ to compute a table Γ_{i} that contains, for each bag X_{i} in \mathcal{T} and each pattern π for X_{i}, a representative set \mathcal{R}_{π} for $\left(X_{i}, \pi\right)$.

The correctness of the algorithm and the upper bound on its running time follow using similar arguments to those in the proof of Theorem 4.12.

5.3 Applications

In this subsection, we describe some applications of Theorem 5.15. The first result is a direct consequence of Theorem 5.15.

Corollary 5.16. For any computable function h, the restriction of Colored Path-Con to instances in which the length of the sought path is at most $h(k)$ is FPT parameterized by k.

We note that the above restriction of Colored Path-Con is NP-hard, as a consequence of (the proof of) Corollary 6.3.

Corollary 5.16 directly implies Korman et al.'s results [27], showing that Obstacle Removal parameterized by k is FPT for unit-disk obstacles and for similar-size fat regions with constant
overlapping number. Using Bereg and Kirkpatrick's result [2], the length of a shortest k-valid path for unit-disk obstacles is at most $3 k$ (see also Lemma 3 in Korman et al. [27]). By Corollary 2 in [27], the length of a shortest k-valid path for similar-size fat-region obstacles with constant overlapping number is linear in k. Corollary 5.16 generalizes these FPT results, which required quite some effort, and provides an explanation to why the problem is FPT for such restrictions, namely because the path has length upper bounded by a function of the parameter. In particular, one may allow the connected obstacles to be of various shapes and sizes, provided that the length of the path is upper bounded by a function of the parameter.

The second application we describe is related to an open question posed in [14]. For an instance $I=(G, C, \chi, s, t, k)$ of Colored Path-Con, and a color $c \in C$, define the intersection number of c, denoted $\iota(c)$, to be the number of vertices in G on which c appears. Define the intersection number of $G, \iota(G)$, as $\max \{\iota(c) \mid c \in C\}$. Consider the following problem:
Bounded-intersection Colored Path-Con
Given: A planar graph G such that $l(G) \leq i$; a set of colors $C ; \chi: V \longrightarrow 2^{C}$; two designated vertices $s, t \in V(G)$; and $k, i \in \mathbb{N}$
Question: Does there exist a k-valid $s-t$ path in G ?
Again, the above problem is NP-hard, as a consequence of (the proof of) Corollary 6.3.
Corollary 5.17. Bounded-intersection Colored Path-Con is FPT parameterized by both k and i.

Proof. Since the number of vertices in G on which any color $c \in C$ appears is at most $\iota(G)$, after applying the color contraction operation (see Lemma 2.4), the length of any k-valid s - t path is $O(k \cdot i)$. The result now follows from Theorem 5.15.

The following corollary is a direct consequence of Corollary 5.17:
Corollary 5.18. For any computable function h, Bounded-intersection Colored Path-Con restricted to instances (G, C, χ, s, t, k) satisfying $\iota(G) \leq h(k)$ is FPT parameterized by k.

Corollary 5.17 has applications pertaining to instances of Connected Obstacle Removal whose auxiliary graph is an instance of Bounded-intersection Colored Path-Con. In particular, an interesting case that was studied corresponds to the case in which the obstacles are convex polygons, each intersecting at most a constant number of other polygons. The complexity of this problem was left as an open question in [14, 20], and remains unresolved. The result in Corollary 5.18 subsumes this case, and even the more general case in which the obstacles are arbitrary convex obstacles satisfying that each obstacle intersects a constant number of other obstacles, as it is easy to see that the auxiliary graph of such instances will have a constant intersection number ${ }^{4}$. In fact, we can even allow the intersection number to be any (computable) function of the parameter:

Theorem 5.19. Let h be a computable function. The restriction of Connected Obstacle Removal to any set of convex obstacles in the plane satisfying that each obstacle intersects at most $h(k)$ other obstacles, is FPT parameterized by k.

Whereas the complexity of the problem in the above theorem is open, the theorem settles its parameterized complexity by showing it to be in FPT.

[^4]
6 HARDNESS RESULTS

In this section, we prove hardness results for Colored Path and Colored Path-Con, and their geometric counterparts Obstacle Removal and Connected Obstacle Removal. We start by showing that both problems are NP-hard, even when restricted to graphs of small outerplanarity and pathwidth.

Fig. 12. Illustration of the construction in the proof of Theorem 6.1. The left figure shows the geometric instance of Colored Path, and the right figure the graph associated with it.

Theorem 6.1. Colored Path, restricted to outerplanar graphs of pathwidth at most 2 and in which every vertex contains at most one color, is NP-complete.

Proof. It is clear that Colored Path is in NP. To show its NP-hardness, we reduce from the NP-hard problem Vertex Cover [16]: Given an undirected graph G and $k \in \mathbb{N}$, decide if G contains a subset of at most k vertices such that every edge in G is incident to at least one vertex in this subset. Let (G, k) be an instance of Vertex Cover, where $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$. In the rest of the proof, when we write $e=u w$ for an edge e in $E(G)$, we assume that $u=v_{i}$ and $w=v_{j}$ such that $i<j$ (i.e., the vertex of smaller index always appears first). Although not necessary for the proof, we first describe an instance I of Obstacle Removal whose associated graph is the desired instance of Colored Path. The regions of I are $O \cup\left\{Z_{0}, \ldots, Z_{m}\right\} \cup \bigcup_{i=1}^{m}\left\{O_{i}^{1}, O_{i}^{2}\right\}$, depicted in Figure 12 (left figure). The obstacles of I are defined as follows. For each vertex $v_{j} \in V(G)$, the obstacle corresponding to v_{j} is the polygon whose boundary is the boundary of the region formed by the union of O, each O_{i}^{1} such that $e_{i}=v_{j} v_{q}$, and each O_{i}^{2} such $e_{i}=v_{p} v_{j}$. More formally, the obstacle corresponding to v_{j} is $\partial\left(O \cup \bigcup_{e_{i}=v_{j} v_{q}} O_{i}^{1} \cup \bigcup_{e_{i}=v_{p} v_{j}} O_{i}^{2}\right)$. The graph associated with I, G_{I}, is defined as follows. Each (empty) region $Z_{i}, i=0, \ldots, m$, corresponds to a vertex $z_{i} \in V\left(G_{I}\right)$, where Z_{0} corresponds to s and Z_{m} to t. Each region $O_{i}^{1}, i \in[m]$, corresponds to a vertex y_{i}, and each region $O_{i}^{2}, i \in[m]$, corresponds to a vertex x_{i}. The set of edges $E\left(G_{I}\right)$ is $E\left(G_{I}\right)=\left\{z_{i-1} x_{i}, z_{i-1} y_{i}, x_{i} y_{i}, z_{i} x_{i}, z_{i} y_{i} \mid i \in[m]\right\}$. The color function $\chi: V\left(G_{I}\right) \longrightarrow 2^{C}$, where $C=[n]$, is defined as follows: $\chi\left(z_{i}\right)=\emptyset$, for $i=0, \ldots, m ; \chi\left(x_{i}\right)=\{j\}$ and $\chi\left(y_{i}\right)=\{p\}$, where $e_{i}=v_{p} v_{j}$, for $i \in[m]$. This completes the construction of G_{I}; see Figure 12 (right figure) for illustration. It is easy to see that G_{I} is outerplanar and has pathwidth at most 2.

Define the reduction from Vertex Cover to Colored Path that takes an instance (G, k) to the instance (G_{I}, C, χ, s, t, k). Clearly, this reduction is polynomial-time computable. Suppose that Q, where $|Q|=r \leq k$, is a vertex cover of G. Consider the $s-t$ path $P=\left(s, w_{1}, z_{1}, \ldots, w_{m}, z_{m}\right)$ in G_{I}, where $w_{i}=y_{i}$ if edge $e_{i}=v_{p} v_{q}$ is covered by v_{p}, and $w_{i}=x_{i}$ otherwise, for $i \in[m]$. Clearly this is a k-valid s - t path in G_{I} since each edge e_{i} is covered by a vertex in Q, each w_{i} is colored by the index of one of the vertices in Q, and each vertex in G_{I} (and hence each w_{i}) contains at most one color. Conversely, suppose that P is a k-valid $s-t$ path in G_{I}. By construction of G_{I}, P has to contain at least one vertex from $\left\{x_{i}, y_{i}\right\}$, for each $i \in[m]$. If P contains both x_{i} and y_{i}, for some $i \in[m]$, then clearly, from the construction of P, P must contain either $\left(z_{i-1}, x_{i}, y_{i}, z_{i}\right)$ or $\left(z_{i-1}, y_{i}, x_{i}, z_{i}\right)$, as a subpath, and we can shortcut this subpath by removing one of x_{i}, y_{i}, to
obtain another k-valid s - t path in G_{I}. Therefore, without loss of generality, we may assume that P contains exactly one vertex w_{i} from $\left\{x_{i}, y_{i}\right\}$, for $i \in[m]$. Now define the set of vertices Q in G as the vertices in G whose indices are the colors appearing on (the w_{i} 's in) P. More formally, define $Q=\left\{v_{p} \mid w_{i}=x_{i} \in P \wedge e_{i}=v_{q} v_{p}\right\} \cup\left\{v_{p} \mid w_{i}=y_{i} \in P \wedge e_{i}=v_{p} v_{q}\right\}$. Since P is a k-valid path in G_{I}, the total number of colors appearing on $\left\{w_{1}, \ldots, w_{m}\right\}$ is at most k. Notice that the color of each of x_{i}, y_{i} is the index of a vertex in G that covers edge e_{i}. It follows that the set Q of vertices in G, that are the indices of the colors on P, form a k-vertex cover of G.

Fig. 13. Illustration of the proof of Corollary 6.2.

Corollary 6.2. Colored Path-Con, restricted to 2 -outerplanar graphs of pathwidth at most 3 , is NP-complete.

Proof. This follows directly from the NP-hardness reduction in the proof of Theorem 6.1 by observing the following. The graph G_{I} resulting from the reduction is outerplanar. We can add a new vertex to the outer face of G_{I} (see Figure 13) containing all colors that appear on G_{I}, and add edges between the new vertex and all vertices in G_{I}. The obtained graph is color-connected and has pathwidth at most 3 .

Assuming ETH, the following corollary rules out the existence of subexponential-time algorithms for Colored Path-Con (and hence for Colored Path), even for restrictions of the problem to graphs of small outerplanarity, pathwidth, and maximum number of occurrences of each color:

Corollary 6.3. Unless ETH fails, Colored Path-Con, restricted to 2-outerplanar graphs of pathwidth at most 3 and in which each color appears at most 4 times, is not solvable in $O\left(2^{o(n)}\right)$ time, where n is the number of vertices in the graph.

Proof. It is well known, and follows from [24] and the standard reduction from Independent Set to Vertex Cover, that unless ETH fails, Vertex Cover, restricted to graphs of maximum degree at most 3, denoted VC-3, is not solvable in subexponential time. Starting from an instance of VC-3 with n vertices, and observing that the reduction in the proof of Theorem 6.1 results in an instance of Colored Path-Con whose number of vertices is $O(n)$, of pathwidth at most 3, and in which each color appears at most 4 times, proves the result.

Next, we shift our attention to studying the parameterized complexity of Colored Path and Colored Path-Con. The reduction from Set Cover showing the NP-hardness of Colored Path, given in several works [3, 20, 35], is in fact an FPT-reduction implying the W[2]-hardness of Colored Path. We will strengthen this result, and show in the remainder of this section that Colored Path is $\mathrm{W}[\mathrm{SAT}]$-hard. We will also prove the membership of the problem in $\mathrm{W}[\mathrm{P}]$, which adds a natural W[SAT]-hard problem to this class. The W[SAT]-hardness result shows that the problem is hopeless in terms of it having FPT-algorithms. We start by showing that the
problem remains W[1]-hard, even when restricted to instances of small pathwidth (and hence small treewidth) and maximum number of occurrences of each color. We then show that the problem remains $\mathrm{W}[1]$-hard even when parameterized by both k and the length of the sought path.

Remark 6.4. Before we prove our parameterized hardness results for Colored Path, we remark that we can obtain equivalent hardness results for Obstacle Removal using the following generic realization of instances of Colored Path as instances of Obstacle Removal. Given an instance $I=(G, C, \chi, s, t, k)$ of Colored Path, we define an equivalent instance I^{\prime} of Obstacle Removal as follows. We start by fixing a straight-line plane embedding Π of G, which always exists by Fáry's theorem [15]. Moreover, we can compute such an embedding in linear time [9]. We define the starting and finishing points in I^{\prime} to be the images s^{\prime} and t^{\prime} of vertices s and t under Π, respectively. We correspond with every edge in G a "corridor" in I' as follows. We start by "thickening" the edges of Π. Then, inside each polygonal face f of Π, we nest $k+1$ (distinct) disjoint polygonal obstacles, each excluding its interior (i.e., the interior is not part of the obstacle). For every color $c \in C$ and every vertex $v \in V(G)$ such that $c \in \chi(v)$, we place at the image of v (under Π) a rectangle that intersects exactly those polygonal obstacles nested within the faces incident to v; we define the obstacle corresponding to the color c in I^{\prime} to be the union of the rectangles associated with color c. Finally, we remove the images under Π of all vertices and edges of G, except s^{\prime} and t^{\prime}, thus creating corridors corresponding to the edges of G that are surrounded by nested polygonal obstacles created based on the faces of G. See Figure 14 for illustration. Observe that this geometric realization may increase the number of obstacles that overlap at a region, which corresponds to the number of colors on the vertex in the graph that corresponds to the region, by at most 1.

Clearly, a k-valid s-t path P in G corresponds to a k-valid $s^{\prime}-t^{\prime}$ path in I^{\prime}; this path would follow the corridors corresponding to the edges of P, and intersects only obstacles that correspond to the colors on P. Conversely, if there is a k-valid $s^{\prime}-t^{\prime}$ path in I^{\prime}, then consider such a path that intersects the minimum number of obstacles. It is not difficult to see that such a path must stay strictly within the defined corridors, as deviating from these corridors would only increase the number of intersected obstacles. With such a path we can correspond a k-valid s - t walk in G that follows the edges corresponding to the corridors traversed by the path in I^{\prime}. From such a walk a k-valid $s-t$ path in G can be extracted.

We mention that the above geometric realization of an instance $I=(G, C, \chi, s, t, k)$ of Colored Path can be performed in polynomial time and using polynomial space. For instance, one can start from a straight-line embedding of the graph G on a grid of size $O(n) \times O(n)$, where $n=|V(G)|$, which always exists and can be computed in polynomial time (e.g., see [10]). One can then expand the grid size by a polynomial in n, for some properly-chosen polynomial, so that, for any face of the graph, one can nest polynomially-many faces within it (to represent the obstacles) whose incident vertices are on the grid, and hence have integer coordinates that are polynomially-bounded by n. Similarly, it is easy to see that by a proper choice of the polynomial used for the grid-expansion, the rectangular obstacles corresponding to the colors (on the vertices of G) can be placed so that their vertices are on the grid.

Fig. 14. Illustration of the realization of an instance of Colored Path as an instance of Obstacle Removal.

Fig. 15. Illustration of the construction of the gadget $G_{i, j}$ in the proof of Lemma 6.5.

Fig. 16. Illustration of the construction of G^{\prime} in the proof of Lemma 6.5.

Lemma 6.5. Colored Path, restricted to instances of pathwidth at most 4 and in which each vertex contains at most one color and each color appears on at most 2 vertices, is $\mathrm{W}[1]$-hard parameterized by k.

Proof. We reduce from the W[1]-hard problem Multi-Colored Clique [19]: Given an undirected graph $G, k \in \mathbb{N}$, and a proper k-coloring of $V(G)$, decide if G contains a clique of k vertices. Let (G, k) be an instance of Multi-Colored Clique, where $V(G)$ is partitioned into the color classes C_{1}, \ldots, C_{k}. Let $C_{j}=\left\{u_{i}^{j} \mid i \in\left[\left|C_{j}\right|\right]\right\}$. We describe how to construct an instance ($G^{\prime}, C^{\prime}, \chi^{\prime}, s, t, k^{\prime}$) of Colored Path. For an edge $e \in G$, associate a distinct color c_{e}, and define $C^{\prime}=\left\{c_{e} \mid e \in E(G)\right\}$.

To simplify the description of the construction, we start by defining a gadget that will serve as a building block for this construction.

For a vertex u_{i}^{j} in color class C_{j}, we define the gadget $G_{i, j}$ as follows. Create a copy of each color class $C_{j^{\prime}}, j^{\prime} \neq j$, and remove from each $C_{j^{\prime}}$ all copies of vertices that are not neighbors of u_{i}^{j} in G. Let the resulting copies of the color classes be $C_{1}^{\prime}, \ldots, C_{k-1}^{\prime}$. We define the color of a copy v^{\prime} of a neighbor v of u_{i}^{j} as $\chi^{\prime}\left(v^{\prime}\right)=\left\{c_{e}\right\}$, where $e=u_{i}^{j} v$. Next, we introduce $k-2$ empty vertices y_{r}, $r \in[k-2]$. For $r \in[k-2]$, we connect all vertices in C_{r}^{\prime} to y_{r}, and connect y_{r} to all vertices in C_{r+1}^{\prime}. This completes the construction of gadget $G_{i, j}$; we refer to C_{1}^{\prime} and C_{k-1}^{\prime} as the first and last color classes in gadget $G_{i, j}$, respectively. See Figure 15 for illustration of $G_{i, j}$. Observe that every path from a vertex in C_{1}^{\prime} to a vertex in C_{k-1}^{\prime} contains exactly one vertex from each $C_{r}^{\prime}, r \in[k-1]$, and contains all vertices $y_{r}, r \in[k-2]$. Therefore, any such path contains the colors of exactly $k-1$ distinct edges that are incident to u_{i}^{j}.

We finish the construction of G^{\prime} by introducing $k+1$ new empty vertices z_{0}, \ldots, z_{k}, and connecting them as follows. For each color class $C_{j}, j \in[k]$, and each vertex $u_{i}^{j} \in C_{j}$, we create the gadget $G_{i, j}$, connect z_{j-1} to each vertex in the first color class of $G_{i, j}$, and connect each vertex in the last color class of $G_{i, j}$ to z_{j}. Let G^{\prime} be the resulting graph. Finally, we set $s=z_{0}, t=z_{k}$, and $k^{\prime}=\binom{k}{2}$. See Figure 16 for illustration. This completes the construction of the instance ($G^{\prime}, C^{\prime}, \chi^{\prime}, s, t, k^{\prime}$) of Colored Path. Observe that each vertex in G^{\prime} contains at most one color, and that each color c_{e} of an edge $e=u_{i}^{j} u_{i^{\prime}}^{j^{\prime}}$ in G, appears on exactly two vertices in G^{\prime} : the copy of $u_{i^{\prime}}^{j^{\prime}}$ in the gadget $G_{i, j}$ of u_{i}^{j}, and the copy of u_{i}^{j} in the gadget $G_{i^{\prime}, j^{\prime}}$ of $u_{i^{\prime}}^{j^{\prime}}$.

Clearly, the reduction that takes an instance (G, k) of Multi-Colored Clique and produces the instance ($G^{\prime}, C^{\prime}, \chi^{\prime}, s, t, k^{\prime}$) of Colored Path is computable in FPT-time. To show its correctness, suppose that (G, k) is a yes-instance of Multi-Colored Clique, and let Q be a k-clique in G. Then Q contains a vertex from each C_{j}, for $j \in[k]$. For a vertex $u_{i}^{j} \in Q$, let $G_{i, j}$ be its gadget, and define the path P_{j} as follows. In each color class in $G_{i, j}$, pick the unique vertex that is a copy of a neighbor of u_{i}^{j} in Q; define P_{j} to be the path in $G_{i, j}$ induced by the picked vertices, plus the empty vertices $y_{r}, r \in[k-2]$, that appear in $G_{i, j}$. Finally, define P to be the $s-t$ path in G^{\prime} whose edges are: the (unique) edge between z_{r-1} and an endpoint of P_{r}, P_{r}, and the (unique) edge between an endpoint of P_{r} and z_{r}, for $r \in[k]$. To show that P is k^{\prime}-valid, observe that all the nonempty vertices in P are vertices whose color is the color of an edge between two vertices in Q. This shows that the number of colors that appear on P is at most $k^{\prime}=\binom{k}{2}$, and hence, P is k^{\prime}-valid. It follows that ($G^{\prime}, C^{\prime}, \chi^{\prime}, s, t, k^{\prime}$) is a yes-instance of Colored Path.

Conversely, suppose that P is a k^{\prime}-valid s - t path in G^{\prime}. Then P^{\prime} must start at s, visit the gadgets of exactly k vertices $u_{i_{j}}^{j} \in C_{j}$, for $j \in[k], i_{j} \in\left[\left|C_{j}\right|\right]$, and end at t. We claim that $Q=\left\{u_{i_{j}}^{j} \mid j \in[k]\right\}$ is a clique in G. Recall that the subpath of P that traverses a gadget $G_{i, j}$ of $u_{i_{j}}^{j}$ contains the colors of exactly $k-1$ edges that are incident to $u_{i_{j}}^{j}$. Therefore, the total number of occurrences of colors (counting multiplicities) on P is precisely $(k-1) k$. Since P is $\binom{k}{2}$-valid, and each color c_{e} of an edge e in G appears exactly twice in G^{\prime}, it follows that each color that appears on P appears exactly twice on P. This is only possible if the gadgets corresponding to the two endpoints of the edge are traversed by P, and hence, both endpoints of the edge are in Q. Therefore, P contains the colors of $k^{\prime}=\binom{k}{2}$ edges, whose both endpoints are in Q. Since $|Q|=k$, it follows that Q is a k-clique in G, and that (G, k) is a yes-instance of Multi-Colored Clique.

Lemma 6.6. Colored Path, parameterized by both k and the length of the path ℓ, is in $\mathrm{W}[1]$.

Proof. To prove membership in W[1], we use the characterization of the class W[1] given by Chen et al. [7]:

A parameterized problem Q is in W[1] if and only if there is a computable function h and a nondeterministic FPT algorithm \mathbb{A} for a nondeterministic-RAM machine deciding Q, such that, for each instance (x, k^{\prime}) of Q (k^{\prime} is the parameter), all nondeterministic steps of \mathbb{A} take place during the last $h\left(k^{\prime}\right)$ steps of the computation.
Therefore, to show that Colored Path is in W[1], it suffices to exhibit such a nondeterministic FPT algorithm \mathbb{A}. \mathbb{A} works as follows: It guesses a set C^{\prime} of k colors and guesses a sequence of $\ell-1$ internal vertices $v_{1}, \ldots, v_{\ell-1}$ of the path. Then it verifies that $\left(s=v_{0}, v_{1}, \ldots, v_{\ell-1}, v_{\ell}=t\right)$ is a path in G, and that $\chi\left(v_{i}\right) \subseteq C^{\prime}$, for $i=0, \ldots, \ell$. It is not difficult to see that this verification can be implemented in $h(k, \ell)$ steps, where h is a computable function.

By Lemma 2.4, we can assume that in an instance of Colored Path, no two adjacent vertices are empty. With this assumption in mind, if the instance satisfies that each vertex contains at most one color and that each color appears on at most 2 vertices, then any k-valid s - t path has length at most $4 k+1$. It follows from Lemma 6.5 and Lemma 6.6 that:

Theorem 6.7. Colored Path, parameterized by both k and the length of the path ℓ, is $\mathrm{W}[1]-$ complete.

Theorem 6.8. Colored Path, restricted to instances of pathwidth at most 4 and in which each vertex contains at most one color and each color appears on at most 2 vertices, is $\mathrm{W}[1]$-complete parameterized by k.

Next, we show that Colored Path sits high up in the parameterized complexity hierarchy. We start by showing its membership in $\mathrm{W}[\mathrm{P}]$:

Theorem 6.9. Colored Path, parameterized by k, is in $\mathrm{W}[\mathrm{P}]$.
Proof. We give an FPT-reduction from Colored Path to Weighted Boolean Circuit Satisfiability (WBCS) on polynomial size (monotone) circuits. Given an instance (G, C, χ, s, t, k) of Colored Path, we construct an instance (B, k) of WBCS, where B is a circuit whose output gate is an or-gate, as follows. By Assumption 2.2, we can assume that s and t are nonadjacent empty vertices. By Lemma 2.4, we can also assume that no two adjacent vertices are empty. For each color $c \in C$, we create a variable x_{c}; those are the input variables to B. In addition to the output gate, B contains $n=|V(G)|$ layers of gates, where each layer, except the first, consists of two rows of gates, U_{i}, L_{i}, for $i=2, \ldots, n$, and the first layer consists of one row L_{1} of gates. The layers of B are defined as follows.

Each gate in L_{1} is an AND-gate g_{v} that corresponds to a neighbor v of s; the input to g_{v} is the set of input variables corresponding to the colors in $\chi(v)$. Suppose that row L_{i} in layer $i, i \geq 1$, has been defined, and we describe how U_{i+1} and L_{i+1} are defined. For every vertex $v \in V(G)$ with a neighbor u such that u has a corresponding and-gate g_{u}^{2} in L_{i}, we create an or-gate g_{v}^{1} in U_{i+1} and an AnD-gate g_{v}^{2} in L_{i+1} corresponding to v; we connect the output of each and-gate g_{u}^{2} in L_{i} corresponding to neighbor u of v to the input of or-gate g_{v}^{1} in U_{i+1}, and connect the output of the or-gate g_{v}^{1} and each input variable x_{c} such that $c \in \chi(v)$ to the AND-gate g_{v}^{2} in L_{i+1}. If $v=t$, then we connect the output of the And-gate g_{v}^{2} to the output gate of the circuit. This completes the description of B. Clearly, the reduction that takes (G, C, χ, s, t, k) to (B, k) runs in polynomial time, and hence in FPT-time. Next, we prove its correctness.

First observe that the only gates in B that are connected to its output gate are the And-gates that correspond to t. Second, every gate in B corresponds to a vertex that is reachable from s in
G. Moreover, for every And-gate g corresponding to a vertex v, and every $s-v$ path in G, the truth assignment that assigns 1 to the variables corresponding to the colors of this path satisfies g.

Suppose now that (G, C, χ, s, t, k) is a yes-instance of Colored Path. Then there is an s - $t k$-valid path P in G. Based on the above observations, the assignment that assigns $x_{c}=1$ if and only if $c \in \chi(P)$ is a satisfying assignment to B of weight at most k. Conversely, suppose that B has a satisfying assignment τ of weight at most k. Then there is an AND-gate g corresponding to t that is satisfied by τ, and there is a path in B from a gate corresponding to neighbor of s in L_{1} to g, all of whose gates are satisfied by τ. It is easy to verify that this path in B corresponds to an $s-t$ path all of whose colors correspond to the input variables assigned 1 by τ, and hence this path is k-valid.

Fig. 17. Illustrations of the construction of the gadgets in the proof of Theorem 6.10.

Theorem 6.10. Colored Path, parameterized by k, is W[SAT]-hard.
To prove Theorem 6.10, we start from the W[SAT]-complete problem Monotone Weighted Boolean Formulas Satisfiability (M-WSAT) [12] and show the following lemma that directly implies Theorem 6.10, and that will also be useful for proving Theorem 6.12.

Lemma 6.11. There is a polynomial time algorithm that takes an instance (B, k) of M-WSAT with n variables x_{1}, \ldots, x_{n} and outputs a Colored Path instance ($G, C=[n], \chi, s, t, k$) such that: For any assignment τ to B that assigns variables $x_{i_{1}}, \ldots, x_{i_{p}}$ the value 1 and all other variables the value $0, \tau$ satisfies B if and only if there is an s-t path P in G that uses a subset of the colors $\left\{i_{1}, \ldots, i_{p}\right\}$.

Proof. Recall that a Boolean formula corresponds to a circuit in the normalized form. Therefore, we can assume that B is a monotone Boolean circuit in which each (non-variable) gate has fan-out at most 1 , and the gates of B are structured into alternating levels of ors-of-Ands-of-ors. We construct an instance (G, C, χ, s, t, k) of Colored Path as follows.

First, we let $C=[n]$, where color i will represent input variable x_{i} in B. We define G from B by defining a gadget for each gate in B recursively, starting the recursive definition at the output gate of B. For a gate g in B, its gadget is defined by distinguishing the type of g as follows.

If g is an And-gate, let g_{1}, \ldots, g_{r} be the or-gates, and $x_{i_{1}}, \ldots, x_{i_{p}}$ be the input variables that feed into g. The gadget of g is defined as follows. First, create two empty vertices i_{g} and out ${ }_{g}$, which will serve as the "entry" and "exit" vertices of the gadget for g, respectively. For each $x_{i_{j}}, j \in[p]$, create a vertex v_{j} colored with color i_{j} and an entry vertex v_{0} and an exit vertex v_{p+1}; form a path
G_{0} consisting of the vertices $v_{0}, v_{1}, \ldots, v_{p}, v_{p+1}$. For each or-gate $g_{i}, i \in[r]$, recursively construct the gadget G_{i} for g_{i}. Connect all these gadgets G_{0}, \ldots, G_{r} serially in arbitrary order, starting by identifying $i n_{g}$ with the entry vertex of the first gadget, the exit vertex of the first gadget with the entry of the second, ..., and the exit vertex of the last gadget with out ${ }_{g}$. See Figure 17 (bottom) for illustration.

If g is an or-gate, let g_{1}, \ldots, g_{r} be the AND-gates, and $x_{i_{1}}, \ldots, x_{i_{p}}$ be the input variables that feed into g. The gadget of g is defined as follows. First, create two empty vertices $i n_{g}$ and $o u t_{g}$, which will serve as the "entry" and "exit" vertices of the gadget for g, respectively. For each $x_{i_{j}}, j \in[p]$, create a vertex v_{j} colored with color i_{j}, and connect each v_{j} to i_{g} and out ${ }_{g}$. For each and-gate g_{i}, $i \in[r]$, recursively construct the gadget G_{i} for g_{i}. Connect all these gadgets G_{1}, \ldots, G_{r} in parallel by identifying all the entry vertices of G_{1}, \ldots, G_{r} with $i n_{g}$ and all their exit vertices with out ${ }_{g}$. This completes the description of G. It is not difficult to see that since B with its input variables removed is a tree, the above construction runs in polynomial time and results in a planar graph G. See Figure 17 (top) for illustration.

Finally, set s and t to be the entry and exit vertices of the gadget corresponding to the output gate of B. Clearly, the reduction that takes (B, k) and produces (G, C, χ, s, t, k) runs in time polynomial in the size of the input instance. Next, we prove its correctness.

We will prove the following statement: For any gate g in B, and any assignment τ to B that assigns variables $x_{i_{1}}, \ldots, x_{i_{p}}$ the value 1 , and all other variables the value $0, \tau$ satisfies g if and only if there is a path P in G from the entry vertex to the exit vertex of the gadget corresponding to g such that P uses a subset of the colors $\left\{i_{1}, \ldots, i_{p}\right\}$. Notice that the aforementioned statement applied to the output gate of B is precisely the statement of the lemma.

We prove the above statement by induction on the depth of the gate g in B. The base case is when g has depth 1 . In this case the input to g consists only of input variables. Suppose first that g is an or-gate, and let τ be an assignment that assigns exactly variables $x_{i_{1}}, \ldots, x_{i_{p}}$ the value 1 . Then τ satisfies g if and only if $x_{i_{j}}$ is an input variable to g, for some $j \in[p]$, which is true if and only if there is a path from the entry vertex of the gadget for g to its exit vertex that uses color i_{j}. Suppose now that g is an AND-gate, and let τ be an assignment that assigns exactly variables $x_{i_{1}}, \ldots, x_{i_{p}}$ the value 1 . Then τ satisfies g if and only if the input variables to g form a subset S of $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\}$; let $\eta(S)$ be the indices of the variables in S. Since the gadget for g consists of a path P between the entry and exit vertices of the gadget for g such that $\chi(P)=\eta(S)$, the statement follows.

Suppose, by the inductive hypothesis, that the statement we are proving is true for any gate g of depth $1 \leq a<\ell$, and let g be a gate of depth ℓ. Let $x_{j_{1}}, \ldots, x_{j_{q}}$ be the input variables to g, and g_{1}, \ldots, g_{r} be the input gates to g. We again distinguish two cases based on the type of g.

Gate g is an or-gate. Let τ be an assignment that assigns exactly variables $x_{i_{1}}, \ldots, x_{i_{p}}$ the value 1 . Suppose first that τ satisfies g. Then either τ satisfies an input variable $x_{j_{z}}, z \in[q]$, or τ satisfies an input And-gate $g_{y}, y \in[r]$. If τ satisfies $x_{j_{z}}$ then there is a path between the entry and exit vertices of the gadget for g that uses color j_{z}. Otherwise, τ satisfies $g_{y}, y \in[r]$, and by the inductive hypothesis applied to g_{y}, there is a path P_{y} between the entry and exit vertices of the gadget for g_{y} such that $\chi\left(P_{y}\right) \subseteq\left\{i_{1}, \ldots, i_{p}\right\}$. From the way the gadget for g was constructed, it follows that P_{y} is also a path between the entry and exit vertices of the gadget for g. To prove the converse, suppose that there is a path P_{g} between the entry and exit vertices of the gadget for g that uses a subset of colors in $\left\{i_{1}, \ldots, i_{p}\right\}$. Either P_{g} is a path whose only internal vertex corresponds to an input variable, and in such case the input variable is in $\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\}$, and g is satisfied; or P_{g} is a path between the entry and exit vertices of the gadget for an and-gate g_{y} that feeds into g, and by the inductive hypothesis, τ satisfies g_{y} and also g.

Gate g is an AND-gate. Let τ be an assignment that assigns exactly variables $x_{i_{1}}, \ldots, x_{i_{p}}$ the value 1. Suppose first that τ satisfies g. Then τ assigns 1 to every input variable $x_{j_{z}}$ to $g, z \in[q]$. Hence, there is a path P between the entry and exit vertices of the gadget corresponding to $x_{j_{1}}, \ldots, x_{j_{q}}$ such that $\chi(P) \subseteq\left\{i_{1}, \ldots, i_{p}\right\}$. Assignment τ also satisfies each or-gate g_{y}, where $y \in[r]$. By the inductive hypothesis, there is a path P_{y} between the entry and exit vertices of the gadget for g_{y} such that $\chi\left(P_{y}\right) \subseteq\left\{i_{1}, \ldots, i_{p}\right\}$. From the construction of g, it follows that the path between the entry and exit vertices of the gadget for g, which is $P_{g}=P \circ P_{1} \circ \ldots \circ P_{r}$, satisfies $\chi\left(P_{g}\right) \subseteq\left\{i_{1}, \ldots, i_{p}\right\}$. Conversely, suppose that there is a path P_{g} between the entry and exit vertices of the gadget for g such that $\chi\left(P_{g}\right) \subseteq\left\{i_{1}, \ldots, i_{p}\right\}$. Then P_{g} can be decomposed into a subpath P that traverses the vertices corresponding to $x_{j_{1}}, \ldots, x_{j_{q}}$, and subpaths P_{1}, \ldots, P_{r}, where P_{y} is a subpath between the entry and exit vertices of the gadget for g_{y}. Since P traverses the vertices corresponding to $x_{j_{1}}, \ldots, x_{j_{q}}$, it follows that $\left\{x_{j_{1}}, \ldots, x_{j_{q}}\right\} \subseteq\left\{x_{i_{1}}, \ldots, x_{i_{p}}\right\}$. Since $P_{y}, y \in[r]$, is a subpath between the entry and exit vertices of the gadget for g_{y}, by the inductive hypothesis, it follows that τ satisfies g_{y}. It follows that τ assigns 1 to all input variables to g and satisfies all the input OR-gates to g, and hence, τ satisfies g.

As it turns out, we can even exclude FPT cost approximation algorithms for Colored Path. We first need the following theorem:

Theorem 6.12 (Corollary 5 of [29]). Unless FPT= W[2], Monotone Weighted Boolean Circuit Satisfiability for circuits with depth 4 is not FPT cost approximable.

Corollary 6.13. Unless $\mathrm{FPT}=\mathrm{W}$ [2], Colored Path parameterized by k is not FPT cost approximable.

Proof. Proceed by contradiction, and assume that there is an FPT cost approximation algorithm \mathbb{A} for Colored Path with approximation ratio ρ. Using \mathbb{A}, we give an FPT cost approximation algorithm \mathbb{B} for Monotone Weighted Boolean Circuit Satisfiability for circuits of depth 4 with the same approximation ratio ρ.

The algorithm \mathbb{B} works as follows. Let (B, k) be an instance of Monotone Weighted Boolean Circuit Satisfiability such that B has depth at most 4. The algorithm first transforms B into a monotone circuit B^{\prime} in the normalized form (see the proof of the Normalization Theorem in Section 23.2.2 of [12] for more details). Since B has depth at most 4, this procedure terminates in polynomial time, results in a polynomial blow-up of the instance size, and preserves precisely all the variables, the solutions and their sizes. Afterwards, \mathbb{B} calls the algorithm of Lemma 6.11 on the instance $\left(B^{\prime}, k\right)$ to produce a Colored Path instance (G, C, χ, s, t, k). Finally, \mathbb{B} calls \mathbb{A} on (G, C, χ, s, t, k).

From the construction of \mathbb{B}, it follows that any assignment τ to B that assigns variables $x_{i_{1}}, \ldots, x_{i_{p}}$ the value 1 and all other variables the value 0 , satisfies the formula B if and only if there is an $s-t$ path P in G that uses a subset of the colors $\left\{i_{1}, \ldots, i_{p}\right\}$. Therefore, $\operatorname{OPT}(B)=\operatorname{OPT}(G, C, \chi, s, t)$, and \mathbb{B} is an FPT cost approximation algorithm for Monotone Weighted Boolean Circuit Satisfiability, for circuits of depth 4 , with approximation ratio ρ. However, by Theorem 6.12 such an algorithm cannot exist unless FPT= W[2], and the corollary follows.

Remark 6.14. A noteworthy remark that we close this section with, is to comment on the role that planarity plays in the parameterized complexity of Colored Path-Con. If one drops the planarity requirement on the instances of Colored Path-Con (i.e., considers Colored Path-Con on general graphs), then it follows from the proof of Theorem 6.10 that the resulting problem is $\mathrm{W}[\mathrm{SAT}]$-hard. This can be seen by adding a single vertex containing all colors, that serves as a "color-connector," to the instance of Colored Path produced by the FPT-reduction; this modification results in an instance
of the connected obstacle removal problem on apex graphs, establishing the W[SAT]-hardness of this problem on apex graphs.

7 CONCLUSION

In this paper, we studied the complexity and the parameterized complexity of the Colored Path problem and its geometric counterpart the Obstacle Removal problem. These problems have applications in several areas of computer science, in particular, in motion planning and wireless computing. Our work sheds light on structural parameters that play crucial roles in characterizing the complexity of the problems. Our results generalize and explain several results in the literature, as well as provide new insights into the structure of the problems. The following questions remain open:

- We showed in this paper that Colored Path-Con is FPT parameterized by k and the treewidth of the input graph, and is also FPT parameterized by k and the length of the path sought. The obvious-yet important-question is whether or not Colored Path-Con is FPT parameterized only by k.
- Although Connected Obstacle Removal was shown to be NP-hard even when the obstacles have very simple geometric shape, such as line segments, the complexity of the problem when the obstacles are unit disks remains a long-standing open problem that is worth investigating.
- Finally, as mentioned in the previous section, the complexity of the restriction of Connected Obstacle Removal to instances consisting of convex obstacles, each intersecting at most a constant number of other obstacles, is an interesting open question.

REFERENCES

[1] H. Alt, S. Cabello, P. Giannopoulos, and C. Knauer. Minimum cell connection in line segment arrangements. International Journal of Computational Geometry and Applications, 27(3):159-176, 2017.
[2] S. Bereg and D. Kirkpatrick. Approximating barrier resilience in wireless sensor networks. In Proceedings of ALGOSENSORS, pages 29-40, 2009.
[3] R. Carr, S. Doddi, G. Konjevod, and M. Marathe. On the red-blue set cover problem. In Proceedings of SODA, pages 345-353, 2000.
[4] D. Chan and D. Kirkpatrick. Multi-path algorithms for minimum-colour path problems with applications to approximating barrier resilience. Theoretical Computer Science, 553:74-90, 2014.
[5] R. Chang and S. Leu. The minimum labeling spanning trees. Information Processing Letters, 63(5):277-282, 1997.
[6] D. Chen and H. Wang. Computing shortest paths among curved obstacles in the plane. ACM Transanctions on Algorithms, 11(4):26:1-26:46, 2015.
[7] Y. Chen, J. Flum, and M. Grohe. Machine-based methods in parameterized complexity theory. Theoretical Computer Science, 339(2-3):167-199, 2005.
[8] Y. Chen, M. Grohe, and M. Grüber. On parameterized approximability. In Proceedings of IWPEC, pages 109-120, 2006.
[9] H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fáry embeddings of planar graphs. In Proceedings of STOC, pages 426-433. ACM, 1988.
[10] Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a grid. Combinatorica, 10(1):41-51, 1990.
[11] R. Diestel. Graph Theory, 4th Edition. Springer, 2012.
[12] R. Downey and M. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Berlin, Heidelberg, 2013.
[13] E. Eiben, J. Gemmell, I. Kanj, and A. Youngdahl. Improved results for minimum constraint removal. In Proceedings of AAAI. AAAI Press, 2018.
[14] L. Erickson and S. LaValle. A simple, but NP-hard, motion planning problem. In Proceedings of AAAI. AAAI Press, 2013.
[15] I. Fáry. On straight line representation of planar graphs. Acta Universitatis Sezegediensis, 11:229-233, 1948.
[16] M. Garey and D. Johnson. Computers and Intractability. W.H. Freeman, 1979.
[17] A. Gorbenko and V. Popov. The discrete minimum constraint removal motion planning problem. In Proceedings of the American Institute of Physics, volume 1648. AIP Press, 2015.
[18] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics - a foundation for computer science (2. ed.). Addison-Wesley, 1994.
[19] S. Hartung and R. Niedermeier. Incremental list coloring of graphs parameterized by conservation. Theoretical Computer Science, 494:86-98, 2013.
[20] K. Hauser. The minimum constraint removal problem with three robotics applications. International fournal of Robotics Research, 33(1):5-17, 2014.
[21] J. Hershberger, N. Kumar, and S. Suri. Shortest Paths in the Plane with Obstacle Violations. In Proceedings of ESA, volume 87 of LIPIcs, pages 49:1-49:14, 2017.
[22] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM fournal on Computing, 28(6):2215-2256, 1999.
[23] I. Hicks. Planar branch decompositions I: The ratcatcher. INFORMS fournal on Computing, 17(4):402-412, 2005.
[24] D. Johnson and M. Szegedy. What are the least tractable instances of Max independent set? In Proceedings of SODA, pages 927-928. ACM/SIAM, 1999.
[25] I. Katsikarelis. Computing bounded-width tree and branch decompositions of k-outerplanar graphs. CoRR, abs/1301.5896, 2013. URL: http://arxiv.org/abs/1301.5896.
[26] T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer Science. Springer, 1994.
[27] M. Korman, M. LÃüffler, R. Silveira, and D. Strash. On the complexity of barrier resilience for fat regions and bounded ply. Computational Geometry, 72:34-51, 2018.
[28] S. Kumar, T. Lai, and A. Arora. Barrier coverage with wireless sensors. In Proceedings of MOBICOM, pages 284-298. ACM, 2005.
[29] D. Marx. Completely inapproximable monotone and antimonotone parameterized problems. Fournal of Computers and System Sciences, 79(1):144-151, 2013.
[30] N. Robertson and P. Seymour. Graph minors. III. planar tree-width. fournal of Combinatorial Theory, Series B, 36(1):49 64, 1984.
[31] P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217-241, 1994.
[32] K. Tseng and D. Kirkpatrick. On barrier resilience of sensor networks. In Proceedings of ALGOSENSORS, pages 130-144, 2012.
[33] S. Voss, R. Cerulli, A. Fink, and M. Gentili. Applications of the pilot method to hard modifications of the minimum spanning tree problem. In Proceedings of the 18th MINI EURO conference on VNS, 2005.
[34] S. Yang. Some Path Planning Algorithms in Computational Geometry and Air Traffic Management. PhD thesis, University of New Yort at Stony Brook. Available at: https://dspace.sunyconnect.suny.edu/handle/1951/59927, 2012.
[35] S. Yuan, S. Varma, and J. Jue. Minimum-color path problems for reliability in mesh networks. In Proceedings of INFOCOM, pages 2658-2669, 2005.

[^0]: *A preliminary version of this paper appears at ICALP 2018.
 Authors' addresses: Eduard Eiben, Royal Holloway, University of London, Egham, TW20 0EX, United Kingdom, eduard. eiben@rhul.ac.uk; Iyad Kanj, School of Computing, DePaul University, Chicago, IL, USA, ikanj@cs.depaul.edu.

 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
 © 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
 1549-6325/2020/10-ART \$15.00
 https://doi.org/10.1145/nnnnnnn.nnnnnnn

[^1]: ${ }^{1}$ We note that some works consider the edge-colored version of the problem, but for all purposes considered in this paper the two versions are equivalent.

[^2]: ${ }^{2}$ Note that in the definition of representative sets, we consider sequences of paths as opposed to sequences of walks. During the computation, the dynamic programming algorithm computes a sequence of walks that conforms to (X_{i}, π), but then it refines it into a sequence of paths that represents $\left(X_{i}, \pi\right)$.

[^3]: ${ }^{3}$ That is, order the sequences in \mathcal{W} so that if two sequences $\mathcal{S}_{p}, \mathcal{S}_{q}$ are such that $\mathcal{S}_{p} \leq_{i} \mathcal{S}_{q}$ but $\mathcal{S}_{q} \not \varliminf_{i} \mathcal{S}_{p}$ then \mathcal{S}_{p} appears before \mathcal{S}_{q} in the ordering.

[^4]: ${ }^{4}$ Note that convexity is essential here, as otherwise, the intersection number of the auxiliary graph may be unbounded.

