8 research outputs found

    Computing with Coloured Tangles

    Full text link
    We suggest a diagrammatic model of computation based on an axiom of distributivity. A diagram of a decorated coloured tangle, similar to those that appear in low dimensional topology, plays the role of a circuit diagram. Equivalent diagrams represent bisimilar computations. We prove that our model of computation is Turing complete, and that with bounded resources it can moreover decide any language in complexity class IP, sometimes with better performance parameters than corresponding classical protocols.Comment: 36 pages,; Introduction entirely rewritten, Section 4.3 adde

    Ethereum blockchain as a decentralized and autonomous key server: storing and extracting public keys through smart contracts

    Get PDF
    Ethereum is an open-source, public, blockchain-based distributed computing platform featuring smart contract functionality. It provides a decentralized Turing-complete virtual machine which can execute scripts using an international network of public nodes. The purpose of this thesis is to build a decentralized and autonomous key server using Ethereum smart contracts to store and retrieve information. We did an overall introduction of Bitcoin and Ethereum to provide a background of the study. We then analyzed the current problems of key discovery with traditional servers and web-of-trust. We designed, built and tested an application that can verify contact cards (email address, PGP public key, domain address, Facebook account), link them to an Ethereum address and store them on a public contract running on the Ethereum blockchain. Finally we made an analysis of the costs and limitations of such solution and proposed some future improvements. The results show that Ethereum is a good choice for storing public keys, thanks to the immutability and irreversibility of the blockchain

    PCD

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Page 96 blank. Cataloged from PDF version of thesis.Includes bibliographical references (p. 87-95).The security of systems can often be expressed as ensuring that some property is maintained at every step of a distributed computation conducted by untrusted parties. Special cases include integrity of programs running on untrusted platforms, various forms of confidentiality and side-channel resilience, and domain-specific invariants. We propose a new approach, proof-carrying data (PCD), which sidesteps the threat of faults and leakage by reasoning about properties of a computation's output data, regardless of the process that produced it. In PCD, the system designer prescribes the desired properties of a computation's outputs. Corresponding proofs are attached to every message flowing through the system, and are mutually verified by the system's components. Each such proof attests that the message's data and all of its history comply with the prescribed properties. We construct a general protocol compiler that generates, propagates, and verifies such proofs of compliance, while preserving the dynamics and efficiency of the original computation. Our main technical tool is the cryptographic construction of short non-interactive arguments (computationally-sound proofs) for statements whose truth depends on "hearsay evidence": previous arguments about other statements. To this end, we attain a particularly strong proof-of-knowledge property. We realize the above, under standard cryptographic assumptions, in a model where the prover has blackbox access to some simple functionality - essentially, a signature card.by Alessandro Chiesa.M.Eng

    Privacy Preserving Cryptographic Protocols for Secure Heterogeneous Networks

    Get PDF
    Disertační práce se zabývá kryptografickými protokoly poskytující ochranu soukromí, které jsou určeny pro zabezpečení komunikačních a informačních systémů tvořících heterogenní sítě. Práce se zaměřuje především na možnosti využití nekonvenčních kryptografických prostředků, které poskytují rozšířené bezpečnostní požadavky, jako je například ochrana soukromí uživatelů komunikačního systému. V práci je stanovena výpočetní náročnost kryptografických a matematických primitiv na různých zařízeních, které se podílí na zabezpečení heterogenní sítě. Hlavní cíle práce se zaměřují na návrh pokročilých kryptografických protokolů poskytujících ochranu soukromí. V práci jsou navrženy celkově tři protokoly, které využívají skupinových podpisů založených na bilineárním párování pro zajištění ochrany soukromí uživatelů. Tyto navržené protokoly zajišťují ochranu soukromí a nepopiratelnost po celou dobu datové komunikace spolu s autentizací a integritou přenášených zpráv. Pro navýšení výkonnosti navržených protokolů je využito optimalizačních technik, např. dávkového ověřování, tak aby protokoly byly praktické i pro heterogenní sítě.The dissertation thesis deals with privacy-preserving cryptographic protocols for secure communication and information systems forming heterogeneous networks. The thesis focuses on the possibilities of using non-conventional cryptographic primitives that provide enhanced security features, such as the protection of user privacy in communication systems. In the dissertation, the performance of cryptographic and mathematic primitives on various devices that participate in the security of heterogeneous networks is evaluated. The main objectives of the thesis focus on the design of advanced privacy-preserving cryptographic protocols. There are three designed protocols which use pairing-based group signatures to ensure user privacy. These proposals ensure the protection of user privacy together with the authentication, integrity and non-repudiation of transmitted messages during communication. The protocols employ the optimization techniques such as batch verification to increase their performance and become more practical in heterogeneous networks.

    Lattices : a study of some relevant parameters for applications in criptography

    Get PDF
    Orientador: Sueli Irene Rodrigues CostaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação CientíficaResumo: Neste trabalho estudamos parâmetros de reticulados que são relevantes para aplicações na chamada criptografia pós-quântica, em sistemas importantes como LWE e SIS. São analisados o parâmetro de suavização, particularmente nos reticulados mais densos conhecidos em suas dimensões, bem como reticulados ideais e reticulados q-áriosAbstract: In this work we study lattice parameters which are relevant for applications on the so called post-quantum cryptography, in important systems such as LWE and SIS. We analyzed the smoothing parameter, particularly for the densest known lattices in their dimensions, as well as ideal lattices and q-ary latticesMestradoMatematicaMestre em Matemática131290/2018-5CNP

    Practical zero-knowledge Protocols based on the discrete logarithm Assumption

    Get PDF
    Zero-knowledge proofs were introduced by Goldwasser, Micali, and Rackoff. A zero-knowledge proof allows a prover to demonstrate knowledge of some information, for example that they know an element which is a member of a list or which is not a member of a list, without disclosing any further information about that element. Existing constructions of zero-knowledge proofs which can be applied to all languages in NP are impractical due to their communication and computational complexity. However, it has been known since Guillou and Quisquater's identification protocol from 1988 and Schnorr's identification protocol from 1991 that practical zero-knowledge protocols for specific problems exist. Because of this, a lot of work was undertaken over the recent decades to find practical zero-knowledge proofs for various other specific problems, and in recent years many protocols were published which have improved communication and computational complexity. Nevertheless, to find more problems which have an efficient and practical zero-knowledge proof system and which can be used as building blocks for other protocols is an ongoing challenge of modern cryptography. This work addresses the challenge, and constructs zero-knowledge arguments with sublinear communication complexity, and achievable computational demands. The security of our protocols is only based on the discrete logarithm assumption. Polynomial evaluation arguments are proposed for univariate polynomials, for multivariate polynomials, and for a batch of univariate polynomials. Furthermore, the polynomial evaluation argument is applied to construct practical membership and non-membership arguments. Finally, an efficient method for proving the correctness of a shuffle is proposed. The proposed protocols have been tested against current state of the art versions in order to verify their practicality in terms of run-time and communication cost. We observe that the performance of our protocols is fast enough to be practical for medium range parameters. Furthermore, all our verifiers have a better asymptotic behavior than earlier verifiers independent of the parameter range, and in real life settings our provers perform better than provers of existing protocols. The analysis of the results shows that the communication cost of our protocols is very small; therefore, our new protocols compare very favorably to the current state of the art
    corecore