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Abstract

Zero-knowledge proofs were introduced by Goldwasser, Micali, and Rackoff. A zero-knowledge proof

allows a prover to demonstrate knowledge of some information, for example that they know an element

which is a member of a list or which is not a member of a list, without disclosing any further informa-

tion about that element. Existing constructions of zero-knowledge proofs which can be applied to all

languages in NP are impractical due to their communication and computational complexity. However, it

has been known since Guillou and Quisquater’s identification protocol from 1988 and Schnorr’s identifi-

cation protocol from 1991 that practical zero-knowledge protocols for specific problems exist. Because

of this, a lot of work was undertaken over the recent decades to find practical zero-knowledge proofs for

various other specific problems, and in recent years many protocols were published which have improved

communication and computational complexity.

Nevertheless, to find more problems which have an efficient and practical zero-knowledge proof

system and which can be used as building blocks for other protocols is an ongoing challenge of modern

cryptography. This work addresses the challenge, and constructs zero-knowledge arguments with sub-

linear communication complexity, and achievable computational demands. The security of our protocols

is only based on the discrete logarithm assumption.

Polynomial evaluation arguments are proposed for univariate polynomials, for multivariate polyno-

mials, and for a batch of univariate polynomials. Furthermore, the polynomial evaluation argument is

applied to construct practical membership and non-membership arguments. Finally, an efficient method

for proving the correctness of a shuffle is proposed.

The proposed protocols have been tested against current state of the art versions in order to verify

their practicality in terms of run-time and communication cost. We observe that the performance of our

protocols is fast enough to be practical for medium range parameters. Furthermore, all our verifiers have

a better asymptotic behavior than earlier verifiers independent of the parameter range, and in real life

settings our provers perform better than provers of existing protocols. The analysis of the results shows

that the communication cost of our protocols is very small; therefore, our new protocols compare very

favorably to the current state of the art.
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Chapter 1

Introduction

1.1 Motivation
Computers and Internet play an important role in our modern life. For a lot of everyday tasks there are

online solutions available. The one which probably first comes into one’s mind is the use of e-mails

instead of letters. Furthermore, a lot of people do their daily banking online, rather than going to the

bank in person or sending a cheque. Wikipedia was developed to help us with the task of looking up and

spreading knowledge. Other web based services for completely new tasks were created over the years

such as Twitter and Facebook. Users dealing with any of these services are naturally concerned about

the security of their data and their privacy.

To protect privacy, anonymising networks such as Tor [Tor13] were invented. They allow a user

to hide their IP address and therefore make it difficult to trace the user’s Internet activity. For this

reason such networks are used by a number of groups including undercover police agents, abuse victims,

and citizens living under dictatorships. During the Arab Spring in 2011, for instance, the Tor network

experienced a spike in users from Libya and Egypt [Din11]. However, anonymous access to services

can also lead to abuse. Wikipedia, for instance, allows anonymous postings, but blocks the IP address of

misbehaving users. This crude solution means that if one user of Tor abuses Wikipedia, all users whose

traffic comes out of the same Tor relay with this IP-address are blocked. Thus, one misbehaving user

causes many innocent users to be punished.

Different solutions to deal with this problem were suggested. Johnson et al. [JKTS07] suggested

the Nymble system. In this alternative solution IP-addresses are not blocked, but instead each user

anonymously proves that they have not been blacklisted. Other solutions along that line were suggested,

among others, by Li and Hopper [LH11], as well as Henry and Goldberg [HG11]. Non-membership

proofs were also studied in their own right, the best asymptotic solutions so far were given by Brands et

al. [BDD07] and Peng [Pen11].

The reversed case of membership proofs, where the user wants to prove anonymously that they

belong to a certain set, are useful when operating a whitelist access control system or group signature

schemes. Membership proofs are also useful in applications such as e-auctions where users want to prove

that their bids belong to a set of approved values, another application of membership proofs is e-voting.

From a voter’s perspective it is important that they are able to prove that their vote belongs to a
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certain set and therefore their vote is valid and be counted correctly. Apart from that, potential users of

e-voting schemes may fear that the secrecy of the vote does not hold true anymore and that somebody is

able to link their votes back to them after the votes are counted. Because of this, it is important to ensure

the secrecy of the vote. To guarantee anonymity, e-voting protocols can be based on mix-nets. A mix-net

is a multi-party protocol which allows a group of senders to input a number of encrypted messages to

the mix-net, which then outputs them in random order.

It is common to construct mix-nets from shuffles and let mix-servers take turns in shuffling the

ciphertexts. Informally, a shuffle of ciphertexts C1, . . . , Cn is a list of ciphertexts C ′1, . . . , C
′
n which

contain the same plaintexts in permuted order.

As long as the shuffle is permutation hiding, which means that nobody is able to link input and

output of a shuffle operation, the anonymity inside a mix-net can be ensured. Permutation hiding can be

accomplished by re-encrypting the permuted ciphertexts, but then these ciphertexts could be substituted

without detection. Therefore, it is also important that the correctness of a shuffle is guaranteed, and it is

assured that the output ciphertexts contain the same plaintexts as the input ciphertexts. Different solutions

to prove correctness were proposed, among these, solutions based on permutation matrices [FS01, Fur05,

GL07, Wik09], or solutions based on the invariance of polynomials under permutation of roots [Nef01,

GI08, Gro10].

It can be seen that in various settings it is desirable to construct solutions which guarantee the

anonymity of the user without compromising performance or usability of the protocol. We also see

that many different solutions for various problems have been published relying on different approaches.

Some of these are either broken [Cha81, JJ01, JJR02] or do not guarantee full anonymity [JKTS07,

HHG10, AST02]. In contrast, it seems that solutions based on zero-knowledge do not suffer from these

drawbacks.

Zero-knowledge proofs are interactive proofs which allow a user to prove a statement without re-

vealing more than the correctness of the claim. This concept was introduced by Goldwasser, Micali,

and Rackoff [GMR85]. An interactive proof consists of communication between a computationally un-

bounded prover and a probabilistic polynomial time verifier. The communication consists of challenges

from the verifier and answers to these challenges from the prover. The goal of the prover is to convince

the verifier of the statement in such a way that the verifier always accepts, if the assertion is true. On

the other hand, the prover should only be able to cheat with negligible probability, which means that

there should be a very low probability of the verifier accepting a false statement. Brassard, Chaum, and

Crèpeau [BCC88] pointed out that in most applications it is secure enough to restrict the cheating prover

to have polynomial time. This means an unbounded prover may be able to cheat, but a polynomial

time prover is only able to cheat with negligible probability. To distinguish the different settings such

zero-knowledge protocols are called arguments [BCY91].

Zero-knowledge protocols, i.e. proofs and arguments, are very powerful tools. They allow to prove

statements from every language in NP, that means languages Lwhere x ∈ L can be proven in polynomial

time given a witness w.

After several researchers [GMW91, BCC88] had discovered that every language in NP has a zero-
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knowledge proof system, the question of whether or not these protocols can be efficient and practical

arose. Various aspects in a zero-knowledge proof system can be considered to be optimized, such as

round complexity [FS89, BCY91], computational complexity [Sch91], and communication complexity.

A lot of theoretical research was undertaken to reduce the communication complexity for all prob-

lems in NP. Boyar et al. [BLP93, BBP91] reduced the cost of zero-knowledge proofs to subquadratic.

Killian’s [Kil92] construction for proofs has also subquadratic communication cost, and Cramer and

Damgård [CD97] showed that it is possible to get zero-knowledge proofs with linear communication

cost. Recently, Ishai et al. [IKOS07] improved this result further; their approach depends only linearly

on the statement size and they gave also a version depending quasi-linearly on the witness size n, that

means the size of the argument is O(n log(n)). Crescenzo and Fedyukovych [CF12] have taken a differ-

ent approach, and also showed that it is possible to prove all statements in NP with communication size

which depends linearly on the statement size. Their protocol performs better for small circuits sizes than

the method proposed by Ishai et al. [IKOS07], which still has the best asymptotic cost for big circuits.

If we consider arguments, the cost can be even lower, Cramer and Damgård’s [CD97] argument for

circuit satisfiability is linear in the circuit size. Killian’s [Kil92, Kil95] argument has only a polyloga-

rithmic communication cost. The recent works by Ishai et al. [IKOS07] and Goldwasser et al. [GKR08]

achieved arguments whose size depends only quasilinearly on the witness size.

The work done so far shows that it is possible to construct zero-knowledge protocols with a low

communication cost. However, these techniques tend to have increased computational cost and therefore

they are mostly of theoretical interest. It is considered to be one of the important challenges [Joh00] in

modern cryptology to construct zero-knowledge proof systems which have both efficient communication

and computational complexity. Therefore, in addition to the effort to lower the amount of communica-

tion for general zero-knowledge protocols, work was undertaken to reduce the communication cost for

specific problems, for example as described above, without paying the price of high computational cost.

Among others, [FO97, Bra97, CS97] gave polynomial evaluation arguments with linear cost and

[FS01, Nef01, Fur05, TW10] achieved linear communication cost for shuffles. However, none of these

protocols are really practical, they suffer from a big constant factor and the size of all these arguments is

greater than the size of the statement itself.

In recent years more sophisticated techniques helped to reduce the argument size to sublinear. For

instance Brands et al. [BDD07] stated a non-membership argument with square root cost or [GI08]

proposed a sublinear shuffle argument. Furthermore, Groth [Gro09] gave different zero-knowledge ar-

guments with sublinear size for general statements involving linear algebra, and based on this result

Seo [Seo11] stated an improved version with less interaction.

This work addresses the challenge posed by Johnson [Joh00] and we construct zero-knowledge

arguments with both sublinear communication complexity and practical computation complexity. The

security of our protocols rests only on the discrete logarithm assumption, which conjectures that the cal-

culation of the discrete logarithm for a random group elementH to baseG in various finite cyclic groups

G is hard. More precisely, a group G is cyclic with finite order n if G = {G,G2, . . . , Gn−1, Gn = 1}
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is generated by the base element G, and the discrete logarithm of H is the unique element x ∈ Zn, for

which Gx = H holds.

The discrete logarithm assumption is one of the most fundamental and well-studied cryptographic

assumptions. There are several types of prime order groups where the discrete logarithm assumption is

believed to hold, for instance an order q subgroup of Z∗p where p is a large prime, or a group of points on

an elliptic curve. This yields group elements that can be much smaller than when using RSA-moduli or

pairing-based cryptography, giving us an advantage compared to such schemes.

1.2 This work
One of the important challenges on modern cryptology is to find efficient zero-knowledge proof systems

which can be used to construct real life protocols [Joh00]. In this work we address this problem and

answer the challenge positively for zero-knowledge arguments based on the discrete logarithm assump-

tion. Our new zero-knowledge arguments are all sublinear in the statement size; in addition, our shuffle

argument, see Chapter 8, is also sublinear in the witness size. Apart from the sublinear communicational

cost, which is desirable in itself, our arguments are practical in terms of computational cost. Thus, we

are able to give protocols, which answer the challenge posed by Johnson [Joh00] to find more efficient

zero-knowledge protocols.

We will first explain efficient protocols for various specific problems, which can be used as building

blocks for more complex zero-knowledge arguments, detailed in Chapter 5. Then, we show how these

techniques can be used to construct zero-knowledge arguments for different real life problems. More

precisely we propose an univariate polynomial evaluation argument, a polynomial evaluation argument

for multivariate polynomials, and an argument to show correct evaluation of a set of polynomials at

the same time, see Chapter 6. We will also give non-membership proofs and membership proofs, see

Chapter 7, and an argument to show correctness of a shuffle, which will be explained in Chapter 8. We

compare all these protocols with former work and see that they compare very favorably to them. This

holds especially regarding the communication cost, and all our verifiers are much lighter than the state

of the art. Furthermore, we implemented our protocols to verify the practicality of the argument size and

also to test the real life behavior of our protocols.

There are various reasons why our zero-knowledge arguments perform better than earlier protocols.

First we have chosen our commitment scheme carefully. A commitment scheme allows the prover to

commit themselves to a value without disclosing this value. Later the prover can open the commitment

to reveal the value. We have chosen the general Pedersen commitment, which will be introduced in

detail in Section 3.3.1. The general Pedersen commitment is homomorphic and therefore allows to verify

sophisticated combinations of commitments and leads to reduced computational cost. Also the Pedersen

commitment is length reducing, since it is possible to conceal many elements in one element, which is

important to get sublinear communication cost. Furthermore, we will make use of a special design of the

verifier’s challenges. Instead of picking n different challenges xi, the verifier constructs Vandermonde

challenges x, x2, . . . , xn. The use of the Vandermonde challenges allows us to use sophisticated batch

verification and therefore reduces the communication and computational complexity.

The previous two reasons apply to all our protocols, in addition we use special techniques for
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different settings. To reduce the complexity of our polynomial arguments, we have written the Xi in

binary, similar to multi-exponentiation techniques, which gives us a logarithmic cost. Another trick we

used for different arguments, for example, batch-polynomial evaluation or shuffle argument, is to arrange

the witness in an m × n matrix, together with the general Pedersen commitment this leads to sublinear

communication cost. Lastly, we used Lagrange interpolation polynomials in our constructions, which

led to sophisticated ways to verify our commitments.

All these techniques combined give us zero-knowledge arguments for various applications, which

all have sublinear cost and as a result compare very favorably against earlier work for the same problems.

In this work we construct our protocols as honest verifier zero-knowledge protocols [BMO90]; this

means an honest but curious verifier will gain no knowledge from the interaction with the prover, but a

dishonest verifier may be able to gain information. More precisely, we will use the stronger definition of

special honest verifier zero-knowledge arguments [CDS94], in this case there exists a simulator S which

can simulate the interaction between a prover and a verifier given the messages of the verifier beforehand.

It is possible to transform these arguments into full zero-knowledge protocols secure against arbitrary

verifiers using an OR-proof [CDS94] or standard techniques [FS89].

We will present our protocols in the plain model, that means that the security of our protocols is

only based on the discrete logarithm assumption. The description of the finite groups and public keys

used inside a protocol are part of our statement. This allows us to concentrate on the description of

the protocols themselves, without worrying where the groups come from. In real life application the

group description and keys could be supplied by a trusted third party that provides the environment

the protocols are used in. Alternatively, the group description and the public keys can be generated by

multi-party protocols of all parties involved. Another possibility is that the verifier decides on the group

description and the public keys, and the prover verifies the correctness of these.

All of our protocols are described as interactive protocols, but all can be transformed to non-

interactive proofs using the Fiat-Shamir heuristic [FS86] if a security proof in the random oracle model

is secure enough. Nevertheless, in this work we will concentrate on the interactive setting only and

therefore compare our work with interactive protocols.

The contributions of this dissertation can be summarized as follows.

1. We demonstrate how Groth’s zero-knowledge argument for linear algebra relation [Gro09] can be

used to construct a product argument to show
∏N
i=1 ai = b for secret ai and public known b. This

argument was joint work with Jens Groth and was published at Eurocrypt 2012 [BG12].

2. We demonstrate how Groth’s zero-knowledge argument for linear algebra relation [Gro09] can be

used to construct a product argument to show
∏N
i=1 ai = b for secret ai and secret b.

3. We give a multi Hadamard product argument to show for secret vectors ai, b that a1◦. . .◦an = b,

with sublinear complexity. This argument was published together with Jens Groth at Eurocrypt

2012 [BG12].

4. We give an argument to show that for secret vectors ai, bi that
∑m
i=1 ai∗bi = 0, for a bilinear map
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∗ : ZqZq → Zq , with sublinear complexity. This was also published at Eurocrypt 2012 [BG12]

together with Jens Groth.

5. We give a zero-knowledge argument for committed vectors ai, bi, ci ∈ Znq satisfying ai ◦bi = ci,

where ◦ denotes the entry-wise product. This Hadamard product argument is joint work with Jens

Groth.

6. We propose an efficient and practical honest-verifier zero-knowledge polynomial evaluation argu-

ment with logarithmic communication and computational complexity. This result was published

at Eurocrypt 2013 [BG13] together with Jens Groth.

7. We show how the polynomial evaluation argument can be adjusted to work with multivariate poly-

nomials. The new argument has only polylogarithmic communication and computational com-

plexity.

8. We explain how one can prove evaluation of L polynomials efficiently at the same time. The work

leading to the argument was done together with Jens Groth.

9. We propose a practical zero-knowledge non-membership argument to show that a secret value u

is not contained in a list L, which is a straightforward application of our polynomial evaluation

argument. This work was published at Eurocrypt 2013 [BG13] together with Jens Groth.

10. We give a zero-knowledge non-membership argument to show that a secret value u is not contained

in a secret list L.

11. We propose a practical zero-knowledge membership argument to show that a secret value u is

contained in a list L. This result was also published at Eurocrypt 2013 [BG13] together with Jens

Groth.

12. We explain how one can simultaneously prove non-membership or membership of multiple lists

This is also joint work with Jens Groth.

13. Lastly, we propose an efficient honest verifier zero-knowledge argument for the correctness of a

shuffle. The argument was published at Eurocrypt 2012 [BG12] together Jens Groth.

In the following we will describe our main contributions in more detail.

Polynomial Evaluation: We propose efficient honest verifier zero-knowledge arguments for univariate

or multivariate polynomials in Chapter 6.

We give an efficient zero-knowledge argument for two committed values u, v satisfying P (u) = v

for a given polynomial P (X) ∈ Zq[X], where q is a prime and Zq[X] is the ring of polynomials with

coefficients in Zq . We work over a modular group G of order q and use the Pedersen commitment

scheme, i.e. a commitment to u is of the form GuHr for some r ∈ Zq . Given the coefficients of the

polynomial P (X) =
∑D
i=0 aiX

i and two Pedersen commitments, our zero-knowledge argument can

demonstrate knowledge of openings of the commitments to values u and v such that P (u) = v.
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Our zero-knowledge polynomial argument is highly efficient. The communication complexity is

O(logD) group and field elements, which is very small compared to the statement size of D field

elements. The prover computes O(logD) exponentiations in G and O(D logD) multiplications in Zq ,

and the verifier computesO(logD) exponentiations in G andO(D) multiplications in Zq . The constants

in the expressions are small.

We also show how this zero-knowledge argument can be efficiently adapted to cover the case of

multivariate polynomials. The new protocol only communicates O((logD)n) elements for an n-variate

polynomial with degree D, which leads to a much smaller argument size compared to all former ap-

proaches. Moreover, both parties have to calculate only O((logD)n) exponentiations, but an increased

number of multiplications. Although the number of multiplications dominates the computational com-

plexity, the total computational cost is smaller than the O(Dn) exponentiations needed by former ap-

proaches.

Next, we will explain how one can prove for L polynomials P1, . . . , PL at the same time that

Pi(ui) = vi for secret ui, vi without repeating our polynomial argument in parallel. This new approach

leads to a communication cost of O(
√
L logD) elements, opposed to the formerly needed O(LD)

elements. Furthermore, the computational cost is quite efficient, the prover only needs to calculate

O(L logD) exponentiations, whereas the verifier computes only O(
√
L logD) exponentiations.

Non-membership and membership proofs: In Chapter 7 we propose a practical non-membership proof

and a membership proof for sets which are straightforward applications of our polynomial argument. As

a consequence, the communication complexity of each proof is O(logD) group elements. This is a

significant reduction compared to previous schemes with complexity O(D) or O(
√
D). The prover’s

computation is a logarithmic number of exponentiations and a quasilinear number of multiplications

in Zq . The verifier’s computation is a logarithmic number of exponentiations and a linear number of

multiplications in Zq .

Shuffle: We also propose a practically efficient honest verifier zero-knowledge argument for the correct-

ness of a shuffle. Our argument is very efficient, in particular, we drastically decrease the communication

complexity compared to previous shuffle arguments. We cover the case of shuffles of ElGamal cipher-

texts, but it is possible to adapt our argument to other homomorphic encryption schemes as well. The

detailed description can be found in Chapter 8.

Our shuffle argument has sublinear communication complexity. When shuffling N = mn cipher-

texts, arranged in an m× n matrix, our argument transmits O(m+ n) group elements giving a minimal

communication complexity of O(
√
N) if we choose m = n. In comparison, Groth and Ishai’s argu-

ment [GI08] communicates Θ(m2 + n) group elements, and all other state of the art shuffle arguments

communicate Θ(N) elements.

Practical Results: To verify the practicality of our new arguments we implemented some of our new

protocols and some of the former protocols. The analysis of the results showed that our protocols perform

better for real life parameters, and also that the performance is efficient enough to be practical.

The implementations of our protocols allowed us to analyze the influence of different parameters,
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for example subgroup size or modulo size, on the running time and size of the argument. These results

give us evidence for which parts of the protocols should be optimized further to get even more practical

arguments.

When implementing the protocols we need to work over finite cyclic groups. There are many pos-

sible choices, for example subgroups of prime order modulo a large prime, or groups based on elliptic

or hyper-elliptic curves. In our implementations we have focused on subgroups modulo a large prime, in

order to keep our implementation as straightforward as possible. Adding the whole functionality for el-

liptic curves expected to increase the work disproportionately compared to the insight we expected from

the results. Elements of elliptic curves are smaller; thus, applying elliptic curves to our protocols would

lead to even smaller arguments. But this would be the case for all discrete logarithm based arguments.

Similarly, implementations of protocols over elliptic curves tend to be faster than implementations over

modular groups. Again, this is similar for all protocols based on the discrete logarithm. So, we would

gain little extra knowledge by comparing our work with other discrete logarithm based arguments in this

setting.

Our implementations are just straightforward implementations, i.e. our prover and verifier are sim-

ulated in the same program and communicate over simple data files; thus, we did not simulate a commu-

nication over SSL or other secure channels. The main focus of this work is to show that it is possible to

construct practical zero-knowledge protocols and analyze the pure run-time of these. Establishing a se-

cure connection between two parties adds some time on top of the execution time. This extra time would

effect our results; therefore, we can justify our approach. We are also aware that our implementation can

be open to general side channel attacks and that making the implementation secure against these might

add extra run-time. Again, we only want to measure the pure run-time; thus, we ignored this issue for

our implementation.

For the same reasons we did not set up key management. In real life applications key management

is used for example to distribute cryptographic keys to parties in a system. In our work we just picked

random numbers for the commitment key and the public encryption and passed these values over to the

prover and verifier. We are aware that in this case an adversary might learn something relevant from the

values, and as a consequence this should not be done in real life. But to change the key generation and

storage does not affect the runtime of the underlying protocols, for example shuffle, which was the scope

of our experiments. We can, therefore, justify the way we are dealing with the parameters.

1.3 Published Work
The univariate polynomial argument, Section 6.2, and the straightforward application of non-

membership and membership arguments, Chapter 7, were published at Eurocrypt 2013 in ’Zero-

knowledge Argument for Polynomial Evaluation with Application to Blacklists’ [BG13].

The shuffle argument, Chapter 8, and the underlying product argument, Section 5.3, were published

at Eurocrypt 2012 in ’Efficient Zero-knowledge argument for Correctness of a Shuffle’ [BG12]. Recently,

the developer of the Zeus e-voting scheme told us that they want to integrate our shuffle argument into

Zeus [Zeu13]. At the moment we are working with them to find the best way to do it [Lou13]. Fur-
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thermore, the Spanish e-voting company Scytl [Scy13] told us, that they are considering to include our

argument in their e-voting platform.

The Hadamard argument, Section 5.4, and the batch polynomial argument, Section 6.4 are joint

work with Jens Groth. So far they are unpublished. Furthermore, the multivariate polynomial argument

is new and was not published before.

1.4 Thesis Structure
The thesis is organized as follows. First we will give all the background needed for our thesis. In more

detail, in Chapter 2, we will briefly introduce the discrete logarithm assumption and give some overview

of the history of zero-knowledge. In Chapter 3, we will state all definitions of the concepts needed during

our thesis and introduce zero-knowledge formally. Next, in Chapter 4, we will introduce our approach

to the implementation and discuss relevant optimizations.

In Chapter 5, we will state and explain zero-knowledge arguments for different problems, which are

needed as building blocks for our zero-knowledge arguments. In Chapter 6 we describe our construction

of the new polynomial evaluation arguments and also describe Brands et al.’s [BDD07] technique for the

same problem. Furthermore, we discuss results from our implementation and compare our work in detail

to Brands et al.’s approach. In the next chapter, Chapter 7, we explain how our polynomial argument can

be applied to non-membership and membership proofs. Again we will recap Brands et al.’s [BDD07]

technique and compare our result theoretically and practically with Brands et al.’s [BDD07] work. Lastly,

in Chapter 8, we will state the construction of our efficient sublinear shuffle argument. Also, in this case

we will discuss results obtained from our implementation. In Chapter 9, we will conclude and give ideas

for possible future research.
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Chapter 2

Background

This thesis is about efficient zero-knowledge arguments. We base their security on the discrete logarithm

assumption. In this section we will introduce the discrete logarithm assumption and discuss the rele-

vant aspects. Furthermore, we will introduce zero-knowledge protocols in more detail and give a short

overview over the history.

2.1 Discrete Logarithm Assumption
The discrete logarithm assumption plays an important role in modern cryptography and various cryp-

tographic tools are based on it, for example ElGamal encryption [ElG84] or the Pedersen commit-

ment [Ped91].

Informally, the discrete logarithm assumption conjects that the calculation of the discrete logarithm

is hard for a random group element H to base G in various finite cyclic groups G. A group G is cyclic

with order n, if there exists a generator G ∈ G such that G = {G,G2, . . . , Gn−1, Gn = 1} and Gx 6= 1

for x < n. The discrete logarithm of H is an element x ∈ Zn for which H = Gx holds.

More precisely, hard in this context means that there exists no polynomial time algorithm which

can calculate the discrete logarithm of the element H ∈ G. For a formal definition, see Section 3.2.

Diffie and Hellman [DH76] were the first to use the discrete logarithm assumption in the context of

cryptography. They constructed a secure key exchange protocol based on the belief that the assumption

holds for finite fields of prime order.

There are several types of groups where the discrete logarithm assumption is believed to hold.

Among them certain prime order groups, for instance an order q subgroup of Z∗p where q and p are large

primes. It is also believed that the assumption holds for a group of points on an elliptic curve or on a

hyper-elliptic curve.

To clarify this belief we have to investigate the different methods of calculating the discrete loga-

rithm of an arbitrary elementH ∈ G. There are three classes of algorithms to solve the discrete logarithm

problem. The first class consists of generic algorithms, that means the algorithms do not exploit special

properties of the objects to which they are applied. Other algorithms work best for groups which have

smooth group order, a group order is smooth if it is the product of small primes. The last class requires

that smooth group elements exist. That means they can be represented as products of primes smaller
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than a certain boundary α.

The first and obvious generic algorithm is to test the equation Gx = H for all possible x ∈ Zn until

a x is found, where n is the order of the underlying group. This approach uses n group operations and

therefore is not recommended for large n.

Baby Step-Giant Step [Sha71] improves the upper-bound of the run-time to find the discrete loga-

rithm toO(
√
n). This method needsO(

√
n) space. A similar run-time is achieved by Pollard’s ρmethod

[Pol78] without the space requirement. Pollard’s ρ can be set up with constant size space.

Shoup [Sho97] showed that for any generic algorithm the lower bound of group operations to per-

form is at least Ω(
√
p), where p is prime and divides the group order n and for all primes q, q|n and it

holds q ≤ p. That means for groups with prime order p it is not possible to improve on the runtime of

Ω(
√
p) using generic algorithms.

For groups with smooth group order n the Pohlig-Hellman [PH78] algorithm works best. This

algorithm calculates

O

(
k∑
i=1

ci(log n+ pi)

)

group operations for n =
∏k
i=1 p

ci
i . This means the run-time to solve the discrete logarithm in groups

for which the order has only small prime factors is quite small; therefore, such groups should be avoided

in real life applications.

The last class of algorithms has subexponential run-time. The basic idea is to pick a factor base of

small primes and use algebraic relations to solve the discrete logarithm. The algorithms can be applied

to all groups for which the concept of smoothness makes sense and the group contains many smooth

elements. As it is not known how to define the notion of smoothness on general elliptic curves or hyper-

elliptic curves, it is not known how to find a factor base. Therefore, these algorithms cannot be applied to

groups of points over elliptic curves or hyper-elliptic curves [Mil85, SS98]. However, for some special

elliptic or hyper-elliptic curves it is possible to adapt the techniques [Gau00, Gau09, Die11].

To express the expected run-time in these cases we introduce the L-function by

Ln[α] = exp
[√

lnn ln lnn
α
]

and the extended L-function by

Ln[α, c] = exp
[
(c+ o(1))(lnn)α(ln lnn)1−α],

where n is the order of the group we are looking at.

The first algorithms with subexponential run-time are the Index-Calculus methods. In the vari-

ant described by Pomerance [Pom87], the algorithm calculates Ln[
√

2] group operations and requires

Ln[
√

1/2] space. Coppersmith, Odlyzko, and Schroepple’s [COS86] version of Index-Calculus yields

an even better run-time. Their variant only requires Ln[1/2] time and space.
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The last two algorithms are derived from the number field sieve factorization algorithm [LL93],

namely the number field sieve (NFS) algorithm and the similar function field sieve (FFS) [Sch08]. Both

algorithms work in finite fields Fpn , where p is prime; hence, in Fp = Zp. These algorithms have a

better expected run-time than the variants of Index-Calculus. The run-time of NFS is

Ln[1/3; (64/9)1/3]

and FFS runs in

Ln[1/3; (32/9)1/3].

We have to mention that recent work by Joux [Jou13] brought down the complexity to calculate the

discrete logarithm on Fpn to Ln[1/4; c] for small p. However, this result does not affect our work as we

will work over finite fields with large prime order.

We see that there are many ways to find the discrete logarithm in groups; however, none of these

algorithms runs in expected polynomial time. We also have to mention the work by Shor [Sho97]. He

showed that it is possible to calculate the discrete logarithm of a general group element in polynomial

time providing that a quantum computer with sufficient number of bits exists. At the moment it seems

that it will take a long time before such a computer can be built and we believe that the discrete logarithm

assumption holds in near future.

All in all, we can justify to base our protocols on cryptographic schemes, which are secure as long

as the discrete logarithm assumption holds, as we have seen that the assumption indeed holds in various

groups.

2.2 Zero-Knowledge
The concept of zero-knowledge, introduced by Goldwasser, Micali, and Rackoff [GMR85] is very pow-

erful and is used to construct various cryptographic protocols. Informally, a zero-knowledge proof is an

interactive protocol, in which the prover wants to convince the verifier of the validity of their assertion

without revealing more than the correctness of the claim.

An interactive proof is a protocol between two parties, called prover and verifier. The goal of the

prover is to convince the verifier of the validity of an assertion. The protocol consists of multiple rounds

and each round consists of a message either from the prover or the verifier. More precisely, such an

interactive protocol should allow an honest prover to always convince the verifier of a true statement.

That means the protocols should be complete. On the other hand, the protocol should guarantee that no

prover can find a strategy to convince the verifier of a wrong statement except with small probability.

This property is called the soundness of the interactive proof.

Lastly, the interactive protocol should be zero-knowledge. That means a malicious verifier should

gain no new information from the interaction with the prover. Or in other words, zero-knowledge means

that everything that the verifier can calculate after the interaction with the prover can be calculated by

the verifier by the assertion itself.
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Proof vs. Argument: A zero-knowledge proof is a protocol as described above, for which the require-

ments holds for a computationally unbounded prover and a probabilistic polynomial time verifier. Even

an unbounded time prover should not be able to cheat.

Brassard et al. [BC86, BCC88] relaxed the soundness condition such that no polynomial time prover

should be able to fool the verifier, but an unbounded time prover might be able to cheat. This weaker

definition is good enough for most cryptographic protocols. Interactive proof systems which satisfy this

definition are called arguments [BCY91].

Levels of zero-knowledge: The zero-knowledge property of an interactive proof or argument requires

that the verifier learns nothing new from the communication with the prover other than what he can

deduce from just seeing the statement itself. Depending how strong or weak an adversary is allowed to

be we have different levels of zero-knowledge.

In a perfect world nobody, not even an unbounded time adversary, can learn anything from the tran-

script of the interaction. This is called perfect zero-knowledge. Protocols which fulfill the principle that

an unrestricted adversary cannot deduce any useful information from the transcript, except with negligi-

ble probability, are statistical zero-knowledge. Lastly, if a probabilistic polynomial time adversary will

not get any useful information from the transcript, but an unbounded adversary can deduce information,

then this type is called computational zero-knowledge. Clearly, a perfect zero-knowledge protocol is

also statistical zero-knowledge, and statistical zero-knowledge implies computational zero-knowledge.

Computational zero-knowledge is the most liberal notion of the three levels, but good enough for

real life protocols. However, it is not known if in the future more powerful devices will be developed,

for example a quantum computer, which allows an adversary to deduce information from the transcript.

In this case the other two levels of zero knowledge guarantee a higher level of security, and therefore it

is preferable to construct interactive protocols which are perfect or statistical zero-knowledge.

Proof of knowledge: Zero-knowledge proofs defined in [GMR85] are proofs of language membership

that means the prover convinces the verifier that common input x is in some fixed language L. In more

detail the prover wants to show that x has some property, for example is a quadratic residue, or is a

3-colorable graph. Though, sometimes the prover wants to show knowledge of some object, and in this

case the definition by Goldwasser et al. does not fit. To get an adequate definition the notion of proof

of knowledge was first suggested in [GMR89], but not formalized. Formal definitions were first given

by Feige et al. [FFS88, FS89], and Tompa and Woll [TW87], but they only considered provers which

can convince the verifier with non-negligible probability. This can lead to problems, as pointed out by

Bellare and Goldreich [BG92]. In the same work they gave the nowadays standard definition of a proof

of knowledge and also of arguments of knowledge.

Private coin vs. public coin: In the setting of interactive proof systems, defined by Goldwasser et

al. [GMR85], the verifier can pick some randomness in private, and there are no restrictions on the use

of the outcome. The verifier can perform any polynomial time computation on it and send the result to

the prover. Therefore, this setting is called private coin. On the contrary in the setting of Babai [Bab85]

it is required that the verifier shows the result of the coin toss to the prover. Thus, this is called a public



2.2. Zero-Knowledge 35

coin protocol.

In some of the early examples of interactive proofs, it was important that a verifier keeps their coin

tosses secret. So, it seems that the general case of private coin is stronger and can prove more statements.

However, Goldwasser and Sisper [GS86] showed that private coin interactive proofs can be transformed

into public coin interactive proofs. This transformation increases the number of rounds only by an

additive constant. However, the new prover needs to be super-polynomial time and the transformation

does not preserve zero-knowledge. Furthermore, the transformation cannot be applied to arguments.

Okamoto [Oka96] was able to show that private coin statistical zero-knowledge proofs can be trans-

formed into public coin zero-knowledge proofs which need a super-polynomial time prover. Similar

results were found by Vadhan [Vad06], who showed that computational private coin zero-knowledge

equals computational public coin zero-knowledge. Furthermore, Pass et al. [PV10] state a transforma-

tion from private coin zero-knowledge into public coin zero-knowledge which can also be applied to

arguments.

Existence of zero-knowledge proofs systems: Goldwasser et al. [GMR85, GMR89] gave in their semi-

nal work the first examples for zero-knowledge proofs. However, it was not clear how powerful the new

notion is and how much can be proven using zero-knowledge protocols.

Goldreich, Micali, and Wigderson [GMW86, GMW91] showed that, assuming one-way functions

exist, every language in NP has a computational zero-knowledge proof. Ben-Or et al. [BOGG+88] gen-

eralized this result and showed that every language that has an interactive proof has a computational zero-

knowledge proof, given a secure probabilistic encryption scheme exists. Goldreich and Kahan [GK96]

explained how to construct constant-round computational zero-knowledge proofs for every language in

NP.

Unfortunately, the same does not hold for statistical zero-knowledge proofs, Fortnow [For87]

showed that if all languages in NP have a statistical zero-knowledge proof then the polynomial time

hierarchy will collapse. However, for some problems in NP statistical zero-knowledge proofs exist.

For arguments the situation is better, Brassard et al. [BCC88] proved that every language in NP has

a statistical zero-knowledge argument based on specific algebraic assumptions. Naor et al. [NOVY92]

showed that the existence of one-way permutations is enough for every language in NP to have a perfect

zero-knowledge argument. Furthermore, Nguyen et al. [NOV06] showed that every language in NP has

a statistical zero-knowledge argument under the assumption that one-way functions exist. Feige and

Shamir [FS89] gave constructions for perfect zero-knowledge arguments of knowledge for all NP.

Honest verifier zero-knowledge: The definition of zero-knowledge requires that no verifier, not even a

cheating one, learns anything new from the conversation with the prover. A weaker definition of Honest

verifier zero-knowledge (HVZK) was given by Bellare et al. [BMO90], they considered the amount of

information which can be extracted by an honest verifier following the protocol.

This definition is not strong enough for cryptographic applications; however, Bellare et al. [BMO90]

showed that there exists a statistical zero-knowledge proof for each problem which has a statistical

HVZK proof, under the assumption that the discrete logarithm assumption or the factoring assumption
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holds. Ostrovsky et al. [OVY93] have proven that the same result holds under the more general assump-

tion that one-way permutation exists. Okamoto [Oka96] were able to show that if a language L has a

statistical HVZK proof then L has a statistical zero-knowledge proof, given one-way functions exist.

Damgård [Dam93] could show that each constant round public coin statistical HVZK proof or

argument can be transformed in a constant round public coin statistical zero-knowledge proof sys-

tem. This transformation does not rely on any computational assumption. Damgård et al. [DGOW95]

proposed other transformations from constant round public coin HVZK to constant round public coin

zero-knowledge with less round complexity, but these transformations can only be applied to proofs.

Goldreich et al. [GSV98] gave the first transformation of statistical HVZK into statistical general zero-

knowledge under no condition, which holds for all interactive proof systems. Vadhan [Vad06] showed

that the same is true for computational zero-knowledge.

All the transformations above are not practically viable, a more practical approach was given by

Feige and Shamir [FS89] provided the discrete logarithm holds. Also, Groth [Gro04], Jarecki and

Lysyanskaya [JL00], Damgård [Dam00], Garay et al. [GMY06] gave ways to transform HVZK proof

systems into zero-knowledge proof systems which cost only a small number of elements, see Section 3.5.

Optimizations: All general constructions of zero-knowledge proofs and arguments are not practical and

efficient. Naturally, the question arose whether or not interactive proof protocols can be more efficient.

Various aspects in zero-knowledge proof systems can be considered to be optimized, that is the number

of rounds, communication complexity, and computational complexity.

Brassard, Crépeau, and Yung [BCY91] constructed a 6-move perfect zero-knowledge argument for

all languages in NP. Whereas, Feige and Shamir [FS89] showed that it is possible to construct compu-

tational zero-knowledge arguments of knowledge with 4-rounds given some algebraic assumptions or in

5-rounds assuming that one-way functions exist. Similar results were stated by Bellare et al. [BJY97]

they showed the existence of 4-round zero-knowledge arguments of knowledge, given that one-way func-

tions exist. As shown by Goldreich and Krawczyk [GK90] this result is optimal, unless the language is

in BPP.

In the case of proofs, Goldreich and Kahan [GK96] explain how to construct constant round zero-

knowledge proofs with 5-rounds, under widely believed number-theoretical assumptions. Results by

Katz [Kat12] indicated that for computational zero-knowledge that 5-rounds are optimal and therefore

the result by Goldreich and Kahan are optimal. Recently, Ong and Vadhan [OV08] showed that in-

deed all languages which have a statistical zero-knowledge proof have a constant round statistical zero-

knowledge proof.

These results only hold for zero-knowledge proofs for language membership and it was not clear if

constant round proofs of knowledge with constant rounds exist. The gap was closed by Lindell [Lin10]

who showed the existence of 5-round computational zero-knowledge proofs of knowledge for all lan-

guages in NP.

Round complexity is one aspect which can be optimized, another one is the amount of data sent

between both parties. In protocols with a unbounded number of rounds a basic protocol was repeated k
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times to achieve a security of 2−k, this approach has a cost of at least Ω(kn) bits, where n is the statement

size. Special techniques allowed Boyar et al. [BLP93, BBP91] to reduce this cost to subquadratic for

any language L and Kilian [Kil92] reduced this cost slightly for proofs using PCPs.

Cramer and Damgård [CD97] were able to construct a zero-knowledge proof for all NP with linear

communication cost and constant number of rounds. Recently, Ishai et al. [IKOS07] improved this result

further, their approach depends only linearly on the statement size and they gave also a version depending

quasilinearly on the witness size. Crescenzo and Fedyukovych [CF12] have taken a different approach

and also showed that it is possible to prove all statements in NP with communication cost which depends

linearly on the statement size. Their proof performs better than [IKOS07] for small circuits; however,

for big circuits the technique by [IKOS07] gives better performance.

Cramer and Damgård’s [CD97] technique for arguments turns out to have the same complexity as

the technique by the authors for proofs. But for arguments the communication cost can be even lower.

Kilian’s [Kil92, Kil95] technique leads to arguments for each language in NP with constant number of

rounds and a communication with polylogarithmic cost in the statement size. The recent work by Ishai et

al. [IKOS07], and Goldwasser et al. [GKR08] achieved arguments with communication depending only

quasilinearly on the witness size.

The last important aspect which can be optimized is the computational complexity. Since

Schnorr’s [Sch91] construction to prove identification in zero-knowledge, it has been known that it is

possible to have zero-knowledge proofs and arguments with low computational complexity. However,

all general constructions to prove statements in NP requires heavy reductions to special problems; thus,

they are not efficient in this respect. Moreover, it is hard to give good lower bounds on the computa-

tional complexity, as all protocols have to read at least the statement. However, work was undertaken to

reduce the cost of zero-knowledge protocols for specific problems. For instance, [BDD07, Pen11] for

non-membership arguments or [CD98, Gro09, Gro11] for circuit satisfiability.
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Chapter 3

Preliminaries

In this chapter we will give definitions of the key concepts needed to construct our zero-knowledge

arguments. When arguing that a protocol is correct we will use homomorphic commitment schemes

extensively, different commitment schemes can be used. We will describe our work using the Pedersen

commitment scheme [Ped91] as it is based on the discrete logarithm. Our shuffle protocol works for

different types of homomorphic encryption schemes, for example ElGamal encryption [ElG84] or Pail-

lier encryption [Pai99]. We will focus on ElGamal encryption since it is based on the discrete logarithm

assumption and also for notational reasons. Finally, we give precise definitions of what we mean by

honest verifier zero knowledge arguments.

3.1 Notation
Definition 1 (Negligible, Overwhelming). We say a function f : N→ [0, 1] is negligible if

f(x) = O(x−c)

for every constant c > 0. We say 1− f is overwhelming if f is negligible.

To define security in our protocols, we will use a security parameter λ. The security parameter λ

is written in unary 1λ and is given as input to all parties in our protocols. Intuitively, the higher the

security parameter the more secure the protocol, see also Section 4.1.1. Formally, we define security in

the following by saying a protocol has security level λ if an adversarial algorithm requires at least 2λ

steps to succeed.

We write y = A(x; r) when the algorithm A, on input x and randomness r, outputs y. We write

y ← A(x) for the process of picking randomness r uniformly at random and setting y = A(x; r). We

also write y ← S for sampling y uniformly at random from a set S.

We will denote field elements from Zq with lower case characters. For randomizers we will stick

throughout the thesis to r, s, t, ρ, σ, τ ∈ Zq and to x, y, z ∈ Z∗q for challenges, which are sent by the

verifier. The encryption scheme and the commitment scheme may use different underlying groups, but

we require that both groups have the same prime order q. We will write G for the group used by the

commitment scheme and write H for the ciphertext space.



40 Chapter 3. Preliminaries

We will use bold letters for vectors, for example a = (a1, . . . , an) or M = (M1, . . . ,Mm), and

use the standard notation of upper case letters for matrices.

For vectors of group elements, we write X ◦ Y = (X1Y1, . . . , XnYn) for the entry-wise product

and correspondingly Xz = (Xz
1 , . . . , X

z
n). We write xπ if the entries of vector x are permuted by the

permutation π, i.e. xπ = (xπ(1), . . . , xπ(n)). For vectors of field elements, we use the standard inner

product x · y =
∑n
i=1 xiyi.

3.2 Discrete Logarithm Assumption
All our protocols can be used with different homomorphic commitment schemes and homomorphic

encryption schemes. We will focus throughout the work on schemes based on the discrete logarithm

assumption which goes back to the work of Diffie and Hellman [DH76]. This assumption is one of the

most fundamental and well-studied cryptographic assumptions, see also Section 2.1.

Definition 2 (Discrete Logarithm Problem). Let G be a multiplicative cyclic group with generator G

and order n. Given an H ∈ G the discrete logarithm problem is to find an x ∈ Zn such that H = Gx,

i.e. to find the discrete logarithm x of H to base G.

Definition 3 (Discrete Logarithm Assumption). Let G be a multiplicative cyclic group with generator

G and order n. The discrete logarithm assumption for G holds if for all non-uniform probabilistic

polynomial time algorithms A

Pr[H ← G;x← A(G, n,G,H) : Gx = H]

is negligible.

3.3 Homomorphic Commitment
A commitment scheme is a way to commit to a value or a vector without revealing these values. Given

an opening it is later possible to reveal the original message.

A commitment scheme consists of

• a probabilistic key generation algorithm G

• a commitment algorithm comck

• an opening algorithm opck.

On input of the security parameter 1λ the key generation algorithm produces

• a public commitment key ck

• a message spaceMck

• a randomizer spaceRck

• a commitment space Cck

• an opener space Ock.
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The commitment space Cck is determined by the choices of the commitment key, the message and

randomizer space, and the commitment algorithm. The commitment algorithm takes an m ∈ Mck and

an r ∈ Rck as input and computes cm = comck(m; r), the commitment of m. Given the opening

d ∈ Ock and commitment cm the opening algorithm can reveal the original message m = opck(cm, d).

In many commitment schemes the opening d contains the message m and the randomness r.

We require the commitment scheme to be binding and hiding. Informally, binding means it is not

possible to find two messagesm1,m2 ∈Mck,m1 6= m2 and r1, r2 ∈ Rck such that c = comck(m1, r1)

is also a commitment to m2, r2. Hiding requires that the commitment reveals no information about the

message.

Definition 4 (Binding). A commitment scheme is (computationally) binding if for any probabilistic

polynomial time adversary A

Pr[ck ← G(1λ); (m1, r1,m2, r2)← A(ck) :

m1,m2 ∈Mck, r1, r2 ∈ Rck,m1 6= m2 ∧ comck(m1; r1) = comck(m2; r2)]

is negligible in λ.

If this holds for unbounded adversary A the commitment scheme is unconditionally binding or

perfectly binding.

Definition 5 (Hiding). A commitment scheme is (computationally) hiding if for any probabilistic poly-

nomial time adversary A

∣∣Pr[ck ← G(1λ); (m1, r1,m2, r2)← A(ck);

m1,m2 ∈Mck, r1, r2 ∈ Rck; c← comck(m1, r1) : A(c) = 1]

−Pr[ck ← G(1λ); ((m1, r1,m2, r2)← A(ck);

m1,m2 ∈Mck, r1, r2 ∈ Rck; c← comck(m2, r2) : A(c) = 1]
∣∣

is negligible in λ.

A commitment scheme is unconditionally or perfectly hiding if this condition also holds for un-

bounded A.

In addition, a commitment scheme may fulfill the trapdoor property. In this case the generator G

also outputs a trapdoor t, which allows us to open a commitment cm = comck(m; r) to any message m′.

In other words, without knowledge of the trapdoor t the commitment scheme is binding, but given the

trapdoor it is possible to cheat arbitrarily.

The trapdoor property seems to contradict the task of a commitment scheme, which is to allow a

prover to bind themselves to a value and later reveal exactly this value. However, as long as the prover

does not know the trapdoor, the commitment scheme is binding. Therefore, trapdoor commitments can

be used as normal commitment schemes. Furthermore, the trapdoor property is important for some pro-
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tocols. For instance, it can be used to convert honest verifier zero-knowledge arguments into arguments

which are zero-knowledge with respect to any verifier, see also Section 3.5.

We will require for our work that the commitment scheme is homomorphic.

Definition 6 (Homomorphic). A commitment scheme is homomorphic if for ck ← G(1λ) the message

spaceMck, the randomizer spaceRck, and the commitment space Cck are additive abelian groups and

comck(a+ b; r + s) = comck(a; r)comck(b; s), ∀a, b ∈Mck, r, s ∈ Rck.

In addition we also require for some of our arguments that it is possible to calculate a commitment

to n elements in Zq , where q is a large prime, at the same time. Many homomorphic commitments

schemes with this property can be used, but for convenience we just focus on a generalization of the

Pedersen commitment scheme [Ped91].

3.3.1 Generalized Pedersen Commitment

The general Pedersen commitment scheme allows commitment to n elements at the same time and works

for cyclic groups. More precisely, on input of 1λ and 1n the key generation algorithm G outputs

• a cyclic group G with prime order q and security level λ, andMck = Znq ,Rck = Zq and Cck = G

• a commitment key ck = (G, G1, . . . , Gn, H) where G1, . . . , Gn, H are random generators of the

group G

• the opening space Ock =Mck ×Rck

To conceal n elements (a1, . . . , an) ∈ Znq we pick randomness r ∈ Zq and compute

comck(a1, . . . , an; r) = Hr
n∏
i=1

Gaii .

Calculating a commitment to less than n elements is possible, this is done by setting the remaining entries

ai to 0 and the special case n = 1 corresponds to the standard Pedersen commitment. For instance, if

the commitment key is ck = (G, G1, . . . , Gn, H) and the commitment should be calculated to m < n

elements (a1, . . . , am), we set aj = 0 for mj ≤ n.

The commitment is computationally binding under the discrete logarithm assumption, i.e a prob-

abilistic polynomial time adversary has negligible probability of finding two different openings of the

same commitment c. To find one opening, the adversary can choose a randomness r at random and then

try to find suitable message m. This yields to the equation Gm = cH−r = H1. Since the discrete

logarithm assumption holds in the underlying group, the probability of finding m is negligible. Fur-

thermore, since the randomness r is picked uniformly from the randomizer space Rck, the commitment

is uniformly distributed in G no matter what the messages are. Therefore, the commitment scheme is

considered to be perfectly hiding.
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The general Pedersen commitment has a trapdoor, this trapdoor consists of x = (x1, . . . , xn) ∈ Znq
such that

Gi = Hxi , for i = 1, . . . , n.

Given a commitment c = comck(m; r) and the trapdoor x we can open c to m′ ∈ Znq , r′ ∈ Zq by

setting

mi = mi +m′i for mi ∈ Zq, i = i, . . . , n

and

r = r′ −
n∑
i=1

mixi.

In this case

c = Gm1
1 Gm2

2 Gm3
3 · . . . ·Gmnn Hr

= G
m1+m′1
1 G

m2+m′2
2 · . . . ·Gmn+m′n

n Hr′−
∑n
i=1mixi

= G
m1+m′1−m1

1 G
m2+m′2−m2

2 · . . . ·Gmn+m′n−mn
n Hr′

= G
m′1
1 G

m′2
2 · . . . ·Gm

′
n

n Hr′ .

The generalized Pedersen commitment scheme is homomorphic, for all a, b ∈ Znq and r, s ∈ Zq
we have

comck(a; r)comck(b; s) = Hr
n∏
i=1

Gaii ·H
s
n∏
i=1

Gbii = Hr+s
n∏
i=1

Gai+bii = comck(a+ b; r + s).

We stress that a commitment consists of a single group element no matter how big n is, as the

product of n group elements is a group element. This means the commitment scheme is length reducing

and we can commit to n elements with a single small commitment. This property is crucial to get

sublinear communication cost.

We use the generalized Pedersen commitment scheme in the work because of its elegance and its

security resting on the discrete logarithm assumption. However, our protocols could also work with other

homomorphic commitment schemes which allows to calculate a commitment to n elements at the same

time. We will describe our protocols in a way such that it would be easy to plug in another homomorphic

commitment scheme.

Notation: For a commitment to a value a we will write ca = comck(a; r). Moreover, for a

matrix A ∈ Zn×mq with columns a1, . . . ,am we shorten notation by defining comck(A; r) =

(comck(a1; r1), . . . , comck(am; rm)). We will also abuse this notation slightly and define the com-
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mitment to a ∈ ZNq where N = mn as

comck(a; r) =
(
comck(a1, . . . , an; r1), . . . , comck(a((m−1)n+1), . . . , aN ; rm)

)
.

We define a bilinear map

Gn × Znq → G by c b = (c1, . . . , cm)(b1,...,bm)T =

m∏
j=1

c
bj
j

and for a matrix B with columns b1, . . . , bm we define c B =
(
c b1 , . . . , c bm

)
. It is useful to ob-

serve that the underlying linear algebra behaves nicely, i.e. comck(A; r)b = comck(Ab; r · b) and

comck(A; r)B = comck(AB; rB).

3.4 Homomorphic Encryption
A public key encryption scheme consists of a set of probabilistic polynomial time algorithms (G, E ,D).

The key generation algorithm G, generates

• a public key pk

• a secret key sk

• a message spaceMpk

• a randomizer spaceRpk

• a cipher space Cpk.

The encryption algorithm E takes M ∈ Mpk, r ∈ Rpk, and the public key pk as input and computes

C = E(M, r, pk) ∈ Cpk. We will write in the following E(M, r, pk) = Epk(M, r). Whereas the decryp-

tion algorithm D takes C ∈ Cpk and the secret key sk as input and outputs M = D(C, sk) ∈Mpk or ⊥

for failure. We will write D(C, sk) = Dsk(C). Epk and Dsk are chosen such that they fulfill

Pr[(pk, sk)← G(1λ); (M, r)←Mpk ×Rpk : Dsk(Epk(M ; r)) = M ]

is overwhelming.

For this work we require that the encryption scheme is at least IND-CPA secure, that means an

adversary seeing a ciphertext learns nothing about the message inside.

Definition 7 (IND-CPA). An encryption scheme (G, E ,D) is indistinguishable under chosen plaintext

(IND-CPA) attack if for any polynomial time adversary A

|Pr[(pk, sk)← G; (M1,M2)← A, |M1| = |M2|; c← Epk(M1) : A(c) = 1]

− Pr[(pk, sk)← G; (M1,M2)← A, |M1| = |M2|; c← Epk(M2) : A(c) = 1]|

is negligible in the security parameter λ.
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Another requirement for our encryption scheme is that it has to be homomorphic.

Definition 8 (Homomorphic). An encryption scheme (G, E ,D) is homomorphic if for any pair

(pk, sk) ← G(1λ) and Mpk, Cpk ← G(1λ) the message space Mpk and the cipher space Cpk are

abelian groups, and for all M1,M2 ∈Mpk, r1, r2 ∈ Rpk and the encryption function satisfies

Epk(M1M2; r1 + r2) = Epk(M1; r1)Epk(M2; r2).

Definition 9 (Re-encryption). Let M ∈ Mpk, r ∈ Rpk and C = Epk(M, r) ∈ Cpk, C ′ ∈ Cpk is a

re-encryption of C if there exist s ∈ Rpk such that C ′ = Epk(1; s) · C and Dsk(C ′) = Dsk(C).

Our shuffle argument works with many different homomorphic encryption schemes where the mes-

sage space has large prime order q. We will focus on the ElGamal encryption [ElG84] as its security is

based on the discrete logarithm assumption and is IND-CPA secure, but also for notational convenience.

3.4.1 ElGamal Encryption

The ElGamal encryption scheme [ElG84] in this group works as follows. On input 1λ the key generation

algorithm G

• outputs a cyclic group G with large prime order q

• picks the secret key sk = x ∈ Z∗q at random

• sets the public key pk = (G, Y ), where Y = Gx ∈ G.

To encrypt a message M ∈ G we choose a random ρ ∈ Zq and compute the ciphertext

Epk(M ; ρ) := (Gρ, Y ρM) = (U, V )

belonging to the ciphertext space H = G×G.

To decrypt a ciphertexts (U, V ) ∈ Cpk we compute M = V U−x.

The ElGamal encryption scheme is homomorphic with entry-wise multiplication. For all pairs

(M1, ρ1), (M2, ρ2) ∈ G× Zq it holds that

Epk(M1M2; ρ1 + ρ2) = (Gρ1+ρ2 ;Y ρ1+ρ2M1M2) = (Gρ1 , Y ρ1M1)(Gρ2 , Y ρ2M2)

= Epk(M1; ρ1)Epk(M2; ρ2).

We will by default assume that the ciphertexts used in the shuffle are valid, i.e. for each ciphertext

C we have C ∈ H = G × G. For the most common choices of the group G used in practice this is

something that can be tested quite easily by any interested party.

Notation: In the whole thesis we will use the upper-case letter C to denote a ciphertext. For

M = (M1, . . . ,Mn) and ρ = (ρ1, . . . , ρn) we define

Epk(M ;ρ) =
(
Epk(M1; ρ1), . . . , Epk(Mm; ρm)

)
.
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We also define a bilinear map

Hn × Znq → H by Ca = (C1, . . . , Cn)(a1,...,an)T =

n∏
i=1

Caii .

For a matrixA ∈ Zn×mq with column vectors a1, . . . ,am we defineCA = (Ca1 , . . . ,Cam). It is useful

to observe that (CA)B = CAB .

3.5 Generalized Σ−Protocols
For all our arguments we consider a prover P and a verifier V which are both probabilistic polynomial

time interactive algorithms.

Let R be a polynomial time decidable binary relation, we call w a witness for a statement a if

(a,w) ∈ R. We define the language

LR := {a | ∃w : (a,w) ∈ R}

as the set of statements a that have a witness w for the relation R.

The public transcript produced by P and V is denoted by tr ← 〈P(s),V(t)〉 when both parties

interact on inputs s and t . The transcript consists of the initial message from the prover, the challenges

from the verifier, the answers from the prover and the decision to accept or reject from the verifier. We

write 〈P(s),V(t)〉 = b depending on whether the verifier rejects b = 0, or accepts b = 1.

Definition 10 (Argument). (P,V) is called an argument for a relation R with perfect completeness if

for all non-uniform polynomial time interactive adversaries A we have:

Perfect completeness:

Pr[(a,w)← A(hist) : (a,w) 6∈ R or 〈P(a,w),V(a, hist)〉 = 1] = 1

Computational soundness:

Pr[a← A(hist) : a 6∈ LR and 〈A,V(a, hist)〉 = 1]

is negligible, where hist contains all information an adversary can obtain before they output a statement

and a witness.

Definition 11 (Public coin). An argument (P,V) is called public coin if the verifier chooses their mes-

sages uniformly at random and independently of the messages sent by the prover, i.e. the challenges

correspond to the verifier’s randomness ρ.

An argument is zero-knowledge if it does not leak information about the witness beyond what can

be inferred from the truth of the statement. We will present arguments that have special honest verifier

zero-knowledge in the sense that if the verifier’s challenge is known in advance, then it is possible to

simulate the entire argument without knowing the witness.
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Definition 12 (SHVZK). A public coin argument (P,V) is called a perfect special honest verifier zero-

knowledge (SHVZK) argument forR if there exists a probabilistic polynomial time simulator S such that

for all non-uniform polynomial time adversaries A we have

Pr[(a,w, ρ)← A(hist); tr ← 〈P(a,w),V(a; ρ)〉 : (a,w) ∈ R and A(tr) = 1]

= Pr[(a,w, ρ)← A(hist); tr ← S(a, ρ) : (a,w) ∈ R and A(tr) = 1]

where ρ is the public coin randomness used by the verifier as the challenge.

Most SHVZK arguments in literature follow a special 3-move structure, that means the transcript

consists of the initial message a of the prover, one random challenge x from the verifier, and the final

answer b of the prover. Most of these arguments also fulfill the special soundness property.

Definition 13 (Special Soundness). An argument (P,V) has perfect special soundness if there exists a

polynomial time extractor E, such that for all adversaries A we have:

Pr[(a, tr1, tr2)← A(hist), tr1 = (a, x1, b1), tr2 = (a, x2, b2), x1 6= x2;

w ← E(a, tr1, tr2) : V(tr1) ∧ V(tr2) = 0 or (x,w) ∈ R] = 1.

If the extractor E can extract the witness only with overwhelming probability, then the argument

has special soundness.

That means given two accepting transcripts with different challenges x1, x2, it is possible to effi-

ciently compute a witness w such that (a,w) ∈ R.

Definition 14 (Σ-Protocol). A 3-move SHVZK argument (P,V) with general special soundness is called

a Σ−Protocol and a 3-move SHVZK argument (P,V) with perfect general special soundness is called

a perfect Σ−Protocol.

In our work the special use of Vandermonde challenges x, x2, . . . , xn makes it impossible to extract

witnesses given only two accepting arguments. However, given n+ 1 accepting witnesses with different

challenges x it is possible to extract witnesses. Furthermore, some of the protocols require more than one

challenge, and some of the protocols consist of more than three rounds. In all these cases the standard

definition of a Σ−Protocol does not fit and we have to generalize the definition.

Definition 15 (Generalized Special Soundness). An argument (P,V) has perfect general special sound-

ness if there exists a polynomial time extractor E, such that for all adversaries A we have:

Pr[(a, T r)← A(hist), T r = {tr1, . . . , trn}, tri = (a,xi,bi);

w ← E(b, Tr) :

(
n∧
i=1

V(tri)

)
= 0 or (a,w) ∈ R] = 1

where xi contains all challenges from the verifier and xik 6= xjk for all 1 ≤ i, j ≤ n, 1 ≤ k ≤ |xi|, and

bi contains all answers to xi of the prover.
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If the extractor E can extract the witness only with overwhelming probability, than the argument

has general special soundness.

The definition of general special soundness implies that given a long enough list of accepting tran-

scripts with different challenges x it is possible to extract a witness w for a statement a independent of

the required structure of the randomness and the number of moves.

Definition 16 (Generalized Σ-Protocol). A SHVZK argument (P,V) with general special soundness is

called a generalized Σ−Protocol.

A perfect SHVZK argument (P,V) with perfect general special soundness and perfect complete-

ness is called a perfect generalized Σ−Protocol.

For a 3-move argument (P,V) with n = 2 and x ∈ Z∗q × Z∗q , generalized special soundness

is consistent with special soundness. If such an argument is also SHVZK it holds that generalized

Σ−protocols are Σ−protocols in the classical sense.

It is not hard to see that general special soundness implies computational witness extended emula-

tion [Lin03, GI08]. Informally, their definition says that given an adversary that produces an acceptable

argument with some probability, there exists an emulator that produces an accepting argument with the

same probability and at the same time provides a witness w. Note, that an argument which has witness

extended emulation does not need to be zero-knowledge. The definition does not require that the witness

stays secrete during the protocol, only that an emulator can produces an accepting argument and extract

a witness.

Informally, an argument (P,V) for relation R is called an argument of knowledge if it has witness-

extended emulation. As a result a generalized Σ−protocol is a SHVZK argument of knowledge and

this implies that proving that an argument is a Σ−protocol gives us automatically that the protocol is an

argument of knowledge.

Plain model. We will describe all our protocols in the plain model. We will consider the group descrip-

tion and the commitment key as part of the statement, in the case of shuffling the public encryption key

will also be part of the statement. In real life zero-knowledge protocols are subprotocols of other zero-

knowledge protocols or part of other cryptographic protocols. That means it is reasonable to assume that

in such a setting the group description and the public keys are inherited from the outer protocols or can

be supplied by the trusted third party that provides the environment.

One important factor that such a set up works is that the group description and the public keys are

easily verifiable. We work over abelian modular groups G ⊂ Z∗p with prime order q, if for q it holds that

q|p − 1 , then we can easily check the group description and the commitment key. First we test p, q for

primality and then G 6= 1, Gq ≡ 1 mod p, in the case that all checks are accepting we accept the

group description. To test that the commitment key ck is valid, we test

Gqi ≡ 1 mod p for 1 ≤ i ≤ q

and Gi 6= 1, for i = 1, . . . , n and H 6= 1. For shuffling the statement also contains the public encryption
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key pk = {G, y}. To verify pk we can test if y ∈ G, yq ≡ 1 mod p, and y 6= 1.

If the trust in the third party is not reasonable, the generation of the keys can be achieved by adding

an extra round of interaction. In this round the verifier generates the groups and public keys, and sends

them to the prover. Assuming the prover can verify the validity of the keys our arguments will still be

perfect SHVZK.

It is not desirable that the public encryption key is supplied by the verifier, who would automatically

know the decryption key. In this case the verifier could decrypt the statement and learn the permutation.

However, our argument to prove correctness of a shuffle is still zero-knowledge in this case, since the

verifier learns nothing new from the interaction with the prover, as they are able to decrypt the ciphertexts

before the protocols.

Another possibility to generate the group description and keys is that they are generated by multi-

party protocols of all parties involved. This also adds some extra interaction on top of the protocol.

The setup algorithm can also return some side-information that may be used by an adversary; however,

we require that even with this side-information the commitment scheme should remain computationally

binding. The side-information models that the keys may be set up using some multi-party computation

protocol that leaks some information, the adversary may see some decryptions or even learn the decryp-

tion key, etc. Our protocols are secure in the presence of such leaks as long as the commitment scheme

is computationally binding.

Full Zero-Knowledge. On the one hand it is much easier to design arguments of knowledge with respect

to the honest verifier than zero-knowledge arguments with respect to any malicious verifier. On the other

hand in real life applications honest verifier zero-knowledge may not suffice since a malicious verifier

may give non-random challenges. However, it is easy to convert a SHVZK [CDS94] argument into a full

zero-knowledge argument secure against arbitrary verifiers. The conversion can be very efficient and

only costs a small additional overhead, so we will in this work without loss of generality just focus on

building efficient SHVZK arguments.

The OR-proof [CDS94] can be used to transform HVZK arguments of knowledge into real zero-

knowledge arguments. The statement can be set up with an additional group element D, and the prover

will now use an OR-proof to show that they know a witness for the statement being true or they know the

discrete logarithm of D. Since the prover does not know the discrete logarithm of D this is a convincing

argument of knowledge. On the other hand the simulator can also simulate this extra argument and

therefore, the whole protocol.

If the verifier supplies the group description and the keys, the OR-proof can again be used to convert

a HVZK argument following the lines of [FS89]. The verifier calculates D1 = Gx ∈ G, picks D2 ← G

and sends D1, D2 to the prover. The verifier then proves that they know either the discrete logarithm of

D1 or D2. The prover shows now either knowledge of discrete logarithm of D1 or D2, or knowledge of

a witness of their statement.

If the whole protocol is set up in the common reference string (CRS) model, standard techniques

can be used. They include the technique by Groth [Gro04], which forces the challenges to be uni-
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formly random by applying a hash function. Another standard technique on the CRS model is given by

[JL00, Dam00]. In their conversion form HVZK into ZK the prover sends in each round an additional

commitment, containing the message, to the verifier. If the commitment scheme has a trapdoor, this

trapdoor can be used to simulate the protocol for all verifiers.

The OR-proof [CDS94] is also widely used in the CRS model, the common reference string is either

set up with an additional group element D or verification key vk of an existentially unforgeable adaptive

chosen message attack secure signature scheme [GMY06]. In the first case the prover behaves like the

additional group element is part of the statement, and proves knowledge of a witness for the statement

or of the discrete logarithm.

In the second case the prover generates a key pair (vk′, sk′) of a string one-time signature scheme,

and reveals vk′ to the verifier. Now, the prover shows that either their statement is true or they know a

signature for vk′ under verification key vk. As the prover cannot know a signature on vk′, this convinces

the verifier that the prover knows a witness for the statement. Just like above, we can set up the simulator

such that it knows the signature and it is easy to simulate the proof.

All these conversions yield arguments of knowledge with perfect zero-knowledge at the price of a

couple of extra group elements and are therefore efficient.

3.6 The Schwartz-Zippel Lemma
For completeness we will state a variation of the Schwartz-Zippel lemma that we will use several times.

Lemma 1 (Schwartz-Zippel). Let P be a non-zero multi-variate polynomial of degree D over Zq , then

the probability of P (x1, . . . , xn) = 0 for randomly chosen x1, . . . , xn ← Z∗q is at most D
q−1 .

Given two multi-variate polynomials P1 and P2 we can test whether

P1(x1, . . . , xn)− P2(x1, . . . , xn) = 0

for random x1, . . . , xn ← Z∗q or not. This equation will always hold if P1 = P2, whereas if P1 6= P2 the

probability that the test pass is only max(D1,D2)
q−1 .
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Implementation Details

To validate the practicality of our main zero knowledge arguments and to check their real life merit, we

decided to implement our protocols.

All code is written in C++ because this is a fast, portable, and widely-used programming language.

Furthermore, the NTL library provided by Shoup [Sho09] for C++ allows high-performance operation

on big integers, which is needed to simulate real life performance. To achieve best possible performance

we configured the NTL library with GMP [GMP11] as the primary long integer package.

The NTL library gives the facility to do efficient modular arithmetic on large integers, and also

provides a functionality to generate cryptographically strong pseudo-random numbers which are needed

by our cryptographic primitives. Building on these functionalities we implemented the generalized Ped-

ersen commitment scheme and ElGamal encryption for subgroups modulo a prime p.

All our code is single threaded. To obtain results, e.g. run time of our protocols and argument size,

we run the code on a MacBook Pro with a 2.54 GHz Intel Core 2 Duo CPU, 3 MB 8 way L2 Cache, and

4 GB RAM running Mac OS X 10.7.

4.1 Modular Groups
We decided to test the real life behavior of our protocol on modular subgroups. One reason for this choice

is that the discrete logarithm assumption is believed to hold in such groups, see Section 3.2. Another

reason for this choice is that modular groups are quite easy to generate, see Section 4.1.2, and operations

on them are easy to implement.

4.1.1 Security

In real life the security of the protocols plays an important role. How long a protocol should be secure

is different depending on the situation. This demand can be expressed in the security level a protocol

should fulfill. Thus, to be able to estimate the real life merit of our protocols we have to use groups with

different security levels λ. The security level determines the size of the group order q and the size of the

modulus p. Intuitively, the bigger λ the bigger are q and p.

The European Network of Excellence in Cryptology II (ECRYPT II) [oEiCI12] suggests a 160-bit

subgroup modulo a 1 248-bit prime with a security level of 80-bits to have only short term protection,

which means this security level can protect data only until 2017. Whereas a 256-bit subgroup modulo a
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3 248-bit prime has a security level of 128-bits and therefore offers according to ECRYPT II medium to

long term protection. This should guarantee security of the data over the next 20-30 years. To achieve

real long term protection ECRYPT II suggests to use groups with higher security level, for instance a

384-bit subgroup modulo a 7 936-bit prime with a security level of 192-bits.

We decided to test our protocols on groups with the suggested security level. Furthermore, to test

the influence of different parameters, e.g. group size or modulo size, we decided to use also groups

which are not recommended by ECRYPT II and are not standard groups in research community.

We picked subgroups of 160-bit modulo a 1 024-bit prime, a 1 248-bit prime, a 1 536-bit prime, and

a 3 248-bit prime. We also decided to use a 256-bit subgroup modulo a 1 536-bit prime, 2 432-bit prime,

and a 3 248-bit prime. Lastly we look at subgroups of the size 384-bit modulo a 3 248-bit prime, and a

7 936-bit prime. Three of these groups have the parameter sizes recommended by ECRYPT II the rest

are non-standard and we have to estimate the security level.

To estimate the security level of these groups we refer to Lenstra and Verheul [LV01] and

Lenstra [Len04]. The security of a modular subgroup depends on the one hand on the ability to break

the discrete logarithm on the group G itself. Lenstra [Len04] suggests choosing the size q such that the

Pollard’s ρmethod cannot be successful until a desired year. On the other hand the security also depends

on the ability to break the discrete logarithm in Z∗p, where p is prime and G ⊂ Z∗p. That means p should

be chosen big enough that no method, for instance the number sieve, can break the discrete logarithm in

Z∗p and at the same time find the discrete logarithm in G.

Following the recommendations of Lenstra we conclude that a subgroup of size 160-bit has a secu-

rity level of 80-bits, a subgroup of 256-bit a security level of 128-bits, and of size 384-bit a security level

192-bits respectively. So for bigger parameters q and p we get higher security.

For the moduli values we estimate that a 1 024-bit prime equals a security level of 72-bits and a

1 248-bit prime a security level of 78-bits, for all other security levels see Table 4.1.1

|p| 1 024 1 248 1 536 2 432 3 248 7 936
security level 72 78 85 102 114 161

Table 4.1: Estimated security level for primes p with different bit-sizes.

These values can be interpreted to mean that a subgroup with a 160-bit order modulo a 1 024-bit

prime has a security level between 72 to 80-bits and a 160-bit subgroup modulo a 1 248-bit prime has a

security level between 78 to 80-bits. The exact value is hard to identify, but it is not so important for our

work. Important to know for our work is that for fixed group size the size of the modulo value determines

the security level of the group. An increase of the moduli results in an increase of the security level. One

has to be careful, though, and choose p and q in a way such that they represent a similar security level.

During our work we will use following rules. First, the security level of a modular group increases

if the subgroup size stays fixed and the modular value gets bigger. Secondly, for fixed moduli sized the

security level increases by nearly the same factor as the increase of the subgroup size. Lastly, bigger

1The numbers are estimated using www.keylength.com/en/2/



4.1. Modular Groups 53

subgroup and moduli sizes results in higher security level than small values.

A few more words on the security and real life usability of our chosen groups. As seen above a

160-bit subgroup modulo a 1 024-bit prime offers no real security; however, we are using this group

to compare our shuffle argument with former implementations. Moreover, 160-bit subgroups modulo

1 248-bit or 1 536-bit primes are also very vulnerable and offers no long term protection. However, we

wanted to have a wide range of groups to test our implementation on. For the same reason, we picked

160-bit subgroups modulo primes with 2 432 or 3 248-bit. These groups are not practical in real life,

both moduli values offers medium to long term protection which is paid by the increased size of the

group elements and therefore expensive operations. But, this security is compromised by the short term

security of the small group order. So, these groups are of theoretical interest only. The same holds for

groups which have order of 256-bit length modulo 1 536 or 2 432-bit primes, or order of 384-bit length

modulo a 3 248 bit prime; in this case the subgroup offers a higher security than the group Z∗p. The only

groups which might be used in real-life applications are subgroups with 256-bit order modulo a 3 248-bit

prime which offers medium to long term protection. Or subgroups with 384-bit prime order modulo a

7 984-bit prime, which offer long term protection.

In other words, we have chosen on purpose groups which are not practical in real life; however, the

reason for this was to have a wide range of groups to test different parameters of our implementation.

4.1.2 Group Generation

To generate the modular groups and generators we decided to use a method outlined by Maurer [Mau95].

This method allows us to generate primes q and p, such that q|p−1 and there exists a group G with order

q and G ⊂ Z∗p.

For some optimizations, i.e. the Fast Fourier Transform, it is necessary to find a k-th root of unity.

Our generation algorithm gives us enough control to generate q such that a k-th root of unity exist in Zq
and at the same time it is possible to find such a root of unity using only a few operations.

Maurer’s idea builds on the following lemma, which is a special case of a theorem by Pockling-

ton [Poc14].

Lemma 2 ([Mau95]). Let n = 2RF + 1 and the prime factorization of F is F = pα1
1 pα2

2 . . . pαrr . If

there exists an integer a satisfying

an−1 ≡ 1 mod n

and

gcd(an−1/pi, n) = 1

for i = 1, . . . , r, then each prime factor p of n is of the form p = mF + 1 for some integer m ≥ 1.

Moreover, if F >
√
n, or F is odd and F > R, then n is prime.

The first step is to generate the prime order q of G. A requirement for a k-th root of unity to exist in

Zq is that k|q− 1; therefore, we chose F = k · p1, where p1 is some random prime. To fulfill the lemma

we have to choose our values in the right way. Assume q should be bq bits long, and k is bk bits long,
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then we have bq − bk bits to spare for p1 and R. We can therefore chose p1 and R to be primes which

are bq−bk
2 bits long. Then, F = kp1 >

√
n and n = 2RF + 1 can be prime according to the lemma.

Next, we can chose random a and test the two condition of the lemma. To make certain that the

algorithm terminates we test a small number of a’s, if none of them fulfills the condition we pick new

values for p1 and R. In the case of succeeding a we have found a prime q = 2kp1R, since all the

conditions of the lemma are satisfied.

Next, we have to check if a is really a generator of Zq . Maurer tells us that this can be done by

checking the equation

a
n−1
s 6≡ 1 mod n

for all prime factors s of R. As our R is prime we have to check this equation only once and if we

succeed we know a is a generator of Zq .

A k-th root of unity can now easily obtained by setting ω = a
q−1
k , which only costs one single

exponentiation and one division.

After we have found our q we have to generate a prime p such that q|p − 1. We can use the same

approach as before. We pick a random prime p1 which is bp − bq bits long, where bp is the required

number of bits for p. If p1 > q we set in the lemma above F = p1, else F = q, and test the condition

for random numbers a. Again, if an a passes the test, we have found a prime number p.

Finally, we have to find a generator G of the group G. The easiest way to find it is to take a

generator of Z∗p to the power p−1
2p1

. Thus, we have to check if our a is really a generator, which can be

done according the same method as before. In the case a not a generator we will pick a new value p1,

otherwise we calculate G.

The final output of this algorithm are primes q and p, such that q|p, a generator Gq for Zq , a k-th

root of unity ω in this field, and a generator G ∈ Zq of the subgroup G with order q.

4.2 Optimizing Multiplications
During our protocol many multiplications take part, for some tasks the cost of the multiplication can be

really expensive and dominant; thus, we have to optimize these tasks.

First, in the setting of the polynomial evaluation argument and the blacklist argument we have

to multiply many big polynomials. The best asymptotic way in literature to solve this problem is to

use the Fast Fourier Transform (FFT) [CT65]. The multiplication of two degree D polynomials costs

Ω(D logD) multiplications. For smaller degree polynomials other techniques give better performance,

but to keep the implementation simple we only coded the FFT. For the implementation we used the

classic version relying on loops.

The other problem, which leads to dominant computational cost, is to calculate sums like

i∑
i0,...,id=0

ai0,...,id

d∏
j=0

y
ij
j x

1−ij

where x, yj can be single values, or vectors, or some function. Calculating all
∏d
j=0 y

ij
j x

1−ij from
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scratch can be quite expensive. But it is possible to reduce the number of multiplications needed. The

idea is to use a binary tree of depth d+1 to generate all possible products
∏d
j=0 y

ij
j x

1−ij . The following

tree for d = 2 illustrates the exact steps of a binry tree.

1

x

x2

x3

x2y0

xy1

x2y2

xy0y1

y2

xy2

x2y2

xy0y2

y1y2

xy1y2

y0y1y2

4.3 Multi-exponentiation Techniques
To calculate a commitment to a vector a we have to compute the product

comck(a1, . . . , an; r) = Hr
n∏
i=1

Gaii ,

this costs n+1 single exponentiations if done in a naı̈ve way. Thus, the cost to calculate the commitments

can dominant the run-time for big n or for many commitments. To optimize the calculation of such

commitments we decided to implement multi-exponentiation techniques.

We picked to use Brickell et al.’s precomputation algorithm [BGMW98] for large n as described

by Lim [Lim00]. This algorithm is used for all occurrences of multi-exponentiation equations with

large n. To optimize also all other multi-exponentiation equations we decided to implement Lim-Lee’s

algorithm [Lim00] for n ≤ 1 000 and for n = 2 we choose the sliding window algorithm [Lim00].

For notational reasons we will describe our techniques for the slightly modified equation

n∏
i=0

Gaii (4.1)

4.3.1 Sliding Window Algorithm

The sliding window algorithm gives the best performance for very small n, that means n is between

2 and 4. The idea is similar to the square-and-multiply algorithm to calculate y = xe the power of an

integer. In the square-and-multiply algorithm we write the exponent e in binary and set first y = x. Then,

we look at the second most significant bit. If this bit is 0 we assign y = y2, otherwise we have y = y2x.

Repeating these operations for all bits of the exponent, the algorithm calculates xe. This method has an
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obvious generalization instead of using the base 2 we expand the exponent e in base 2w. More precisely,

in each step we look at w bits of the binary expression of the exponent. The number of bits is called the

window size of the algorithm.

Instead of using a fixed window size as above, e.g. 1 if we take the square-and-multiply algorithm,

we use windows with variable sizes for the sliding window technique. This means, for each exponent

we look at a different number of bits, which can be between 1 and a maximum size of w. To find the

windows we slide from the most significant bit to the least significant bit and search for non-zero bit

strings which are smaller or equal to the window size w and end with 1.

In more detail, we can express each exponent ai as

ai =

ki∑
j=1

ai,j2
li,j ,

where 0 < ai,j < 2w, ai,j is odd, w the window size and ki the number of bit strings. We can define

Gi,j = G2j−1
i ,

for 1 < j < 2w−1 and plug these precomputed values in our equation. This gives us

n∏
i=0

Gaii =

n∏
i=0

ki−1∏
j=0

G
ai,j2

li,j

i

 =

n∏
i=0

(
G2li,j
i,(ai,j+1)/2

)
.

To use this technique we can now pre-compute values Gi,j and calculate the right hand side of the

equation using a square-and-multiply algorithm.

We will mainly use the sliding window algorithm to commit to single values during the protocols, in

this case the basis G0 and G1 are fixed by the commitment key throughout the protocol. For this reason

and to speed up our implementation further we pre-compute values Gi,j in the beginning and reuse the

values for all commitments.

Window Size: Lim suggested a window size w = 4 for exponents ai ∈ Zq with 80 < |q| ≤ 240 and for

240 < |q| ≤ 672 a window size w = 5. To ensure that these recommendations are consistent with our

implementation we tested different window sizes to find the optimal one.

To determine the value of w, we run the prover of Brands et al.’s polynomial argument, described

in Section 6.5. The dominant part of this prover is the calculation of many commitments to single value

and no other multi-exponentiations are calculated. For big degree D polynomials, the complete run-time

is slow enough to see the merit of different window sizes. Table 4.2 shows the run-time for the prover

for a degree D = 100 000 polynomial with window sizes w = 4, 5, 6, 7. We used a subgroup of 160-bit

prime modulo a 1 248-bit prime and subgroups with a 256-bit and 384-bit order q modulo a 3 248-bit

prime.

We see that for |q| = 160 we get best performance for w = 5 and for both other q the best perfor-

mance is given for the window size ω = 6. These values differ slightly from the recommendation, but as
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|q| |p| w = 4 w = 5 w = 6 w = 7

160 1 248 1 306 ms 1 278 ms 1 325 ms 1 408 ms
256 3 248 8 607 ms 8 433 ms 8 369 ms 8 757 ms
384 3 248 12 756 ms 12 194 ms 12 075 ms 12 292 ms

Table 4.2: Run-time in ms of Brands et al.’s polynomial argument verifier for different window sizes for
the sliding window algorithm and different modular groups for a polynomial with degree D = 100 000.

they are optimal for our implementation we will stick to these values throughout the data collection.

4.3.2 Lim-Lee’s Pre-computation Technique

For medium range values n we decided to use Lim-Lee’s pre-computation technique, since its perfor-

mance is better than the sliding window technique and Brickell et al.’s technique.

The idea behind this algorithm is that instead of calculating first all bases to the power of the

exponent and the multiplying the result together, we can calculate the product bit-wise for the exponent.

To speed up this technique, the product can be split into different blocks, the values of which can be

calculated beforehand.

In more detail, we can write each exponent ai in binary as ai =
∑t−1
i=0 ai,j2

j and plug this expres-

sion in the original equation 4.1. This gives us

n∏
i=1

Gaii =

n∏
i=1

G
∑t−1
j=0 ai,j2

j

i =

t−1∏
j=0

(
n∏
i=1

G
ai,j
i

)2j

,

we can now rearrange the inner products to get h = d nw e smaller products

t−1∏
j=0

(
n∏
i=1

G
ai,j
i

)2j

=
t−1∏
j=0

(
h−1∏
k=1

(
kw+w−1∏
i=kw

G
ai,j
i

))2j

.

The innermost products can be precomputed as

Gk,e =

w−1∏
j=0

Geikw+j

for each k = 0, . . . , h − 1, where 0 < e = ew−1 . . . e1e02w and ei ∈ {0, 1}. Entering these values in

our equation give us
n∏
i=1

Gaii =

t−1∏
j=0

(
h−1∏
k=0

Gk,e(k)

)2j

,

where e(k) is defined as

e(k) = akw+w−1,j . . . akw+1,jakw,j .

The algorithm works now as follows. First we pre-compute all possible values Gk,e(k), then the

inner products and in the end we use a square-and-multiply algorithm to calculate the outer product.
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Window Size: Similar to the window size algorithm the performance of the method depend on the win-

dow size w. Lim suggests a window size of w = 6 for our range of parameter. Again, we tried different

values to determine the best window size for our implementation.

In this case we used the performance of Brands et al’s blacklist verifier, see Section 7.5. In the

un-optimized version this verifier has to calculate n multi-exponentiations to vectors of length n. This

cost is dominant; thus, a good point to test the merit of different window sizes.

D\w 3 4 5 6
10 8.35 ms 8.25 ms 8.62 ms 9.10 ms

100 28.23 ms 27.29 ms 26.70 ms 29.93 ms
1 000 160 ms 147 ms 154 ms 174 ms

Table 4.3: Run-time in ms of Brands et al.’s blacklist argument verifier for different window sizes for
Lim-Lee’s algorithm on a group G with order 160-bit modulo a 1 248-bit prime and polynomials with
degrees D = 10, 100, 1 000.

D\w 3 4 5 6
10 64 ms 62 ms 64 ms 67 ms

100 217 ms 213 ms 200 ms 216 ms
1 000 1 228 ms 1 107 ms 1098 ms 1 168 ms

Table 4.4: Run-time in ms of Brands et al.’s blacklist argument verifier for different window sizes for
Lim-Lee’s algorithm on a group G with order 256-bit modulo a 3 248-bit prime and polynomials with
degrees D = 10, 100, 1 000.

D\w 3 4 5 6

10 94 ms 93 ms 92 ms 97 ms
100 318 ms 314 ms 291 ms 310 ms

1 000 1 861 ms 1 643 ms 1 596 ms 1 670 ms

Table 4.5: Run-time in ms of Brands et al.’s blacklist argument verifier for different window sizes for
Lim-Lee’s algorithm on a group G with order 384-bit modulo a 3 248-bit prime and polynomials with
degrees D = 10, 100, 1 000.

Tables 4.3, 4.4, 4.5 state the results for different window sizes w = 3, 4, 5, 6, and different val-

ues n = 10, 100, 1 000. Each table shows the data for one of the three different groups G with

|q| = 160, 256, 384. We see that different to the sliding window algorithm no window size gives us

optimal performance for the subgroups with |q| = 160, 256; however, the different between the run-time

for w = 4, 5 is very small. In the case of |q| = 384 window size w = 5 gives the best performance and

therefore we sticked throughout the data collection to the window size w = 5.

4.3.3 Brickell et al.’s Pre-computation Algorithm

The last multi-exponentiation technique we implemented is Brickell et al.’s pre-computation algorithm,

this method performs best if n is large.

The idea here is to represent each exponent ai in base 2w, where w is some fixed integer. This gives
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us

ai =

h−1∑
j=0

ai,j2
jw

with h =
⌈
|q|
w

⌉
and 0 ≤ ai,j < 2w. Putting these expression in equation 4.1 gives us

n∏
i=0

Gaii =

n∏
i=0

h−1∏
j=0

G
ai,j2

jw

i


=

h−1∏
j=0

(
n∏
i=0

G
ai,j
i

)2jw

.

The first step is to pre-compute the inner products and then multiply the precomputed values in a

square-and multiply manner.

Window Size: The run-time of the algorithm depends on the window size w which depends on the group

size and the length of n. Lim gives a way to calculate these values theoretically, but as the value also

depends on the implementation we decided to find the best values in experiments.

To determine the best windows sizes we use again Brands et al.’s blacklist verifier without batching.

In this case we tested different values w for a subgroup with order 160-bit modulo a prime with 1 248-

bit, and subgroups G with a 256-bit and 384-bit order q modulo a 3 248-bit prime. For the vector length

n we used the values 10 000, 100 000 to see the different in the run-time. The results can be found in

Table 4.6, 4.7, and 4.8.

D\w 6 7 8
10 000 1 129 ms 1 124 ms 1 143 ms

100 000 10 153 ms 10 127 ms 10 183 ms

Table 4.6: Run-time in ms of Brands et al.’s blacklist argument verifier for different window sizes for
Brickell et al.’s algorithm on a group G with order 160-bit modulo a 1 536-bit prime and polynomials
with degrees D = 10 000, 100 000.

D\ w 6 7 8
10 000 7 527 ms 7 361 ms 7 451 ms

100 000 66 094 ms 64 550 ms 64 545 ms

Table 4.7: Run-time in ms of Brands et al.’s blacklist argument verifier for different window sizes for
Brickell et al.’s algorithm on a group G with order 256-bit modulo a 3 248-bit prime and polynomials
with degrees D = 10 000, 100 000.

D\w 6 7 8
10 000 10 822 ms 10 795 ms 10 901 ms

100, 000 94 211 ms 93 469 ms 93 923 ms

Table 4.8: Run-time in ms of Brands et al.’s blacklist argument verifier for different window sizes for
Brickell et al.’s algorithm on a group G with order 384-bit modulo a 3 248-bit prime and polynomials
with degrees D = 10 000, 100 000.
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We see that in all cases a window size of w = 7 gives the best performance, besides of the case

n = 100 000 and |q| = 256. Anyway, the difference between the run-time for w = 7 and w = 8 is very

small. Thus, we decided to use w = 7 for all our data collection in this work. This value differs much

from the recommended values, however this gives us the best performance.



Chapter 5

Basic Protocols

In this chapter we will state and explain zero-knowledge arguments for different problems, which are

needed as building blocks for the practical zero-knowledge arguments in the later chapters. However the

arguments are also of interest as standalone protocols. For instance, such a problem can be for given

a, b, c ∈ Zq to show a · b = c without revealing a, b, c, see Section 5.1, this problem appears as subproto-

col in various zero-knowledge arguments. The original technique is due to Chaum and Pedersen [CP92],

we adjusted the technique such that the argument is a Σ-protocol. In Section 5.3 we describe a product

argument to show for secret values ai and b, that
∏N
i=1 ai = b. The whole section is based on Groth’s

linear algebra techniques [Gro09] and was published at Eurocrypt 2012 [BG12]. Lastly, in Section 5.4,

we will show that for committed vectors ai, bi, ci it holds ai ◦bi = ci. This argument was not published

before and is joint work with Jens Groth. All arguments described in this chapter are efficient themselves

and can be used as building blocks for the practical zero-knowledge arguments in the later chapters.

5.1 Simple Product Argument
We will now give an argument how to prove the correctness of a product a · b = c ∈ Zq , for committed

values a, b, c ∈ Zq . The protocol is based on the techniques in [CP92], [CD98], and [NBMV99].

Statement: {G, p, q}, ck, ca, cb, cc ∈ G

Prover’s witness: a, b, c, r, s, t ∈ Zq such that

a · b = c ca = comck(a; r) cb = comck(b; s) cc = comck(c; t).

Initial message: Compute

1. cd = comck(d, ρ) where d, ρ← Zq

2. ce = comck(e, σ) where e, σ ← Zq

3. cf = cdbcomck(0; τ) where τ ← Zq

Send: cd, ce, cf

Challenge: x← Z∗q
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Answer: Calculate

1. a = d+ xa r = ρ+ xr

2. b = e+ xb s = σ + xs

3. t = τ − x(sa− t)

Send: a, r, b, s, t

Verification: Accept the argument if and only if

1. cd, ce, cf ∈ G

2. a, r, b, s, t ∈ Zq

3. cxacd = comck(a; r) cxb ce = comck(b; s)

4. cxc cf = cabcomck(0; t)

Theorem 17. The protocol is a 3-round public-coin perfect Σ−protocol of committed values a, b, c such

that a · b = c.

Proof. Perfect completeness can be seen by careful inspection of the verification equations.

Given challenge x← Z∗q the simulator picks a, r, b, s, t← Zq , and sets

cd = c−xa comck(a; r) ce = c−xb comck(b; s) cf = c−xc cabcomck(0, t).

The answers a, r, b, s, t are uniformly random in the real argument and also in the simulated argu-

ment. The unconditionally hiding property of the commitment schemes gives us that cd, ce, cf follow

the same distribution as in the real argument. Therefore, the protocol is SHVZK.

It remains to show that the protocol has perfect special soundness. Given two transcripts(
ca, cb, x1, a

(1), r(1), b
(1)
, s(1), t

(1)
)

,
(
ca, cb, x2, a

(2), r(2), b
(2)
, r(2), t

(2)
)

with x1 6= x2, the extrac-

tor gets openings a, b, c, r, s, t by taking linear equations of the verifications. More precisely, we have

the two answers satisfy

cx1
a cd = comck

(
a(1); r(1)

)
cx2
2 cd = comck

(
a(2); r(2)

)
.

Picking α1, α2 such that α1x1 + α2x2 = 1 and α1 + α2 = 0 gives us

ca = cα1x1+α2x2
a cα1+α2

d = comck(α1a
(1) + α2a

(2);α1r
(1) + α2r

(2)).

Similar we get

cb = comck(α1b
(1)

+ α2b
(2)

;α1s
(1) + α2s

(2)).

To extract c we take linear equations over

cxc cf = cabcomck(0; t),
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using the same α1, α2 as before we get

cc = c
α1x1+αx22
c cα1+α2

f

= cα1a
(1)+α2a

(2)

b comck(0, t
(1)

)α1comck(0; t
(2)

)α2

= comck

(
α2

1a
(1)b

(1)
+ α1α2(a(1)b

(2)
+ a(2)b

(1)
) + α2

2a
(2)b

(2)
;

α2
1a

(1)s(1) + α1α2(a(1)s(2) + a(2)s(1)) + α2
2a

(2)s(2) + α1t
(1)

+ α2t
(2)
)

Lastly, we have to argue that the extracted openings satisfy the statement. The commitment cf

contains xc + bd − xab for random x by the binding property of the commitment scheme. Since cf is

fixed before the prover sees the challenge x, this implies that c = ab, and a, b, c are the same values as

known by the prover. If this is not the case, the extractor could be used by the prover to find a second

opening to their their commitments and the commitment scheme is broken.

We can conclude that the argument is a Σ−protocol.

Efficiency: During the whole protocol 3 group elements and 5 field elements are transferred between the

prover and verifier.

The prover has to calculate 6 exponentiations and the verifier 9 exponentiations in G. The total

number of multiplications are 6 for the prover and 4 for the verifier.

Example: Let be G = 〈G〉 = 〈149〉 ⊂ Z∗179, which has prime order q = 89.

The statement consists of {G, {p, q} = {〈149〉, 179, 89}, ck = {G,H} = {149, 129},

ca = 144, cb = 155, cc = 77 ∈ G, and the claim that a · b = c.

The prover knows a = 88, b = 47, and c = a · b = 42 ∈ Z89, and r = 13, s = 25, t = 67 ∈ Z89

such that.

ca = comck(a; r) = 14988·1293 = 74 ∈ G cb = comck(b; s) = 155 ∈ G cc = comck(c; t) = 77 ∈ G.

To prove knowledge of witnesses a, b the prover picks d = 34, ρ = 36, e = 3, σ = 15, computes

cd = comck(d; ρ) = 47 ce = comck(3, 15) = 177 cf = cdb · comck(0; ρ) = 36,

and sends

cd = 47 ce = 177 cf = 36

to the verifier.

The verifier picks challenge x = 26 ∈ Z∗q and gives this value to the prover.

To answer the challenge the prover calculates

a = d+ xa = 34 + 26 · 88 = 8 r = ρ+ xr = 36 + 26 · 13 = 18

b = e+ xb = 3 + 26 · 47 = 68 s = σ + xs = 15 + 26 · 25 = 42
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t = ρ− x(sa− t) = 36− 26(25 · 88− 67) = 25

and send these values to the verifier.

The verifier checks if cd, ce, cf ∈ G, a, r, b, st ∈ Zq , and finally

cxacd = 173 = comck(a; r) (X)

cxb ce = 161 = comck(b; s) (X)

cxc cf = 60 = cabcomck(0, t) (X)

Thus, the verifier is convinced that the prover knows a, b, c such that a · b = c.

5.2 Invertible Argument
We will now give an argument how to prove that an element a ∈ Z∗q is invertible, that means a 6= 0. The

protocol is based on the techniques in [Bra97] and [BDD07].

Statement: {G, p, q}, ck, ca ∈ G

Prover’s witness: a, r ∈ Zq such that ca = comck(a; r) a 6= 0.

Initial message: Compute

1. cb = csacomck(0;−t) where s, t← Zq

Send: cb

Challenge: x← Z∗q

Answer: Calculate

1. a = s+ xa−1 r = t+ xra−1

Send: a, r

Verification: Accept the argument if and only if

1. cb ∈ G

2. a, r ∈ Zq

3. cb = caacomck(−x; r)

Theorem 18. The protocol is a 3-round public-coin perfect Σ−protocol of committed values a, such

that a 6= 0.

Proof. Perfect completeness can be seen by careful inspection of the verification equations.

Given challenge x← Z∗q the simulator picks a, r ← Zq , and sets cb = caacomck(−x; r).

The answers a, r are uniformly random in the real argument and also in the simulated argument.

The unconditionally hiding property of the commitment schemes gives us that cb follows the same dis-

tribution as in the real argument. Therefore, the protocol is SHVZK.
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It remains to show that the protocol has perfect special soundness. Given two transcripts(
ca, x1, a

(1), r(1)
)
,
(
ca, x2, a

(2), r(2)
)

with x1 6= x2, the extractor gets openings a, r, s, t using the Van-

dermonde matrix

M =

1 x1

1 x2

 .

Since x1 6= x2 the matrix M is invertible, multiplying (s, a−1)T with M−1 gives us openings s, a−1

and also a. In a similar way we can extract openings r, t.

Lastly, we have to argue that the extracted openings satisfy the statement. The commitment cb

contains sa + xaa−1 − x for random x by the binding property of the commitment scheme. Since cb

is fixed before the prover sees the challenge x, this implies that a−1 is the inverse of a and therefore

it follws that a 6= 0. Furthermore, a is the same value as known by the prover, if this is not the case,

the extractor could be used by the prover to find a second opening to one of the commitments and the

commitment scheme is broken.

We can conclude that the argument is a Σ−protocol.

Efficiency: During the whole protocol 1 group elements and 2 field elements are transfered between the

prover and verifier.

The prover has to calculate 2 exponentiations and the verifier 3 exponentiations in G. The total

number of multiplications are 4 for the prover and 3 for the verifier.

Example: Let be G = 〈G〉 = 〈149〉 ⊂ Z∗179, which has prime order q = 89.

The statement consists of {G, {p, q} = {〈149〉, 179, 89}, ck = {G,H} = {149, 129},

ca = 144 ∈ G, and the claim that a 6= 0.

The prover knows a = 56, r = 13 ∈ Z89 such that ca = comck(a; r)144 ∈ G.

To prove knowledge of witnesses a the prover picks s = 34, t = 36, computes

cb = csacomck(0;−t) = 82

and sends cb = 82 to the verifier.

The verifier picks challenge x = 26 ∈ Z∗q and gives this value to the prover.

To answer the challenge the prover calculates

a = s+ xa−1 = 34 + 26 · 62 = 44 r = t+ xra−1 = 36 + 26 · 13 · 62 = 77

and send these values to the verifier.

The verifier checks if cb ∈ G, a, r ∈ Zq , and finally

cb = 82 = caacomck(−x; r) (X)

Thus, the verifier is convinced that the prover knows a such that a 6= 0.
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5.3 Product Argument
The whole section was published at Eurocrypt 2012 in [BG12]. This argument was also illustrated in

Groth [Gro09] but we will give all the details and make a few minor improvements. Section 5.3.3 is

based on work in [Gro10].

We will now describe an argument that a set of committed values have a particular product. More

precisely, given commitments cA to A = {aij}n,mi,j=1, and a value b we want to give an argument of

knowledge for
∏n
i=1

∏m
j=1 aij = b. Our strategy is to compute a commitment

cb = comck

 m∏
j=1

a1j , . . . ,

m∏
j=1

anj ; s

 .

We give an argument of knowledge that cb is correct, i.e. it contains
∏m
j=1 a1j , . . . ,

∏m
j=1 anj . Next, we

give an argument of knowledge that b is the product of the values inside cb. We will present these two

arguments in Sections 5.3.1 and 5.3.3. Here, we just give an overview of the protocol.

Statement: {G, p, q}, ck, cA ∈ Gm and b ∈ Zq .

Prover’s witness: A ∈ Zn×m, r ∈ Zmq such that

cA = comck(A; r) and
n∏
i=1

m∏
j=1

aij = b.

Initial message: 1. Pick s ← Zq and compute cb = comck

(∏m
j=1 a1j , . . . ,

∏m
j=1 anj ; s

)
and send

cb to the verifier.

2. Engage in an SHVZK argument of knowledge as described in Section 5.3.1 of

cb = comck

(∏m
j=1 a1j , . . . ,

∏m
j=1 anj ; s

)
, where a11, . . . , anm are the committed values

in cA.

3. Engage (in parallel) in an SHVZK argument of knowledge as described in Section 5.3.3 of b

being the product of the committed values in cb.

Verification: The verifier accepts if and only if

1. cb ∈ G

2. Both SHVZK arguments are convincing.

Theorem 19. The protocol is a public coin perfect generalized Σ−protocol of openings

a11, . . . , anm, r1, . . . , rm ∈ Zq

such that b =
∏n
i=1

∏m
i=1 aij .

Proof. Perfect completeness follows from the perfect completeness of the two underlying SHVZK ar-

guments since the prover’s opening of cb gives a satisfying input to both arguments.
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Perfect SHVZK follows from the perfect hiding property of the commitment scheme and the perfect

SHVZK of the two underlying arguments. The simulator picks cb = comck(0, . . . , 0; s) for random

s← Zq and runs the simulator for the two underlying arguments.

It remains to argue that we have a perfect generalized special soundness extractor. The extractor

runs the extractors of the underlying arguments such that it gets openings a11, . . . , anm, r1, . . . , rm of

cA and an opening b1, . . . , bn, s of cb such that

b1 =

m∏
j=1

a1j . . . bn =

m∏
j=1

anj and b =

n∏
i=1

bi.

This implies that the extracted openings of cA satisfy
∏n
i=1

∏m
j=1 aij = b and are the same witnesses as

known by the prover. If this were not the case the extractor could be used by the prover to find another

opening for at least one of the commitments, and the commitment scheme would be broken.

Efficiency: Before both parties can engage in the underlying multi Hadamard argument and zero argu-

ment, the prover sends one commitment. In total the communication cost consists of 3m group elements

and 4n field elements and therefore is O(m+ n).

The prover has to calculate mn multiplications in Zq to calculate the vector b and also the commit-

ment to b. Together with the cost of the underlying argument this give a computation cost ofmn+n+5m

exponentiations in G and m2n+ 5mn+ 5n+ 2m multiplications. Using Fast Fourier Transform as de-

scribed in section 5.3.2 the number of multiplication can be reduced to O(mn logm). Furthermore,

using multi-exponentiation techniques, described in section 4.3, the number of exponentiations can be

reduced down to O
(
mn

logn

)
.

The verifier calculates 6n + 5m exponentiations in and 8n + 5m multiplications in G; thus the

computation complexity is counting single exponentiations O(n+m) or applying multi-exponentiation

techniques O
(

n
logn + m

logm

)
, see Section 4.3.

Example: Let be G = 〈G〉 = 〈46〉 ⊂ Z∗179, which has prime order q = 89.

The statement contains {G, p, q} = {〈46, 〉, 179, 89}, ck = {G1, . . . , G4, H} = {46, 177, 161, 100, 72}

and commitments cA = (22, 89, 67) and b =
∏n
i=1

∏m
j=1 aij = 10. The prover knows a 4× 3 matrix

A =


63 10 21

55 72 72

88 76 75

47 84 56

 = (a1,a2,a3),

b =
∏n
i=1

∏m
j=1 aij = 10 ∈ Z179, and vector r = (1, 10, 25)T such that

cA1 = comck(a1; r1) = 22 cA2 = comck(a2; r2) = 89 cA3 = comck(a3; r3) = 61.

The statement of the argument is cA and b = 10.

The prover computes the Hadamard product of the vectors of A to get b = (58, 53, 85, 12)T ,
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commits themselves to b in cb = comck(b; s) = 74 by picking s = 5.

Next, both side engage in a multi Hadamard product of cb = comck

(∏m
j=1 a1j , . . .

∏m
j=1 anj ; s

)
and in parallel they engage in a single value product argument of b being the product of the entries of

vector b. The description of these protocols can be found in the following sections.

5.3.1 Multi Hadamard Product Argument

We will give an argument for committed values a11, . . . , anm and b1, . . . , bn satisfying

bi =

m∏
j=1

aij .

Again it will be convenient to write this with vector notation. We have commitments cA and cb and the

prover wants to argue knowledge of openings to tuples a1, . . . ,am, b ∈ Znq such that b =
⊙m

i=1 ai,

where
⊙

stands for the Hadamard product, which is the entry-wise product of vectors.

The prover generates commitments cB to the matrix B with columns

b1 = a1 b2 =

2⊙
i=1

ai . . . bm−1 =

m−1⊙
i=1

ai bm =

m⊙
i=1

ai.

By picking cB1 = cA1 and cBm = cb the prover guarantees b1 = a1 and bm = b. The prover’s strategy

is to prove that for each i = 1, . . . ,m− 1

bi+1 = ai+1bi.

Since b1 = a1 and bm = b this shows b =
⊙m

i=1 ai.

We will use randomization to simplify the argument. The verifier will send a challenge x and the

prover will demonstrate
m−1∑
i=1

xibi+1 =

m−1∑
i=1

ai+1(xibi).

Defining cDi = c x
i

Bi
and cD =

∏m−1
i=1 c x

i

Bi+1
we get commitments to the vectors

d1 = xb1 d2 = x2b2 . . . dm−1 = xm−1bm−1 d =
m−1∑
i=1

xibi+1.

Thus, we have reduced the problem to demonstrating that the committed values satisfy

d =

m−1∑
i=1

ai+1 ◦ di.

The argument can be made more efficient by having the verifier send a challenge y and defining the

bilinear map

∗ : Znq × Znq → Zq by (a1, . . . , an)T ∗ (d1, . . . , dn)T =

n∑
j=1

ajdjy
j . (5.1)
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The prover will now use the zero argument from Section 5.3.2 to demonstrate that

0 =

m−1∑
i=1

ai+1 ∗ di − 1 ∗ d,

which happens with negligible probability over y unless indeed d =
∑m−1
i=1 ai+1 ◦ di.

Statement: {G, p, q}, ck, cA ∈ Gm, cb ∈ G

Prover’s witness: a1, . . . ,am, r, and b, s such that

cA = comck(A; r) cb = comck(b; s) b =

m⊙
i=1

ai.

Initial message: Set

1. b1 = a1, b2 = a1 ◦ a2, . . . , bm−1 = a1 ◦ · · · ◦ am−1, and bm = b

2. cB2
= comck(b2; s2), . . . , cBm−1

= comck(bm−1; sm−1) where s2, . . . , sm−1 ← Zq

3. s1 = r1 and sm = s

4. cB1
= cA1

and cBm = cb

Send: cB

Challenge: x, y ← Z∗q

Answer: 1. Define the bilinear map

∗ : Znq × Znq → Zq by (a1, . . . , an)T ∗ (d1, . . . , dn)T =

n∑
j=1

ajdjy
j .

2. Define cDi = c x
i

Bi
and cD =

∏m−1
i=1 c x

i

Bi+1
and c−1 = comck(−1; 0) and engage in the

SHVZK zero argument described in Section 5.3.2 for the committed values satisfying

0 =

m−1∑
i=1

ai+1 ∗ di − 1 ∗ d.

The prover’s witness in this argument consists of the openings of cA2
, . . . , cAm , c−1 and the

openings of cD1 , . . . , cDm−1 , cD. The latter openings can be computed as

d1 = xb1, t1 = xs1, . . . , dm−1 = xm−1bm−1, tm−1 = xm−1sm−1,

and

d =

m−1∑
i=1

xibi+1 t =

m−1∑
i=1

xisi+1.

Verification: Check



70 Chapter 5. Basic Protocols

1. cB2
, . . . , cBm−1

∈ G

2. cB1
= cA1

, cBm = cb

3. Define cDi = c x
i

Bi
, cD =

∏m−1
i=1 c x

i

Bi+1
and c−1 = comck(−1; 0). Accept if the underlying

zero argument is valid.

Theorem 20. The protocol is a public coin perfect generalized Σ−protocol of committed vectors

a1, . . . ,am, b such that b =
⊙m

i=1 ai.

Proof. It is straightforward to check that the inputs to the underlying zero argument are correct. There-

fore, perfect completeness follows from the perfect completeness of the underlying zero argument.

Given challenges x, y the simulator picks s2, . . . , sm−1 ← Zq , computes

cB2
= comck(0; s2) . . . cBm−1

= comck(0; sm−1),

and runs the SHVZK simulator for the underlying zero-knowledge argument. The perfect hiding property

of the commitments and the perfect SHVZK of the underlying zero argument shows that this is a perfect

simulation.

It remains to argue that we have perfect generalized special soundness. The extractor E runs the

extractor of the zero argument to get openings of cA2 , . . . , cAm , c−1, and cD1 , . . . , cDm−1 , cD of the form

a2, r2, . . . ,am, rm,−1, 0, and d1, t1, . . . ,dm−1, tm−1,d, t. This gives us openings of cB computed as

b1 = x−1d1 s1 = x−1t1 . . . bm−1 = x1−mdm−1 sm−1 = x1−mtm−1

bm = x1−m(d−
m−2∑
i=1

xibi+1) sm = x1−m(t−
m−2∑
i=1

xisi+1).

Since cB1 = cA1 , and cBm = cb we automatically get openings a1 = b1, r1 = s1 and b = bm, s = sm

of these commitments.

The remaining question is whether the extracted witness satisfies the statement. The

binding property of the commitment scheme implies that cD1 , . . . , cDm−1 contain openings

d1 = xb1, . . . ,dm−1 = xm−1bm−1, and cD contains d =
∑m−1
i=1 xibi+1 for the randomly chosen

x. Since cB is fixed before seeing the challenges d1, . . . ,dm−1,d are determined before the prover sees

the y that defines the bilinear map ∗. The special soundness property of the underlying zero argument

implies

1 ∗ d =

m−1∑
i=1

ai+1 ∗ di,

which has negligible probability of holding for random y unless d =
∑m−1
i=1 ai+1 ◦ di. This implies

m−1∑
i=1

xibi+1 =

m−1∑
i=1

ai+1 ◦ (xibi),

which has negligible probability of holding for random x unless b2 = a2 ◦ b1, . . . , bm = am ◦ bm−1.
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This shows the extracted openings satisfy b = bm =
⊙m

i=1 ai as required in the statement and they are

the same witnesses as known by the prover. If this were not the case the extractor could be used by the

prover to find another opening for at least one of the commitments, and the commitment scheme would

be broken.

Efficiency: The communication cost consists of m group elements plus the cost of one single value

argument, so in total m group element and 2n field elements. Therefore, the communication cost is

O(m+ n).

The prover has to commit herself to the vectors bi and doing this they needs to calculate mn +

m−2n exponentiations in G and 2mnmultiplications. Together with the underlying protocol the prover

calculatesmn+m+n exponentiations in G and 2mn+7nmultiplications. Using multi-exponentiations

techniques, see Section 4.3, the cost of the exponentiations can be reduced to O
(
mn

logn

)
.

Before the verifier can engage in the single value argument they has to calculate m+ n exponenti-

ations in G and n+m multiplications. The total number is 3n+m exponentiations and 5n+m multi-

plications in G. Using multi-exponentiation techniques, see Section 4.3, this cost is O
(

n
logn + m

logm

)
.

Example: Let be G = 〈G〉 = 〈46〉 ⊂ Z∗179, which has prime order q = 233. This is the underlying

Hadamard product for the product argument example, but can also be observed on its own.

The statement consists of {G, p, q} = {〈47〈, 179, 89}, ck = {G1, . . . , G4, H} = {47, 177, 161, 100, 72},

and commitments cA = (22, 61, 69) ∈ G3 and cb = comck(b; s) = 74 ∈ G

The prover knows witnesses

A =


63 10 21

55 72 72

88 76 75

47 84 56

 = (a1,a2,a3),

r = (11025), b = (58, 53, 85, 12)T , and s = 5 such that

cA = comck(A; r) = (22, 89, 61) cb = comck(b; s) = 74 b =

m⊙
i=1

ai.

The prover wants to convince the verifier that b is indeed the Hadamard product of the a′is.

The prover first sets b1 = a1, b2 = a1 ◦ a2 = (7, 44, 13, 32)T , b3 = b, and

s1 = r1 = 1, s3 = s = 5, picks s2 = 64 and commits themselves to b2 in cB2 = comck(b2; s2) = 61 ∈

G. Lastly, the prover sends

cB1
= cA1

= 22 cB2
= 61 cB3

= cb = 169

to the verifier.
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The verifier picks challenges x = 62 and y = 8, and both parties define the bilinear map

∗ : Z4
179 × Z4

179 → Z179 by (a1, . . . , a4)T ∗ (d1, . . . , d4)T =

4∑
i=1

aidiy
i =

4∑
i=1

aidi8
i.

Then they set

cD1
= cxB1

= 161 cD2
= cx

2

B2
= 149 cD3

= cx
3

B3
= 27,

cD = cxB2
cx

2

B3
= 9 c−1 = comck(−1; 0) = 144.

The openings of cD1 , cD2 , cD3 are

d1 = xb1 = (7, 18, 17, 66)T t1 = xs1 = 62,

d2 = x2b2 = (30, 36, 43, 10)T , t2 = x2s2 = 20,

d3 = x3b3 = (18, 59, 56, 10)T , t3 = x3s3 = 19

and the opening of cD is

d = xb2 + x2b3 = (85, 69, 5, 26)T , t = 48.

These openings can be easily calculated by the prover and they can engage in a zero argument, described

in the next section, for the committed values satisfying 0 = a2 ∗ d1 + a3 ∗ d2 − 1 ∗ d.

The verifier accepts if cB2
∈ G and cB1

= cA1
, cB3

= cb, and the zero argument is valid.

5.3.2 Zero Argument

Given a bilinear map ∗ : Znq ×Znq → Zq and commitments to a1, b0, . . . ,am, bm−1 the prover wants to

show that 0 =
∑m
i=1 ai ∗ bi−1. The bilinear map can be defined by y ∈ Zq as described in equation 5.1,

or by the inner product of vectors.

The prover picks a0, bm ← Znq and calculates commitments to these values. The prover computes

for k = 0, . . . , 2m the values

dk =
∑

0≤i,j≤m
j=(m−k)+i

ai ∗ bj

and commits to them. Observe that dm+1 =
∑m
i=1 ai ∗ bi−1 = 0. The prover sets cDm+1 = comck(0; 0)

such that the verifier can see dm+1 = 0.

The verifier picks a challenge x and uses the homomorphic property to compute commitments to

a =
∑m
i=0 x

iai and b =
∑m
j=0 x

m−jbj , the prover will provide openings of these commitments. The

verifier can also compute a commitment to
∑2m
k=0 dkx

k and the prover opens this commitment. We

observe that if everything is computed correctly by the prover then

2m∑
k=0

dkx
k =

( m∑
i=0

xiai

)
∗
( m∑
j=0

xm−jbj

)
.
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The verifier checks this equation by testing if
∏2m
k=0 c

xk

Dk
= comck(a ∗ b; t). There is negligible chance

that the prover convinces the verifier unless the polynomials are identical. Since dm+1 = comck(0; 0)

the coefficient of xm+1 is 0 showing that 0 =
∑m
i=1 ai+1 ∗ bi,

Statement: {G, p, q}, ck, cA, cB ∈ Gm and a specification of a bilinear map

∗ : Znq × Znq → Zq.

Prover’s witness: A = {ai}mi=1 ∈ Zn×mq , r ∈ Zmq , and B = {bi}m−1
i=0 , s = (s0, . . . , sm−1) ∈ Zmq

such that

cA = comck(A; r) cB = comck(B; s) 0 =

m∑
i=1

ai ∗ bi−1.

Initial message: Compute:

1. cA0 = comck(a0; r0) cBm = comck(bm; sm) where a0, bm ← Znq and r0, sm ← Zq

2. for k = 0, . . . , 2m :

dk =
∑

0≤i,j≤m
j=(m−k)+i

ai ∗ bj

3. cD = comck(d; t) where t = (t0 . . . t2m)← Z2m+1
q and tm+1 = 0

Send: cA0 , cBm , cD

Challenge: x← Z∗q

Answer: Calculate

1. a =
∑m
i=0 x

iai and r =
∑m
i=0 x

iri

2. b =
∑m
j=0 x

m−jbj and s =
∑m
j=0 x

m−jsj

3. t =
∑2m
k=0 x

ktk.

Send: a, b, r, s, t

Verification: Accept if and only if

1. cA0 , cBm ∈ G, cD ∈ G2m+1 and cDm+1 = comck(0; 0) ∈ G

2. a, b ∈ Znq and r, s, t ∈ Zq

3.
∏m
i=0 c

xi

Ai
= comck(a, r)

∏m
j=0 c

xm−j

Bj
= comck(b; s)

4.
∏2m
k=0 c

xk

Dk
= comck(a ∗ b; t)

Theorem 21. The protocol is a public coin perfect generalized Σ−protocol of committed values

a1, b0, . . . ,am, bm−1 such that 0 =
∑m
i=1 ai ∗ bi−1.
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Proof. We have dm+1 =
∑m
i=1 ai ∗ bi−1 = 0 and

a ∗ b =

(
m∑
i=0

xiai

)
∗

 m∑
j=0

xm−jbj

 =

2m∑
k=0

∑
0≤i,j≤m
j=(m−k)+i

ai ∗ bj =

2m∑
k=0

dkx
k.

Perfect completeness now follows by direct verification.

The argument is perfect SHVZK. The simulator picks, on challenge x, a, b← Znq , and

r, s, t0, t1, . . . , tm, tm+2, . . . , t2m ← Zq and defines tm+1 = 0. It computes

cA0 = comck(a; r)

m∏
i=1

c −x
i

Ai
cBm = comck(b; s)

m−1∏
j=0

c −x
m−j

Bj
t =

2m∑
k=0

tkx
k

cD0 = comck(a ∗ b; t0) cD1 = comck(0; t1) . . . cD2m = comck(0; t2m).

The simulated argument is (cA0 , cBm , cD, x,a, r, b, s, t). To see that this is a perfect simulation note that

the cDi ’s are perfectly hiding commitments and a, b, r, s, t are uniformly random both in a real argument

and in the simulation. Conditioned on those values the commitments cA0
, cBm , cD0

, cDm+1
are uniquely

determined by the verification equations; thus, real arguments and simulated arguments have identical

probability distributions.

It remains to prove that we have perfect generalized special soundness. Given 2m accepting tran-

scripts with different challenges x0, . . . , x2m satisfying for each x` that cDm+1
= comck(0; 0) and

m∏
i=0

c
xi`
Ai

= comck

(
a(`), r(`)

) m∏
j=0

c
xm−j`

Bj
= comck

(
b

(`)
; s(`)

)

2m∏
k=0

c
xk`
Dk

= comck

(
a(`) ∗ b(`)

; t
(`)
)
,

the extractor E can find a witness. Since the vectors (1, x`, . . . , x
2m
` ) form the columns of a transposed

Vandermonde matrix and all the x`’s are different we can find the inverse matrix X−1. Define

dx =
(
a(0) ∗ b(0)

, . . . , a(2m) ∗ b(2m)
)

and

tx =
(
t
(0)
, . . . , t

(2m)
)
,

this gives for each i = 0, . . . , 2m an opening of cDi applying

cD = (cXD)X
−1

= comck(dx; tx)X
−1

= comck(dxX
−1; txX

−1).

The extractor gets openings of cA0
, . . . , cAm and cB0

, . . . , cBm in a similar manner.

Having openings of cA, cB , cD to values a0, . . . ,am, b0, . . . , bm, d0, . . . , d2m the binding property
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of the commitment scheme implies that the answer to a random challenge x is of the form

a =

m∑
i=0

xiai b =

m∑
j=0

xm−jbj satisfying
2m∑
k=0

dkx
k = a ∗ b.

This implies
2m∑
k=0

dkx
k =

(
m∑
i=0

xiai

)
∗

 m∑
j=0

xm−jbj

 .

The Schwartz-Zippel lemma implies that the prover has negligible chance of making an acceptable argu-

ment unless dm+1 =
∑m
i=1 ai ∗ bi−1. Since dm+1 = 0 this gives us that the extracted openings satisfy

0 =
∑m
i=1 ai ∗ bi−1. The extracted openings are also the same witnesses known by the prover. Other-

wise the extractor could be used by the prover to break the commitment scheme and find two openings

for at least one commitment with non-negligible probability.

Efficiency: The communication cost is O(m+n) since 2m commitments and 2n field elements are sent

between the two parties during the protocol.

The prover has to commit themselves to two vectors in Znq and another 2m single elements, so in

total 2n + 4m exponentiations are calculated. This number can be reduced to O
(

n
logn + m

logm

)
using

multi-exponentiations techniques, described in Section 4.3.

On top of this the prover has to calculate m2n multiplications in Zq to generate the di’s and another

2mn + 2n + 5m multiplications in the rest of the protocol. The cost of the m2n multiplication can

be dominant, but using Fast Fourier Transform as described below it is possible to reduce these m2n

multiplications down O(mn logm) multiplications.

The verifier only needs to calculate 4n+5mmultiplications and 4m+3n exponentiations in G, ap-

plying multi-exponentiations techniques, Section 4.3, this relates to O
(

n
logn + m

logm

)
exponentiations.

Reducing the prover’s computation: Naı̈vely, the prover would use approximatelym2nmultiplications

in Zq to first compute the products ai ∗ bj and then summing them to compute the dk’s. Using Fast

Fourier Transform techniques, see also section 4.2, this can be reduced to O(mn logm) multiplications

in Zq if m and q are chosen such that 2m is a power of 2 and 2m|q − 1.

We will now outline how the Fast Fourier Transform can be used. Let ω ∈ Zq be a 2m-root of

unity, i.e. ω2m = 1. The idea is to evaluate the polynomial
∑2m
k=0 dkx

k in 2m + 1 different points

x = 1, ω, ω2, . . . , ω2m−1 and then use polynomial interpolation to recover the coefficients d0, . . . , d2m.

The polynomial interpolation is fairly efficient in our setting since it only applies to single

elements in Zq . The evaluation of the polynomial in x = 0 is also easy but the evaluations

in x = 1, ω, ω2, . . . , ω2m−1 take time. Using the Fast Fourier Transform this can be done with

O(mn logm) multiplications though. We compute a(x) =
∑m
i=0 x

iai and b(x) =
∑m
j=0 x

m−jbj in

the 2m roots of unity at a cost of O(mn logm) multiplications and using 2m evaluations of the bilinear

map ∗ this gives us
∑2m
k=0 dkx

k = a(x) ∗ b(x) evaluated in x = 1, ω, . . . , ω2m−1.

It is possible to reduce the prover’s computation even further to O(mn) multiplications using inter-

active techniques similar to the ones we described for the multi-exponentiation argument in Section 8.3.
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This comes at the cost of increased round complexity though. We refer to [Gro09] for details of how to

do it in a logarithmic number of rounds.

Example: Let be G = 〈G〉 = 〈46〉 ⊂ Z∗179, which has prime order q = 89. The statement is the

zero-argument used in the Hadamard product argument; that means the bilinear map is defined as

Z4
179 × Z4

179 → Z179 : (a1, . . . , a4)T ∗ (b1, . . . , b4)T =

4∑
i=1

aibi8
i.

The statement contains {G, p, q} = {〈46〉, 179, 89}, ck = {G1, . . . , G4, H} = {46, 177, 161, 100, 72},

and commitments cA = (cA2
, cA3

, c−1) = (89, 67, 144) and cB = (cD1
, cD2

, cD) = (161, 149, 9),

where cA2
, cA3

, c−1, cD1
, cD2

, cD are defined in the example of section 5.3.1.

The prover witness are

a1 = (63, 55, 88, 77)T a2 = (10, 72, 76, 84)T a3 = −1 r = (10, 25, 0),

b0 = (7, 18, 27, 66)T b1 = (30, 36, 43, 10)T b2 = (85, 69, 5, 26)T s = (62, 20, 48),

such that 0 =
∑3
i=1 ai ∗ bi−1.

The prover picks a0 = (11, 1, 74, 25)T , b3 = (16, 63, 88, 21), r0 = 56, and s3 = 14 and commits

themselves to a0, b3:

cA0 = comck(a0; r0) = 26 cB3 = comck(b3; s3) = 83.

Then the prover calculates for k = 0, . . . , 6 the values dk =
∑

0≤i,j≤m
j=(m−k)+i

ai ∗ bj :

d0 = a0 ∗ b3 = 19 d1 = a0 ∗ b2 + a1 ∗ b3 = 83 d2 = a0 ∗ b1 + a1 ∗ b2 + a2 ∗ b3 = 20

d3 = a0 ∗ b0 + a1 ∗ b1 + a2 ∗ b2 + a3 ∗ b3 = 24 d4 = a1 ∗ b0 + a2 ∗ b1 + a3 ∗ b2 = 0

d5 = a2 ∗ b0 + a3 ∗ b1 = 13 d6 = a3 ∗ b0 = 85

The prover picks t = (13, 30, 54, 2, 0, 59, 23)T and calculate commitments to the di’s.

cd0 = Gd01 H
t0 = 177 cd1 = 144 cd2 = 75 cd3 = 156

cd4 = 1 cd5 = 173 cd6 = 51

The commitments

cA0
= 26, cB3

= 83 cD = (177, 144, 75, 156, 173, 51)

are then send to the verifier.
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The verifier picks the challenge x = 52 and the prover calculates answers

a = a0 + a1 + x2a2 + x3a3 = (11, 64, 2, 79)T r = r0 + xr1 + x2r2 + x3r3 = 14

b = x3b0 + x2b1 + xb2 + b3 = (58, 0, 86, 48)T s = x3s0 + x2s1 + xs2 + s3 = 55

t = t0 + xt1 + x2t2 + x3t3 + x4t4 + x5t5 + x6t6 = 69.

The answers are sent to the verifier and they check if the commitments belongs to G and the answers are

valid. Then the verifier checks:

cA0
cxA1

cx
2

A2
cx

3

A3
= 64 = comck(a; r) (X)

cx
3

B0
cx

2

B1
cxB2

cB3 = 172 = comck(b; s) (X)

cd0c
x
d1c

x2

d2 c
x3

d3 c
x4

d4 c
x5

d5 c
x6

d6 = 74 = comck(a ∗ b; t) (X)

Now the verifier is convinced that
∑3
i=1 ai ∗ bi−1 = 0.

5.3.3 Single Value Product Argument

The following 3-move argument of knowledge of committed single values having a particular product

can be found in [Gro10]. Given committed values a ∈ Zq and public known b ∈ Zq we will give a

3-move argument of knowledge that

b =

n∏
i=1

ai.

Statement: {G, p, q}, ck, ca ∈ G and b ∈ Zq

Prover’s witness: a ∈ Znq , r ∈ Zq such that

ca = comck(a; r) and b =

n∏
i=1

ai.

Initial message: Compute

1. b1 = a1 b2 = a1a2 . . . bn =
∏n
i=1 ai

2. cd = comck(d; rd) where d← Znq and rd ← Zq

3. δ1 = d1, δn = 0 and δ2, . . . , δn−1 ← Zq , s1, sx ← Zq

cδ = comck(−δ1d2, . . . ,−δn−1dn; s1)

c∆ = comck(δ2 − a2δ1 − b1d2, . . . , δn − anδn−1 − bn−1dn; sx)

Send: cd, cδ, c∆

Challenge: x← Z∗q
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Answer: Compute

1. a = xa+ d and r = xr + rd

2. b = xb+ δ

3. s = xsx + s1

Send: a, b, r, s

Verification: The verifier accepts if only if

1. cd, cδ, c∆ ∈ G

2. r, s ∈ Zq and a, b ∈ Znq

3. cxacd = comck(a1, . . . , an; r) cx∆cδ = comck(xb2 − b1a2, . . . , xbn − bn−1an; s)

4. b1 = a1 bn = xb.

Theorem 22. The protocol is a public coin perfect generalized Σ−protocol of an opening a1, . . . , an, r

such that ca = comck(a; r) and b =
∏n
i=1 ai.

Proof. Perfect completeness follows from

xbi − bi−1ai = x(xbi + δi)− (xbi−1 + δi−1)(xai + di) = x(δi − δi−1ai − bi−1di)− δi−1di

for i = 2, . . . , n since bi = bi−1ai.

We will now argue that we have perfect SHVZK. The simulator gets the challenge x and has to

make a convincing transcript. It picks r ← Zq , a ← Znq and sets cd = c −xa comck(a; r). It picks at

random sx and sets c∆ = comck(0, . . . , 0; sx). It picks at random b2, . . . , bn−1, s ← Zq , sets b1 = a1

and bn = xb and computes cδ = c−x∆ comck(xb2 − b1a2, . . . , xbn − bn−1an; s). To see this is a perfect

simulation note that c∆ is a perfectly hiding commitment just like in a real proof, and a1, . . . , an, r, and

b1, . . . , bn, s are distributed just like in a real proof. These choices uniquely determine cd, cδ according

to the verification equations giving us that simulated and real proofs are identically distributed.

Finally, we will show that the protocol has perfect generalized special soundness. Given two ac-

cepting transcripts with challenges x1, x2, x1 6= x2, we have

cx1
a cd = comck

(
a

(1)
1 , . . . , a(1)

n ; r(1)
)

cx2
a cd = comck

(
a

(2)
1 , . . . , a(2)

n ; r(2)
)
,

which implies cx1−x2
a = comck(a

(1)
1 − a(2)

1 , . . . , a
(1)
n − a(2)

n ; r(1) − r(1)) and gives us an opening of

ca. The equation cd = c−xa comck(a1, . . . , an; r) then gives us an opening of cd. Similarly, we can get

openings of cδ, c∆.

It remains to argue that there is negligible probability of extracting an opening a1, . . . , an, r of ca

such that b 6=
∏n
i=1 ai. Using b1 = a1 and xbi = bi−1ai + p1(x) where p1(x) is a degree 1 polynomial
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in x, it follows that the verification equations imply

xnb = xn−1bn =

n∏
i=1

ai + pn−1(x),

where pn−1 is a fixed degree n−1 polynomial determined by the committed values. Since ai = xai+di

the Schwartz-Zippel lemma implies that there is negligible probability of satisfying this equation for

random x unless indeed b =
∏n
i=1 aj . Furthermore, the extracted openings are the same openings

known by the prover. If this were not the case the prover could use the extractor to find another opening

for at least one of the commitments, and the commitment scheme would be broken.

Efficiency: The communication consist of 3 group elements and 2n field elements, so the communication

complexity is O(n).

The prover has to calculate 3n commitments; therefore, 3n exponentiations in G and a total number

of 8n multiplications. Whereas the verifier only has to calculate 2n exponentiations in G and 4n multi-

plications. Thus, both parties have a computation cost of O(n), since most exponentiations arise from

commitments to vectors this cost can reduced to O
(

n
logn

)
applying multi-exponentiation techniques,

see Section 4.3.

Example: Let be G = 〈G〉 = 〈46〉 ⊂ Z∗179, which has prime order q = 89.

The statement contains {G, p, q} = {〈46〉, 179, 89}, ck = {G1, . . . , G4, H} = {46, 177, 161, 100, 72},

ca = 74, the commitment to vector b from the product argument example, and of b = 10. The prover

knows a = (58, 53, 85, 12)T ∈ Z4
179 and r = 5, such that ca = comck(a; r) and b =

∏4
i=1 ai.

For the initial message the prover computes

b1 = a1 = 58, b2 = a1 · a2 = 48, b3 = b2 · b3 = 75, b4 = b3 · a4 = b = 10,

then picks d = (21, 18, 77, 10)T , rd = 4 and calculates

cd = comck(d; rd) = 56.

Next the prover sets δ1 = d1 = 21, δ4 = 0 and picks δ2 = 32,

δ3 = 28, s1 = 81, sx = 2 and computes commitments

cδ = comck(−δ1d2,−δ2d3,−δ3d4, ; s1) = comck(0, 9, 10; 81) = 129

c∆ = comck(δ2 − a2δ1 − b1d2, δ3 − a3δ2 − b2d3, δ4 − a4δ3 − b3d4; sx) = comck(36, 8, 1; 2) = 146.

The prover sends

cd = 56 cδ = 129 c∆ = 146
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to the verifier and receives the challenge x = 52. Then the prover calculates answers

a = xa+ d = (12, 49, 16, 75)T r = xr + rd = 28

b1 = xb1 + δ1 = 11 b2 = 49 b3 = 16 b4 = 75

and returns these values to the verifier.

The verifier checks if the commitments belong to G and the answers are in Z89, and

cxacd = 77 = comck(a; r) (X)

cx∆cδ = 45 = comck(xb2 − b1a2, xb3 − b2a3, xb4 − b3a4, xb5 − b4a5; s) (X),

and checks if b1 = a1 and xb = 75 = b5.

5.3.4 Single Value Product Argument For Secret b

The single value product argument above can be easily adopted to show that for given committed valued

a ∈ Znq and committed value b ∈ Zq , it holds that b =
∏n
i=1 ai.

Statement: {G, p, q}, ck, ca, cb ∈ G

Prover’s witness: a ∈ Znq , b, r, s ∈ Zq such that

ca = comck(a; r) cb = comck(b; s) b =

n∏
i=1

ai.

Initial message: Compute

1. b1 = a1 b2 = a1a2 . . . bn =
∏n
i=1 ai

2. cd = comck(d; rd) where d← Znq and rd ← Zq

3. δ1 = d1, . . . , δn ← Zq , s1, t1, tx ← Zq

cδn = comck(δn; s1)

cδ = comck(−δ1d2, . . . ,−δn−1dn; t1)

c∆ = comck(δ2 − a2δ1 − b1d2, . . . , δn − anδn−1 − bn−1dn; tx)

Send: cd, cδn , cδ, c∆

Challenge: x← Z∗q

Answer: Compute

1. a = xa+ d and r = xr + rd

2. b = xb+ δ
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3. s = xs+ s1 t = xtx + t1

Send: a, b, r, s, t

Verification: The verifier accepts if only if

1. cd, cδ, c∆ ∈ G

2. r, s ∈ Zq and a, b ∈ Znq

3. cxacd = comck(a; r) cx∆cδ = comck(xb2 − b1a2, . . . , xbn − bn−1an; t)

4. b1 = a1 cxb cδn = comck(bn; s).

Theorem 23. The protocol is a public coin perfect generalized Σ−protocol of an opening a1, . . . , an, r

such that ca = comck(a; r), cb = comck(b; s) and b =
∏n
i=1 ai.

Proof. Perfect completeness follows from

xbi − bi−1ai = x(xbi + δi)− (xbi−1 + δi−1)(xai + di) = x(δi − δi−1ai − bi−1di)− δi−1di

for i = 2, . . . , n since bi = bi−1ai.

We will now argue that we have perfect SHVZK. The simulator gets the challenge x and has to

make a convincing transcript. It picks r ← Zq , a ← Znq and sets cd = c −xa comck(a; r). It picks at

random sx and sets c∆ = comck(0, . . . , 0; sx). It picks at random b2, . . . , bn, s, t ← Zq , sets b1 = a1

and computes cδ = c−x∆ comck(xb2 − b1a2, . . . , xbn − bn−1an; t) and cδn = comck(bn; s)c−xb . To

see this is a perfect simulation note that c∆ and cδn are perfectly hiding commitments just like in a

real proof, and a1, . . . , an, r, and b1, . . . , bn, s, t are distributed just like in a real proof. These choices

uniquely determine cd, cδn , cδ according to the verification equations giving us that simulated and real

proofs are identically distributed.

Finally, we will show that the protocol has perfect generalized special soundness. Given two ac-

cepting transcripts with challenges x1, x2, x1 6= x2, we have

cx1
a cd = comck

(
a

(1)
1 , . . . , a(1)

n ; r(1)
)

cx2
a cd = comck

(
a

(2)
1 , . . . , a(2)

n ; r(2)
)
,

which implies cx1−x2
a = comck

(
a

(1)
1 − a

(2)
1 , . . . , a

(1)
n − a(2)

n ; r(1) − r(1)
)

giving us an opening of ca.

The equation cd = c−xa comck(a1, . . . , an; r) then gives us an opening of cd. Similarly, we can get

openings of cδ, c∆.

It remains to argue that there is negligible probability of extracting an opening a1, . . . , an, b, r, s of

ca and cb such that b 6=
∏n
i=1 ai. Using b1 = a1 and xbi = bi−1ai + p1(x) where p1(x) is a degree 1

polynomial in x, it follows that the verification equations imply

xnb = xn−1bn =

n∏
i=1

ai + pn−1(x),
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where pn−1 is a fixed degree n−1 polynomial determined by the committed values. Since ai = xai+di

the Schwartz-Zippel lemma implies that there is negligible probability of satisfying this equation for

random x unless indeed b =
∏n
i=1 aj . Furthermore, the extracted openings are the same openings

known by the prover. If this were not the case the prover could use the extractor to find another opening

for at least one of the commitments, and the commitment scheme would be broken.

Efficiency: The communication consists of 3 group elements and 2n field elements and therefore is

O(n).

The prover has to calculate 3n commitments; thus, 3n exponentiations in G and a total number

of 8n multiplications. Whereas the verifier only has to calculate 2n exponentiations in G and 4n mul-

tiplications. It follows that both parties have a computation cost of O(n), since most exponentiations

arise from commitments to vectors this cost can reduced to O
(

n
logn

)
applying multi-exponentiation

techniques, see section 4.3.

5.4 Hadamard Product Argument

In this section, we will give an argument of knowledge for committed vectors

a1, b1, c1, . . . ,am, bm, cm ∈ Znq

satisfying

ai ◦ bi = ci,

which will be used in Section 6.4. Similar techniques to the multi Hadamard product in Section 5.3.1

can be used to give this argument but this requires 7 rounds of interaction. For more details please see

Groth [Gro09]. Since we want to minimize the round complexity we will give an improved construction

that only uses 3 rounds and has the same communication complexity as Groth’s Hadamard product

argument.

The work leading to this section was done together with Jens Groth, he had the idea underlying the

new argument.

Following the construction of quadratic arithmetic programs in Section 4 of Gennaro et

al. [GGPR13] we use Lagrange interpolation polynomials in our construction. Recall that given a

set of values Ω = {ω1, . . . , ωm} ⊂ Zq the Lagrange interpolation polynomials are

li(X) =

∏
j 6=i(X − ωj)∏
j 6=i(ωi − ωj)

for i = 1, . . . ,m.

We also define l(X) =
∏m
j=1(X−ωj). Our protocols will work no matter what the choice of ω1, . . . , ωm

is as long as they are different but for efficiency purposes it may be useful to choose them as roots of

unity. When they are roots of unity we may use the Fast Fourier Transform to speed up some of our
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calculations. A key property satisfied by Lagrange polynomials is

li(X) =

1 mod X − ωi

0 mod l(X)
X−ωi

for i = 1, . . . ,m .

To explain the main concepts let us first focus on completeness and knowledge soundness for a

moment, zero-knowledge is easy to add but we will do this later and ignore zero-knowledge right now.

The idea is that the prover will demonstrate

(
m∑
i=1

li(X)ai

)
◦

 m∑
j=1

lj(X)bj

− m∑
i=1

li(X)ci = ∆(X)l(X) (5.2)

for some ∆(X) ∈ (Zq[X])n. Knowledge soundness and completeness will follow from the fact that

for all k = 1, . . . ,m we have

(
m∑
i=1

li(X)ai

)
◦

 m∑
j=1

lj(X)bj

− m∑
i=1

li(X)ci ≡ ak ◦ bk − ck mod X − ωk,

as li(X) ≡ 1 mod X − ωi and li(X) ≡ 0 mod X − ωk for i 6= k.

Since l(X) ≡ 0 mod X−ωk it is therefore only possible for (5.2) to hold if indeed ak◦bk−ck = 0

for all k = 1, . . . ,m. This is what will show us that the extracted witness is valid in the argument of

knowledge.

For completeness please observe that if ak ◦ bk − ck = 0

(
m∑
i=1

li(X)ai

)
◦

 m∑
j=1

lj(X)bj

− m∑
i=1

li(X)ci ≡ 0 mod X − ω1

...(
m∑
i=1

li(X)ai

)
◦

 m∑
j=1

lj(X)bj

− m∑
i=1

li(X)ci ≡ 0 mod X − ωm.

Since ωi 6= ωj for i 6= j all the X − ωi are coprime and therefore the Chinese Remainder Theorem tells

us that

(
m∑
i=1

li(X)ai

)
◦

 m∑
j=1

lj(X)bj

− m∑
i=1

li(X)ci ≡ 0 mod l(X).

This means ∆(X) exists and the prover can compute it, which will give us completeness.

The next step is to explain how the prover can demonstrate that (5.2) holds. The prover will send

commitments c∆0
, . . . , c∆m

to ∆i ∈ Znq such that ∆(X) =
∑m
i=0 ∆iX

i. On random challenge
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x← Z∗q \ Ω the prover opens

m∏
i=1

cli(x)
ai

m∏
i=1

c
li(x)
bi

m∏
i=1

cli(x)
ci

m∏
i=0

cx
i

∆i

to

a =

m∑
i=1

aili(x) b =

m∑
i=1

bili(x) c =

m∑
i=1

uili(x) ∆ =

m∑
i=0

∆ix
i.

The verifier can now check

a ◦ b− c = ∆l(x),

which has negligible probability over x← Zq unless (5.2) holds.

To make the whole argument zero-knowledge we have to avoid a, b, and c leaking any information.

The prover therefore picks a0, b0, c0 ← Znq at random and defines

a = a0l(x) +

m∑
i=1

aili(x) b = b0l(x) +

m∑
i=1

bili(x) c = c0l(x) +

m∑
i=1

cili(x).

As a0, b0, c0 are picked randomly these sums do not leak any information about the ai, bi, ci unless

l(x) = 0, which never happens as the challenges are not in Ω . We also have that l(X) ≡ 0 mod X−ωi
for all i = 1, . . . ,m so ∆(X) ∈ (Zq[X])n exists such that we have a ◦ b− c = ∆(X)l(X).

Statement: {G, p, q}, ck = {G1, . . . , Gn, H}, ca1 , cb1 , cc1 , . . . , ca1 , cb1 , ccm ∈ G

Prover’s witness: a1, b1, c1, . . . ,am, bm, cm ∈ Znq and r1, s1, t1, . . . , rm, sm, tm ∈ Zq such that

ai ◦ bi = ci cai = comck(ai; ri) cbi = comck(bi; si) cci = comck(ci; ti)

Initial message: Compute

1. ca0 = comck(a0; r0) where a0 ← Znq and r0 ← Zq

2. cb0 = comck(b0; s0) where b0 ← Znq and s0 ← Zq

3. cc0 = comck(c0; t0) where c0 ← Znq and t0 ← Zq

4. ∆0, . . . ,∆m ∈ Znq such that

(
m∑
i=0

∆iX
i

)
l(X) =(

a0l(X) +

m∑
i=1

aili(X)

)
◦

(
b0l(X) +

m∑
i=1

bili(X)

)
−

(
c0l(X) +

m∑
i=1

cili(X)

)
.

5. c∆0
= comck(∆0; ρ0), . . . , c∆m

= comck(∆m; ρm) where ρ0, . . . , ρm ← Zq

Send: ca0 , cb0 , cc0 , c∆0
, . . . , c∆m

Challenge: x← Z∗q \ Ω
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Answer: Compute

a = a0l(x) +

m∑
i=1

aili(x) b = b0l(x) +

m∑
i=1

bili(x) c = c0l(x) +

m∑
i=1

cili(x)

r = r0l(x) +

m∑
i=1

rili(x) s = s0l(x) +

m∑
i=1

sili(x) t = t0l(x) +

m∑
i=1

tili(x)

ρ =

(
m∑
i=0

xiρi

)
l(x)

Send: a, b, c, r, s, t, ρ

Verification: Accept if and only if

1. cl(x)
a0

∏m
i=1 c

li(x)
ai = comck(a; r) c

l(x)
b0

∏m
i=1 c

li(x)
bi

= comck(b; s)

2. cl(x)
c0

∏m
i=1 c

li(x)
ci = comck(c; t)

(∏m
i=0 c

xi

∆i

)l(x)

= comck(a ◦ b− c; ρ)

Theorem 24. The protocol above is a public coin generalized perfect Σ−protocol of committed vectors

ai, bi, ci such that ai ◦ bi = ci.

Proof. Perfect completeness by inspection, where it is useful to keep in mind that

li(X)lj(X) ≡ 0 mod X − ωk

unless i = j = k.

Given a challenge x such that l(x) 6= 0 the SHVZK simulator picks a, b, c ← Zmq , r, s, t, ρ ← Zq
at random and c∆1

, . . . , c∆m
← G. It then sets

ca0 =

(
comck(a; r)

m∏
i=1

c−li(x)
ai

)l(x)−1

cb0 =

(
comck(b; s)

m∏
i=1

c
−li(x)
bi

)l(x)−1

cc0 =

(
comck(c; t)

m∏
i=1

c−li(x)
ci

)l(x)−1

c∆0
=

(
comck(a ◦ b− c; ρ)

m∏
i=1

c−x
i

∆i

)l(x)−1

.

The simulated argument is indistinguishable from a real argument on the same challenge. Due

to the random choice of a0, b0, c0, r0, s0, t0, and ρ0, a, b, c, and r, s, t, ρ are uniformly random in the

real argument just as they are in the simulation. The commitments c∆1 , . . . , c∆m are due to the perfect

hiding property of the commitment scheme also uniformly random just as in the simulation. Finally,

the ca0 , cb0 , cc0 are determined uniquely by the verification equations once the other variables are de-

termined. Therefore, the simulated argument is indistinguishable from a real argument and we have

SHVZK.

The last step is to show that we have generalized special soundness. Given 2m + 1 accepting
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transcripts with different challenges the extractor can construct matrix

M =


l(x1) l1(x1) . . . lm(x1)

...

l(xm+1) l1(xm+1) . . . lm(xm+1)


and M is invertible, see Appendix .1 for the proof. This means


a0 r0

...
...

am rm

 = M−1


a(1) r(1)

...
...

a(m+1) r(m+1)


gives us openings of ca0 , . . . , cam . We get openings of cb0 , cc0 , c∆0

, . . . , cbm , ccm , c∆m
to

b0, c0,∆0, . . . , bm, cm,∆m respectively in a similar fashion.

The binding property of the commitment scheme means that for all 2m + 1 transcript the answers

to the challenge x must be of the form

a = a0l(x) +

m∑
i=1

aili(x), b = b0l(x) +

m∑
i=1

bili(x), c = c0l(x) +

m∑
i=1

cili(x)

r = r0l(x) +

m∑
i=1

rili(x), s = s0l(x) +

m∑
i=1

sili(x), t = t0l(x) +

m∑
i=1

tili(x)

ρ = (

m∑
i=0

xiρi)l(x).

Since we have

a ◦ b− c =

(
m∑
i=0

∆ix
u

)
l(x)

for 2m+ 1 choices of challenge x we deduce that we have two identical degree 2m polynomials

a(X) ◦ b(X)− c(X) = ∆(X)l(X).

This implies for all k = 1, . . . ,m that ak ◦ bk = ck mod X − ωk, so the extracted vectors satisfy

the Hadamard product conditions. Furthermore, the extracted openings are exactly the witnesses of the

prover. If this is not the case, the extractor of the argument could be used by the prover to find a second

opening of at least one of the commitments with non-negligible probability and the commitment scheme

is broken.

Efficiency. The prover sends m group elements and 3n field elements and so the total communication

cost is O(m+ n) group and field elements.

The prover’s cost is roughly mn exponentiations in G to compute the commitments plus the cost to

calculate the ∆is.
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The ∆is are defined such that they satisfy the equation

(
m∑
i=0

∆iX
i

)
l(X) =(
a0l(X) +

m∑
i=1

aili(X)

)
◦

(
b0l(X) +

m∑
i=1

bili(X)

)
−

(
c0l(X) +

m∑
i=1

cili(X)

)
.

A straightforward calculation of the ∆is would cost O(nm2) multiplications in Zq . However, if

ω1, . . . , ωm are roots of unity, we may use FFT to reduce the cost to O(nm logm).

The plan is to evaluate
∑m
i=0 ∆iX

i in m + 1 different points and use Lagrange interpolation to

get the ∆is. We can use the fact that li(ωk) = δik, where δik is Kronecker’s delta, to get a fast eval-

uation of l(ωk) +
∑m
i=1 aili(ωk) = ak. We can now use FFT to get evaluation in additional m + 1

points in O(nm logm) multiplications. In a similar way, we can get 2m + 1 evaluation points for

b0l(X) +
∑m
i=1 bili(X) and c0l(X) +

∑m
i=1 cili(X). Multiplying them together gives us 2m+ 1 eval-

uation points for the right hand side, and dividing with the m + 1 points for which l(X) 6= 0 gives us

m+ 1 evaluation points of
∑m
i=0 ∆iX

i. This gives a total of O(mn logm) multiplications in Zq .

The cost of the O(mn) exponentiations is the dominant part of the prover’s computation but can

be further reduced by multi-exponentiation techniques to the equivalent of O
(
mn

logn

)
single exponentia-

tions.

The verifier’s computation is 4m + 4n exponentiation and 4m + 4n multiplications in G. So for

both parties the computations cost is O(m + n), but the number of exponentiations can be reduced to

O( m
logm + n

logn ) using the techniques described in Section 4.3.
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Chapter 6

Zero-Knowledge Polynomial Arguments

The theoretical part of Section 6.2 was published at Eurocrypt 2013 [BG13] together with Jens Groth.

Also, Section 6.4 is joint work with Jens Groth, but as yet unpublished. Furthermore, Section 6.3 and

most of the practical work of Section 6.2 is unpublished so far. Lastly, in Section 6.5 we recap Brands et

al.’s [BDD07] ideas, and also discuss results based on our implementation of their protocol.

6.1 Introduction
In many cryptographic applications a party wants to prove possession of a secret value u that fulfills a

certain property. Since polynomials are widely used a natural question is for instance given a polynomial

P (X) and a value v whether the secret u satisfies P (u) = v in prime order field Zq . Applications

for such arguments are for instance non-membership proofs or membership proofs, see Section 7.2,

possession of a digital signature, or electronic cash protocols. Section 6.2 and some other small parts of

this chapter were published at Eurocrypt 2013 [BG13].

We propose a special honest verifier zero-knowledge argument of knowledge for two committed

values u, v satisfying P (u) = v for a given polynomial P (X) ∈ Zq[X] of degree D, where q is prime.

Given the coefficients of the polynomial P (X) =
∑D
i=0 aiX

i and two Pedersen commitments our zero-

knowledge argument can demonstrate knowledge of openings of the Pedersen commitments to values u

and v such that P (u) = v.

The argument is a perfect Σ-protocol: the prover sends a message, the verifier picks a challenge

uniformly at random from Zp, and the prover answers the challenge. It has perfect completeness, per-

fect special honest verifier zero-knowledge, perfect generalized special soundness, and computational

soundness, which is based on the discrete logarithm assumption in G.

Our polynomial evaluation argument is highly efficient. The communication complexity is

O(logD) group and field elements, which is very small compared to the statement size of D field

elements. Furthermore, former techniques based on the discrete logarithm achieved square root commu-

nication complexity at best [BDD07, Gro09].

The prover computesO(logD) exponentiations andO(D logD) multiplications in Zq , and the ver-

ifier calculates O(logD) exponentiations and O(D) multiplications in Zq . The hidden constants in the

expressions are small and the argument very efficient in practice as illustrated by a concrete implementa-



90 Chapter 6. Zero-Knowledge Polynomial Arguments

tion. Again, this is an improvement to earlier techniques which achieved at best square root complexity

for both parties [BDD07].

We also show how this technique can be adjusted to work with multi-variate polynomials

P (X1, . . . , Xn). Our approach communicates only O((logD)n) elements, where D is the maximum

degree of each variable Xi, which is small compared to the statement size of Dn field elements. Both

parties have to compute O((logD)n) exponentiations. Similar to our single-variate polynomial argu-

ment our protocol has a standard 3-round structure.

Next, we will explain how one can prove correctness of evaluation of L polynomials Pi(X) at the

same time. All former approaches [FO97, Bra97, CS97, BDD07, CD98, Gro09, Gro11, KZG10] would

lead to L times the original cost, as the argument has to be repeated L times in parallel. Repeating

our new polynomial argument in parallel would lead to O(L logD) cost, but our actual technique has

the reduced cost of O(
√
L logD), which improves the state of the art by a big step. The verifier has

to compute O(
√
L logD) exponentiations instead of expected O(L logD) exponentiations and the new

technique requires only 3 rounds of interaction.

To confirm our theoretical findings we implemented our polynomial argument and the polynomial

argument based on Brands et al. [BDD07], since this argument performs best of all earlier arguments

based on the discrete logarithm.

As expected our communication cost is very small, consisting only of a few kilobytes, compared

to Brands et al.’s communication which consists of a few megabytes for big degree polynomials. Our

verifier runs faster than Brands et al.’s verifier, and our prover is more efficient for reasonable degree D.

However, for big size D our computation time for the whole protocol is faster.

6.1.1 Techniques

In many multi-exponentiation techniques the exponents ai are written in binary, which leads to improved

performance. We will apply this idea to reduce the cost of our polynomial evaluation argument to

logarithmic cost. In more detail, we will rewrite the termsXi asXi =
∏d
j=0(X2j )ij , where i = i0 . . . id

in binary.

The trick allows us to commit only to logD = d values u, u2, u4, . . . uD, by using sophisticated

combinations of these values combined with the homomorphic properties of the commitment scheme we

get the desired argument for P (u) = v. This reduces our communication to O(log(D)) group elements,

which is a huge improvement over former work.

Unfortunately, this reduction suffers from a high computation complexity. The bottleneck is to

calculate a new polynomialQ(X), which is expensive to calculate. However, calculation the polynomial

in a binary tree fashion reduced the complexity and the performance becomes efficient for medium range

parameters.

To prove correctness of many polynomial P (1)(X), . . . , P (L)(X) at the same time we will use

batch verification to reduce the communication cost. We will arrange the polynomials in am×nmatrix,

L = mn, and show the correctness of n polynomials at the same time using Lagrange interpolation

polynomials [GGPR13] and the length reducing property of the general Pedersen commitment.
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6.1.2 Former Work

Given two committed values u, v we give a zero-knowledge argument that P (u) = v for a public polyno-

mial P (X) of degreeD. Kilian [Kil92] gave a communication efficient argument for circuit satisfiability

and several other general purpose zero-knowledge arguments for NP-languages exist [IKOS07, GKR08].

However, since these arguments are not tailored for the discrete logarithm setting using them would re-

quire a costly NP-reduction.

Fujisaki and Okamoto [FO97] looked at polynomial evaluation in a RSA-based context but their

zero-knowledge argument had linear complexity in the degree of the polynomial and both parties have

to perform a linear number of exponentiations. The general techniques by Brands [Bra97], Camenisch

and Stadler [CS97] are based on the discrete logarithm, but yield likewise linear complexity for the

communication and the computation.

The most efficient zero-knowledge argument for polynomial evaluation so far stems from Brands

et al. [BDD07] non-membership proof, which is also based on the discrete logarithm assumption. The

work has a communication complexity ofO(
√
D) whereD is the number of elements in the set and both

parties can perform in O(
√
D) time. The conversion in a polynomial argument add only cheap integer

product arguments and therefore the asymptotic complexity is the same for the polynomial argument.

Kate et al.’s report in [KZG10] on a new commitment scheme for polynomials based on pairings.

They show how to prove evaluation of secret polynomials in a public know value x, but it is also possible

to convert their argument in a general polynomial evaluation argument. This argument is very light

on the communication, sending only a few elements, however the computation complexity is O(D)

exponentiations for both parties.

In the prime order groups setting there are already several general zero-knowledge techniques for

the satisfiability of arithmetic circuits that can demonstrate the correctness of a polynomial evaluation.

Using Cramer and Damgård [CD98] we would get a linear communication complexity and linear com-

putation for this problem. Using Groth [Gro09] we would get a communication complexity of O(
√
D)

group elements. The verifier only need to perform O(
√
D) number of exponentiations, but the prover

has to commit themselves to all gates which cost a linear number of exponentiations.

Using stronger assumptions and a pairing-based argument by Groth [Gro11] we could reduce the

communication cost down to O(D
1
3 ) group elements. The verifier only needs to calculate O(D

1
3 ) expo-

nentiations during the verification. But again the prover has to commit themselves to the values in each

gate, which cost O(D) commitment operations for the prover. These operations are either exponentia-

tions or calculation of a pairing.

We can see that all former solutions suffer on at least one aspect. They have either high computation

complexity for the prover, high computation for the verifier, or high communication complexity, or

suffer from all these flaws. Kates et al.’s [KZG10] protocol has lowest communication complexity so

far, and also Groth’s [Gro11] protocol has low communication cost, but both protocols suffer from

high computation and are based on stronger assumption, which are not as well studied as the discrete

logarithm assumption. Brands et al.’s [BDD07] technique is based on this assumption and achieve the
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best asymptotic computation cost for both parties so far and still has a low communication of O(
√
D)

elements.

6.2 Polynomial Evaluation Argument with Logarithmic Cost

Given a polynomial P (X) =
∑D
i=0 aiX

i and two commitments cu0 , cv , we will describe an argument

of knowledge of openings of the commitments to values u and v such that P (u) = v. The notation cu0

for the commitment to u = u20

matches other commitments cuj to u2j that the prover will construct in

the argument.

By padding with zero-coefficients we can without loss of generality assume D = 2d+1 − 1. It is

useful to write i in binary, i.e. i = i0 . . . id where ij ∈ {0, 1}. We can then rewrite the term Xi as

Xi = X
∑d
j=0 ij2

j

=

d∏
j=0

(
X2j

)ij
.

Substituting this in the polynomial we get

P (X) =

D∑
i=0

aiX
i =

1∑
i0,...,id=0

ai0...id

d∏
j=0

(
X2j

)ij
.

The prover will commit themselves to u2, u4, . . . , u2d and prove that when inserted into the rewrit-

ten polynomial we have
1∑

i0,...,id=0

ai0...id

d∏
j=0

(
u2j
)ij

= v.

Since d = blogDc the prover only makes a logarithmic number of commitments, which will help to

keep the communication cost low. Standard techniques can be used to give arguments of knowledge that

the commitments cu1
, . . . , cud to u21

, . . . , u2d are well-formed and indeed contain the correct powers of

u.

To show the committed powers of u in c0, c1, . . . , cd evaluate to the committed v the prover picks

random values f0, . . . , fd ← Zp and defines a new polynomial

Q(X) =

1∑
i0,...,id=0

ai0...id

d∏
j=0

(Xu2j + fj)
ijX1−ij = Xd+1P (u) +Xdδd + . . .+Xδ1 + δ0.

The idea behind this choice of Q(X) is that for each ij either an Xu2j factor is included or an X factor

is included, hence P (u) is the coefficient of Xd+1. Each fj on the other hand is not multiplied by X

and will therefore only affect the lower degree coefficients δ0, . . . , δd of Q(X).

The prover will now demonstrate that the coefficient ofXd+1 in the secretQ(X) is the same as v in

a way that cancels out the δ0, . . . , δd coefficients. The prover sends the verifier commitments cf0 , . . . , cfd

to f0, . . . , fd and commitments cδ0 , . . . , cδd to δ0, . . . , δd. Afterwards, the verifier will pick a random

challenge x ← Z∗q . The prover will now open suitable products of the commitments in a way such that
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the verifier can check that the committed values u, v satisfy

Q(x) = xd+1v + xdδd + . . .+ δ0.

More precisely, after receiving the challenge x the prover opens each product cxj cfj to fj = xu2j + fj .

The prover opens

cx
d+1

v

d∏
j=0

cx
j

δj

to

δ =

1∑
i0,...,id=0

ai0...id

d∏
j=0

f
ij
j x1−ij .

Note that the verifier can calculate δ themselves and therefore only accepts the opening if

1∑
i0,...,id=0

ai0...id

d∏
j=0

f
ij
j x1−ij = xd+1v + xdδd + . . .+ xδ1 + δ0.

This has negligible probability of being true unless P (u) = v.

Returning to the commitments c1, . . . , cd to u21

, . . . , u2d we said the prover could use standard

techniques to show that the commitments contain the correct powers of u. To do this the prover sends

some commitments cfuj to fju2j to the verifier and later opens the commitments cxuj+1
c
−fj
uj cfuj to

xu2j+1

− (xu2j + fj)u
2j + fju

2j = 0.

The full polynomial evaluation argument is given below.

Statement: {G, p, q}, ck, cu0
, cv ∈ G and

P (X) =

D∑
i=0

aiX
i =

1∑
i0,...,id=0

ai0...id

d∏
j=0

(X2j )ij ∈ Zq[X].

Prover’s witness: u, v, r0, t ∈ Zq such that

cu0 = comck(u; r0) cv = comck(v; t) P (u) = v

Initial message: Compute

1. cu1 = comck(u21

; r1) . . . cud = comck(u2d ; rd) where r1, . . . , rd ← Zq

2. cf0 = comck(f0; s0) . . . cfd = comck(fd; sd) where f0, s0, . . . , fd, sd ← Zq

3. δ0 . . . δd ∈ Zq such that

1∑
i0,...,id=0

ai0...id

d∏
j=0

(Xu2j + fj)
ijX1−ij = Xd+1v +

d∑
j=0

Xjδj
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4. cδ0 = comck(δ0; t0), . . . , cδd = comck(δd; td) where t0, . . . , td ← Zq

5. cfu0
= comck(f0u

20

; ξ0) . . . cfud−1
= comck(fd−1u

2d−1

; ξd−1)

where ξ0, . . . , ξd−1 ← Zq

Send: cu1 , . . . , cud , cf0 , . . . , cfd , cδ0 , . . . , cδd , cfu0 , . . . , cfud−1

Challenge: x← Z∗q

Answer: Compute for all j

1. f j = xu2j + fj rj = xrj + sj

2. t = xd+1t+
∑d
i=0 tix

i

3. ξj = xrj+1 − f jrj + ξj

Send: f0, r0, . . . , fd, rd, t, ξ0, . . . , ξd−1

Verification: Accept if and only if for all j

1. cxujcfj = comck(f j ; rj)

2. cxuj+1
c
−fj
uj cfuj = comck(0; ξj)

3. cx
d+1

v

∏d
i=0 c

xi

δi
= comck

(
δ; t
)

with

δ =

1∑
i0,...,id=0

ai0...id

d∏
j=0

f
ij
j x1−ij

Theorem 25. Assuming the discrete logarithm assumption holds the polynomial evaluation argument is

a public coin perfect generalized Σ−protocol of openings of cu0
and cv to u and v such that P (u) = v.

Proof. Perfect completeness follows by careful inspection.

We will now argue that we have perfect SHVZK. On challenge x ∈ Z∗q the simulator picks

cu1
, . . . , cud , cδ1 , . . . , cδd ← G and f0, r0, . . . , fd, rd, t, ξ0, . . . , ξd−1 ← Zq and sets for all j

cfj = comck(f j ; rj)c
−x
uj cfuj = comck(0; ξj)c

−x
uj+1

c
fj
uj

and

cδ0 = comck

 1∑
i0,...,id=0

ai0...id

d∏
j=0

f
ij
j x

1−ij ; t

 c−x
d+1

v

d∏
i=1

c−x
i

δi
.

This is a perfect simulation. In a real argument cu1
, . . . , cud , cδ1 , . . . , cδd are uniformly random perfectly

hiding commitments as in the simulation. In a real argument f0, r0, . . . , fd, rd, t, ξ0, . . . , ξd−1 ∈ Zq are

also uniformly random because of the random choice of f0, r0, . . . , fd, rd, t0, ξ0, . . . , ξd−1. Finally,

both in the simulation and in the real argument these choices through the verification equations uniquely

determine the values of cf0 , . . . , cfd , cδ0 and cfu0
, . . . , cfud−1

. This means simulated and real arguments

have identical probability distributions.
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Finally, we have to show that we have perfect generalized special soundness. Given d + 2 accept-

ing transcripts with different challenges xi the extractor E can extract witnesses. Given f
(1)

j , r
(1)
j and

f
(2)

j , r
(2)
j in the first two answers to challenges x1 and x2 the extractor can take linear combinations of

the verification equations to get openings of the commitments cuj . More precisely, we have that the two

answers satisfy

cx1
ujcfj = comck(f

1

j ; r
1
j ) cx2

ujcfj = comck(f
2

j ; r
2
j ).

Picking α1, α2 such that α1x1 + α2x2 = 1 and α1 + α2 = 0 gives us

cuj = cα1x1+α2x2
uj cα1+α2

fj
= comck(α1f

(1)

j + α2f
(2)

j ;α1r
(1)
j + α2r

(2)
j ),

which is an opening of cuj .

Other types of linear combinations of the verification equations give us openings of the other com-

mitments cfj , cfuj , cv and cδi the prover sends in the initial message. In the case of cδi we find the linear

combination as follows. Let

M =


1 x1 . . . xd+1

1

...
...

1 xd+2 . . . xd+1
d+2

 .

Since it is a Vandermonde matrix with different x1, . . . , xd+2 it is invertible. By taking linear combina-

tions of the verification equations

cx
d+1

v

d∏
i=0

cx
i

δi = comck

 1∑
i0,...,id=0

ai0...id

d∏
j=0

f
ij
j x

1−ij ; t


for different challenges x1, . . . , xd+2 we get that


δ0 t0
...

...

δd td

v s

 = M−1


∑1
i0,...,id=0 ai0...id

∏d
j=0(f

(1)

j )ijx
1−ij
1 t(1)

...
...∑1

i0,...,id=0 ai0...id
∏d
j=0(f

(d+2)

j )ijx
1−ij
d+2 t(d+2)



which gives us openings of cδ0 , . . . , cδd , cv .

We now have openings to all the commitments. Because the commitments are binding, each answer

must be computed as they are by an honest prover in the argument. Therefore, the verification equations

cxj cfj = comck(f j , rj)

give us f j = xuj + fj , where uj is the extracted value in cj and fj is the extracted value in cfj . The

verification equations

cxuj+1
c
−fj
uj cfuj = comck(0; ξj)
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now give us that the committed values satisfy

xuj+1 − (xuj + fj)uj + φj = 0

for j = 0, . . . , d− 1 with uj being the value inside cj and φj being the value inside cfuj . Since each of

the polynomial equalities is of degree 1 and holds for d+2 different challenges we see that uj+1 = ujuj .

Since u0 = u this gives us u1 = u21

, u2 = u22

, . . . , ud = u2d .

Turning to the verification equation

cx
d+1

v

d∏
i=0

cx
i

δi = comck

 1∑
i0,...,id=0

ai0...id

d∏
j=0

f
ij
j x

1−ij ; t


we now have that this corresponds to the degree d+ 1 polynomial equation

Xd+1v +Xdδd + . . .+Xδ1 + δ0 =

1∑
i0,...,id=0

ai0...id

d∏
j=0

(Xu2j + fj)
ijX1−ij .

With d + 2 different values x1, . . . , xd+2 satisfying the equation, we conclude the two polynomials are

identical. Looking at the coefficient for Xd+1 we conclude that the extracted openings of cu0
and cv

satisfy P (u) = v. Furthermore, the extracted openings u, v are the same openings known by the prover.

If this were not the case the prover could use the extractor to find another opening for at least one of the

commitments, and the commitment scheme would be broken.

Efficiency: The communication consists of 4d group elements and 3d field elements.

The prover needs 8d exponentiations to compute the commitments and has to calculate the δis.

These values are defined to satisfy

1∑
i0,...,id=0

ai0...id

d∏
j=0

(Xu2j + fj)
ijX1−ij = Xd+1v +

d∑
j=0

Xjδj .

The prover can calculate the degree d polynomials
∏d
j=0(Xu2j + fj)

ijX1−ij in a binary-tree fashion

for all choices of i0 . . . , id ∈ {0, 1} at a cost of dD multiplications in Zq . Multiplying with the ai0...id ’s

uses another dD multiplications. The total cost for the prover is therefore 8d exponentiations in G and

2dD multiplications in Zq , plus 4d multiplications in G.

The verifier can check the argument using 6d exponentiations in G since the exponent x is used

twice in the verification equations and can compute the sum

1∑
i0,...,id=0

aid...i0

d∏
j=0

f
ij
j x1−ij ,

in a binary tree fashion for all choices of i0, . . . , id ∈ {0, 1} using 2D multiplications in Zq .

We have ignored small constants in the calculations above and just focused on the dominant terms.

Using the sliding window technique, from Section 4.3.2, we can reduce the computational burden of the
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exponentiations. Applying randomized verification and other tricks [BGR98, Gro10] it is possible to

reduce the computation even further for the prover and verifier, so the estimates we have given above are

quite conservative.

Example: Let G = 〈G = 172〉 ⊂ Z∗179, which has prime order q = 89 and let H = 74. The statement

consists of the polynomial P (X) = X4 + 46X3 + 18X2 + 2X + 81 ∈ Z89[X] and commitments

cu0 = 142, cv = 139,

and {G, p, q} = {〈172〉, 179, 89}, ck = {G,H} = {172, 74}. We have d = blog 4c = 2.

The prover knows values u = 84, v = P (u) = 24 ∈ Z89 and r0 = 15, t = 43 ∈ Z89 such that

cu0
= GuHr0 = 142 ∈ G and cv = comck(v; t) = 139 ∈ G. To prove the knowledge of the witnesses

the prover first picks r1 = 16 and r2 = 80 at random from Z89 and computes

cu1 = comck(u2; r1) = 1 cu2 = comck(u3; r2) = 142.

The prover also picks f0 = 25, f1 = 1, f2 = 47, s0 = 52, s1 = 44, s2 = 57 randomly from Z89 and sets

cf0 = comck(f0; s0) = 142 cf1 = comck(f1; s1) = 51 cf2 = comck(f2; s2) = 106.

For the next step δ0, δ1, δ2 are needed and therefore the prover calculates for i = i2i1i0 ∈

{0, 1, 2, 3, 4} the five products
∏d
j=0(Xu2j + fj)

ijX1−ij using a binary tree .

1

X

X2

X3

x3u+X2f0 = 84X3 + 25X2

X2u2 +Xf1

X3u2 +X2f1 = 25X3 +X2

X3u3 +X2(u2f0 + uf1) +Xf0f1

= 53X3 + 86X2 + 25X

Xu4 + f2 X2u4 +Xf2 X3u4 +X2f2 = 47X3 + 2X2

The prover takes the ai and multiplies them on the result of the binary tree, to get

i = 0 : a0 ·X3 = 81X3

i = 1 : a1 · (84X3 + 25X2) = 79X3 + 50X2

i = 2 : a2 · (25X3 +X2) = 5X3 + 18X2

i = 3 : a3 · (53X3 + 86X2 + 25X) = 35X3 + 40X2 + 82X

i = 4 : a4 · (2X3 + 47X2) = 2X3 + 47X2
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Lastly, to extract the values δi the prover adds for i = 0, 1, 2 the parameters of Xi.

δ0 = 0 δ1 = 82 δ2 = 50 + 18 + 40 + 47 = 66 mod 89.

Now the prover picks t0 = 77, t1 = 26, t2 = 81 at random and commits to the δi’s.

cδ0 = comck(δ0, t0) = 149 cδ1 = 106 cδ2 = 29.

Finally, the prover calculates f0u = 53, f1u
2 = 25, computes the commitment to these values by

picking ξ0 = 36, ξ1 = 88 and gets

cfu0 = 101 cfu1 = 116.

The prover sends all commitments to the verifier, more precisely the values

cu1
= 1 cu2

= 142 cf0 = 142 cf1 = 51, cf2 = 106

cδ0 = 149 cδ1 = 129 cδ2 = 29 cfu0 = 101 cfu1 = 116.

The verifier returns challenge x = 21 ∈ Z89 and the prover calculates answers

f0 = xu+ f0 = 9 f1 = 81 f2 = 0

r0 = xr0 + s0 = 11 r1 = 24 r2 = 46

t = x3t+ t0X
0 + t1X + t2X

2 = 69

ξ0 = xr1 − f0r0 + ξ0 = 59 ξ1 = 27,

and sends all values to the verifier.

The verifier checks first if all commitments are in G and all answers valid numbers in Z89 and tests

for i = 0, 1, 2 if cxuicfi = comck(f i; ri).

cxu0
cf0 = 65 = comck(f0; r0) (X) cxu1

cf1 = 51 = comck(f1; r1) (X)

cxu2
cf2 = 46 = comck(f2; r2) (X)

Next the verifier checks cxui+1c
−fi
ui cfui = comck(0, ξi) for i = 0, 1

cxu1
c−f0
u0

= 161 = comck(0; ξ0) (X) cxu2
c−f1
u1

= 101 = comck(0; ξ1) (X)

Then the verifier calculates δ =
∑1
i0,...,id=0 ai0...id

∏d
j=0 f

ij
j x1−ij in a binary tree fashion.
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1

x

x2

x3 = 5

x2f0 = 53

xf1

x2f2 = 32

xf0f1 = 1

f2 xf2 x2f2 = 0

The verifier multiplies the values by the ai’s and adds the results together, to get

δ = a05 + a153 + a232 + a31 + a40 = 65 ∈ Z89.

and can check the last equation

cx
3

v c
x2

δ2 c
x1

δ1 c
x0

δ0 = 22 = comck

(
δ; t
)

(X).

6.2.1 Implementation and Practical Results

We implemented our polynomial evaluation argument to analyze the real life behavior of the protocols.

Therefore, we used different modular subgroups with different security levels. Security levels were

estimated following [Len04], and the approximate security levels can be found in Section 4.1.1. We

have chosen two 160-bit subgroups modulo a 1 248-bit and a 1 536-bit prime. We have also chosen three

different groups with |q| = 256 and |p| = 1 536, 2 432, and 3 248. The last two groups we are using are

384-bit subgroups modulo a 3 248-bit and a 7 936-bit prime.

Some of these groups are not standard and are not used in the research community, the reason that

we picked these groups is that we wanted to explore the merit of different parameters, for example size

of q versus size of p.

Prover Verifier
D Conservative Optimized Ratio Conservative Optimized Ratio
10 19 ms 13 ms 0.66 18 ms 17 ms 0.95

100 35 ms 24 ms 0.67 31 ms 30 ms 0.98
1 000 57 ms 41 ms 0.71 45 ms 45 ms 1.00
5 000 125 ms 104 ms 0.83 65 ms 67 ms 1.01

10 000 202 ms 181 ms 0.90 78 ms 81 ms 1.00
50 000 764 ms 714 ms 0.97 140 ms 143 ms 1.00

100 000 1 505 ms 1 420 ms 0.98 216 ms 217 ms 1.00
500 000 7 407 ms 7 392 ms 1.00 695 ms 689 ms 0.99

1 000 000 15 541 ms 15 573 ms 1.00 1 319 ms 1 313 ms 1.00

Table 6.1: Run-time in ms of the polynomial evaluation argument on a group G with 256-bit order
modulo a 1 536-bit prime for degree D between 10 and 1 000 000 for the conservative and the optimized
version, and the ratio between the two versions.
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We implemented a conservative version of our argument which contains the level of optimization

we used to calculate the computation cost of the parties, that means we only optimized processes which

contain a lot of multiplications. We optimized this version by including the sliding window technique in

the commitments. To obtain our results we run the protocols for each set of parameters 100 times and

calculated the mean. The experiments were carried out on a Mac Book Pro with 2.54 GHz CPU and 4

GB RAM.

Table 6.1 states the results of different degree polynomials evaluated in a 256-bit subgroup modulo a

1 536-bit prime for the conservative version and for the optimized versions, as well as the ration between

both versions. The influence of the sliding window techniques for the prover is noticeable for small

degree D; however, for large D the ratio between the two versions converge to 1. This indicates that the

multiplications are accountable for the largest part of the run-time.
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Figure 6.1: Run-time of our polynomial argument prover plotted against the degree D for |q| = 256 and
|p| = 1 536, and |q| = 384 and |p| = 3 248
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Figure 6.2: Run-time of our polynomial argument verifier plotted against the degreeD for |q| = 256 and
|p| = 1 536, and |q| = 384 and |p| = 3 248

Figure 6.1 shows the run time of the optimized version plotted against the degree D. We notice

that the curve follows more or less a straight line. This result is surprising if we just look at the number

of exponentiations; however, the calculation of the δi’s seems to influence the runtime. To calculate the

δi’s 2D logD multiplications are needed, this is a superlinear number of multiplications and we would



6.2. Polynomial Evaluation Argument with Logarithmic Cost 101

expect also a superlinear growth in the curve. However, the cost of a multiplication is less than the cost

of an exponentiations and this can explain the linear growth for the runtime.

We see that the influence of the optimization is more or less non-existent for the verifier, which is

a little bit surprising. On the one hand they have to calculate less exponentiations, on the other hand

the number of multiplications is smaller, so one would expect a similar optimization level as for the

prover. However, it seems that in this case the number of multiplications becomes dominant even for

small degree D and therefore the run time of both versions is similar.

This assumption is supported by the graph of the optimized version, see Figure 6.2. Again the graph

is a straight line, and this indicated that the run time is dominated by the number of multiplications.

Prover Verifier
D Conservative Optimized Ratio Conservative Optimized Ratio
10 73 ms 45 ms 0.62 66 ms 61 ms 0.93

100 132 ms 82 ms 0.62 116 ms 111 ms 0.96
1,000 196 ms 127 ms 0.65 167 ms 163 ms 0.98
5,000 309 ms 217 ms 0.70 224 ms 219 ms 0.98

10,000 401 ms 305 ms 0.76 249 ms 244 ms 0.98
50,000 1 008 ms 900 ms 0.89 336 ms 334 ms 0.99

100 000 1 804 ms 1 695 ms 0.94 425 ms 426 ms 1.00
500 000 7 862 ms 7 745 ms 0.99 1 944 ms 935 ms 0.99

1 000 000 16 145 ms 16 149 ms 1.00 1 598 ms 1 585 ms 0.99

Table 6.2: Run-time in ms of the polynomial evaluation argument on a group G with 256-bit order
modulo a 3 248-bit prime for degree D between 10 and 1 000 000 for the conservative and the optimized
version, and the ratio between the two versions.

Prover Verifier
D Conservative Optimized Ratio Conservative Optimized Ratio
10 454 ms 289 ms 0.64 415 ms 401 ms 0.97

100 843 ms 506 ms 0.60 742 ms 702 ms 0.95
1 000 1 204 ms 734 ms 0.61 1 044 ms 1 012 ms 0.97
5 000 1 633 ms 1 021 ms 0.63 1 363 ms 1 336 ms 0.98

10 000 1 854 ms 1 181 ms 0.64 1 489 ms 1 451 ms 0.97
50 000 2 772 ms 1 976 ms 0.71 1 767 ms 1 736 ms 0.98

100 000 3 826 ms 2 978 ms 0.78 1 967 ms 1 936 ms 0.98
500 000 11 360 ms 10 644 ms 0.94 2 827 ms 2 757 ms 0.98

1 000 000 21 493 ms 20 829 ms 0.97 3 782 ms 3 689 ms 0.98

Table 6.3: Run-time in ms of the polynomial evaluation argument on a group G with 384-bit order
modulo a 7 936-bit prime for degree D between 10 and 1 000 000 for the conservative and the optimized
version, and the ratio between the two versions.

Table 6.2 and 6.3 states the data for the conservative version and the optimized version for a 256-bit

subgroup modulo a 3 248-bit prime and for a 384-bit subgroup modulo a 7 936-bit prime. In these cases

the calculation of the δi’s get also dominant, but the noticeable effect on the run time occurs for even

bigger D. This phenomenon can be explained by the fact that the cost of a single exponentiation rise

higher than the cost of a multiplication, which stays relatively cheap.

In table 6.4 we can find the results of the optimized version for a 160-bit subgroup modulo a 1 248-
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|q| = 160 |p| = 1 248 |p| = 1 536
D Prover Verifier Prover Verifier
10 7 ms 8 ms 9 ms 11 ms

100 12 ms 14 ms 16 ms 20 ms
1 000 23 ms 21 ms 29 ms 29 ms
5 000 77 ms 33 ms 85 ms 44 ms

10 000 143 ms 42 ms 154 ms 54 ms
50 000 635 ms 95 ms 656 ms 109 ms

100 000 1 330 ms 161 ms 1 362 ms 175 ms
500 000 6 773 ms 571 ms 6 787 ms 585 ms

1 000 000 14 231 ms 1 113 ms 14 289 ms 1 126 ms

Table 6.4: Run-time in ms of the polynomial evaluation argument for different degree D between 10
and 1 000 000 for the optimized version on a group with 160-bit order modulo a 1 248-bit prime and a
1 536-bit prime.

bit prime and a 1 536-bit prime. Whereas Table 6.5 and Table 6.6 show data of the optimized version for

a 256-bit subgroup modulo different primes p and a 384-bit subgroup modulo different size primes.

|q| = 256 |p| = 1 536 |p| = 2 432 |p| = 3 248
D Prover Verifier Prover Verifier Prover Verifier
10 13 ms 17 ms 28 ms 39 ms 45 ms 61 ms

100 24 ms 30 ms 51 ms 70 ms 82 ms 111 ms
1 000 41 ms 45 ms 80 ms 103 ms 127 ms 163 ms
5 000 106 ms 67 ms 154 ms 141 ms 217 ms 219 ms

10 000 182 ms 81 ms 232 ms 161 ms 305 ms 244 ms
50 000 714 ms 143 ms 766 ms 233 ms 900 ms 334 ms

100 000 1 420 ms 217 ms 1 489 ms 313 ms 1 695 ms 426 ms
500 000 7 392 ms 689 ms 7 411 ms 795 ms 7 745 ms 935 ms

1 000 000 15 573 ms 1 313 ms 15 441 ms 1 411 ms 16 149 ms 1 585 ms

Table 6.5: Run-time in ms of the polynomial evaluation argument for different degree D between 10 and
1 000 000 for the optimized version on a group with 256-bit order modulo a 1 536-bit a 2 432-bit and a
3 248-bit prime.

|q| = 384 |p| = 3 248 |p| = 7 936
D Prover Verifier Prover Verifier
10 67 ms 91 ms 289 ms 401 ms

100 123 ms 167 ms 506 ms 702 ms
1 000 191 ms 249 ms 734 ms 1 012 ms
5 000 308 ms 330 ms 1 021 ms 1 336 ms

10 000 425 ms 372 ms 1 181 ms 1 451 ms
50 000 1 155 ms 501 ms 1 976 ms 1 736 ms

100 000 2 116 ms 622 ms 2 978 ms 1 936 ms
500 000 9 718 ms 1 300 ms 10 644 ms 2 757 ms

1 000 000 20 083 ms 2 175 ms 20 829 ms 3 689 ms

Table 6.6: Run-time of the polynomial evaluation argument for different degree D between 10 and
1 000 000 for the optimized version on a group with 384-bit order modulo a 3 248-bit prime and a 7 936-
bit prime.

As expected the run-time of both parties gets larger, if the subgroup size stays fixed and the moduli
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value p increases. But, this increase is not linear with the increase of the moduli value. For instance for

the 256-bit subgroups, see table 6.5, |p| = 2 432 is 1.6 times of |p| = 1 536; however the run-time for the

prover is for big degree polynomials approximately the same for both choices of parameters. The moduli

size of the last group |p| = 3 248 is approximately double the size of the prime |p| = 1 536. However,

the run-time for the prover for big degree polynomials is approximately the same for both settings.

For small D the reverse is true, in this case the run-time is between 2-4 times slower for the bigger

moduli p. Again this is due to the fact that the cost of single exponentiations increase for bigger moduli

and this cost influences the run-time before the cost of the multiplications becomes dominant. This effect

is the same for all fixed subgroups.

For the verifier the run-time of small degree D is for big modulo around 3-4 times slower than for

small modulo values. For polynomials with bigger degree the factor gets smaller. However, the bigger

the prime p is, the longer it takes for the factor to shrink. For instance for |q| = 256 there is a 20 %

different between the run-time of D = 1 000 000 for |p| = 1 536 and |p| = 3 248; whereas for |q| = 384

the difference is still 70% for the same D, and |p| = 3 248 and |p| = 7 936.

The run-time of both parties seems to be dominated by the multiplications in Zq . If the size of the

subgroup is fixed the cost of these multiplications is the same independently of the size of the modulo p.

So, the results support the belief that the run-time is dominated by the multiplication.

In the reverse case the size of the modulo prime p stays fixed and the size of the subgroup changes.

We tested this setting on a 160-bit subgroup and a 256-bit subgroup modulo a 1 536-bit prime, and a

160-bit subgroups, a 256-bit subgroup, and a 384-bit subgroup modulo a 3 248-bit prime. The result can

be found in table 6.7 and 6.8.

|p| = 1 536 |q| = 160 |q| = 256
D Prover Verifier Prover Verifier
10 9 ms 11 ms 13 ms 17 ms

100 16 ms 20 ms 24 ms 30 ms
1 000 29 ms 29 ms 41 ms 45 ms
5 000 85 ms 44 ms 106 ms 67 ms

10 000 154 ms 54 ms 182 ms 81 ms
50 000 656 ms 109 ms 714 ms 143 ms

100 000 1 362 ms 175 ms 1 420 ms 217 ms
500 000 6 787 ms 585 ms 7 39 ms 689 ms

1 000 000 14 289 ms 1 126 ms 15 573 ms 1 313 ms

Table 6.7: Run-time of the polynomial evaluation argument for different degree D between 10 and
1 000 000 for the optimized version on a group modulo a 1 536-bit prime and order 160-bit or 256-bit.
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|p| = 3 248 |q| = 160 |q| = 256 |q| = 384
D Prover Verifier Prover Verifier Prover Verifier
10 30 ms 39 ms 45 ms 61 ms 67 ms 91 ms

100 55 ms 73 ms 82 ms 112 ms 123 ms 167 ms
1 000 82 ms 105 ms 128 ms 161 ms 191 ms 249 ms
5 000 159 ms 150 ms 234 ms 219 ms 308 ms 330 ms

10 000 241 ms 172 ms 340 ms 246 ms 425 ms 372 ms
50 000 749 ms 237 ms 1 072 ms 340 ms 1 155 ms 501 ms

100 000 1 454 ms 308 ms 2 112 ms 439 ms 2 116 ms 622 ms
500 000 6 923 ms 740 ms 7 745 ms 935 ms 9 718 ms 1 300 ms

1 000 000 14 456 ms 1 288 ms 16 149 ms 1 585 ms 20 083 ms 2 175 ms

Table 6.8: Run-time of the polynomial evaluation argument for different degree D between 10 and
1 000 000 for the optimized version on groups modulo a 3 248-bit prime for different order sizes 160-bit,
256-bit and 384-bit.

As the execution time of the prover is dominated by the multiplications, we expect that the run time

differs for the prover for different subgroup sizes. This expectation is confirmed by the data, we see that

for increasing subgroup size the performance of the prover takes more time. The same can be observed

for the verifier.

We can conclude that for medium to large degree polynomials the increase of the run-time is in-

significant compared to the increase of the security level. For instance keeping the modulo value fixed

and increasing the subgroup size from 160-bit to 256-bit, increase the security from around 80-bit to

128-bit, but the run-time for big D is only 10% larger. Therefore, it is possible to adjust the parameters

to achieve higher security without compromising performance too much.

In general we can say that our new polynomial evaluation argument is practical. For small and

medium size degrees D our argument is very fast, even for big security parameters. For small and

medium term protection and big D the complete protocol runs in around 10 seconds and for long term

protection in around 20 seconds. These values seem not practical but can be reduced further by using

more sophisticated implementation techniques, for instance multi-threading. Furthermore, randomiza-

tion of the verification would speed up the protocol further. Taking also in account that the computer

we did our experiments on, were on the lower side of speed and memory, we can expect that the results

above will speed up in future on newer machines.

D Round 1 Round 2 Round 3 Statement
10 7 KB 0.08 KB 1 KB 1 KB

100 13 KB 0.08 KB 2 KB 8 KB
1 000 18 KB 0.08 KB 2 KB 72 KB
5 000 24 KB 0.08 KB 3 KB 381 KB

10 000 25 KB 0.08 KB 3 KB 761 KB
50 000 29 KB 0.08 KB 4 KB 3.9 MB

100 000 31 KB 0.08 KB 4 KB 7.8 MB
500 000 35 KB 0.08 KB 4 KB 38.9 MB

1 000 000 37 KB 0.08 KB 5 KB 77.8 MB

Table 6.9: Size of each round and of the statement for different degree D for a 256-bit subgroup modulo
a 1 526-bit prime.
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The actual size of each round are given in Table 6.9 for |q| = 256 and |p| = 1 536. The size of

the challenge in round 2 consists only of one single element in Zq and as expected this element can be

neglected, it does not increase the size of the whole argument. In round 1 4d elements are sent against 3d

elements in round 3, but the elements in round 3 are field elements from Zq and therefore smaller than

the commitments in round 1. So, we expect that the size of the round 3 is smaller than round 1. More

precisely if the size of a field element is f -bit and a group element is nf -bits, than the size of round 1 is

around 4/3n bigger than round 1. This estimate is confirmed in our experiment, for instance in the case

of |q| = 256 and |p| = 1 536, we expect round 1 to be roughly 8 times bigger than the data from round 3

and in reality this is the case. A consequence of this is that the data of round 3 compared to round 1 has

more or less no influence of the size of the whole argument.

We also see that the size of the statement is much bigger that the argument size, besides for small

degrees D < 1000 . Thus, we can conclude that our polynomial argument is sublinear in the statement

size, but not in the witness size, which consists only of 4 field elements.

|q| 160 160 160 256 256 256 384 384
|p| 1 248 1 536 3 248 1 536 2 432 3 248 3 248 7 984
10 6 KB 8 KB 15 KB 8 KB 12 KB 16 KB 16 KB 37 KB

100 11 KB 14 KB 28 KB 15 KB 22 KB 28 KB 29 KB 65 KB
1 000 16 KB 20 KB 40 KB 21 KB 31 KB 41 KB 42 KB 97 KB
5 000 21 KB 26 KB 52 KB 27 KB 41 KB 53 KB 55 KB 127 KB

10 000 23 KB 28 KB 56 KB 29 KB 44 KB 57 KB 59 KB 136 KB
50 000 26 KB 32 KB 64 KB 33 KB 50 KB 65 KB 67 KB 156 KB

100 000 28 KB 34 KB 68 KB 35 KB 53 KB 70 KB 71 KB 166 KB
500 000 31 KB 38 KB 76 KB 39 KB 60 KB 78 KB 80 KB 186 KB

1 000 000 33 KB 40 KB 80 KB 42 KB 63 KB 82 KB 84 KB 196 KB

Table 6.10: Size whole argument for different degree D for all choices of groups G.

Table 6.10 states the size of a single argument for all choices of groups and degree D, the size of

the argument is very small, only consisting of a few kilo bytes. Even for high security levels the size

of the argument requires very few disk space. Thus, the protocol is very small and can be used also in

applications which have low speed connections.

6.3 Multivariate Polynomial Argument

We will demonstrate now how one can adapt the polynomial argument from the former section to multi-

variate polynomials

P (X1, . . . , XN ) =

D∑
i1,...,iN=0

ai1...iNX
i1
1 . . . XiN

N .

Given a multivariate polynomial P (X1, . . . , XN ) and committed values u1, . . . , uN in cu10 , . . . , cuN0

the prover wants to show that for committed value v it holds v = P (u1, . . . , uN ).

Similar to Section 5.3 we will write ij in binary, i.e. ij = ij0 . . . ijd, where ijk ∈ {0, 1} and without

loss of generality D = 2d+1 − 1. We can write all terms Xij
j =

∏d
k=0

(
X2k

j

)ijk
, and plugging these
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terms in the polynomial gives us

P (X1, . . . , XN ) =

D∑
i1,...,iN=0

ai1...in

d∏
k=0

(
X2k

1

)iik
· . . . ·

d∏
k=0

(
X2k

N

)iNk
=

1∑
i10,...,iNd=0

ai10...iNd

N∏
j=1

d∏
k=0

(
X2k

j

)ijk
.

The prover now picks fjk ← Zq for j = 1, . . . , N and k = 0, . . . , d, and defines a new polynomial as

Q(X1, . . . , Xn) =

1∑
ii0,...,ind=0

ai10...iNd

N∏
j=1

d∏
k=0

(Xju
2k

j + fjk)ijkX
1−ijk
j

= Xd+1
1 . . . Xd+1

N v +Xd
1X

d+1
2 . . . Xd+1

N δν + . . .+XNδ1 + δ1

= Xd+1
1 . . . Xd+1

N v +

d+1∑
k1,...,kN=0

\{k1=...=kN=d+1}
∧l=

∑d+1
i=1 ki(d+1)i

Xk1
1 . . . XkN

N δl

where ν = (d+1)N−1 . For each ij,k either a factorXju
2k

j or a factorXj is included in the polynomial

Q(X1, . . . , Xn). More precisely, the inner product for a coefficient a10...iND equals for fixed j

d∏
k=0

(Xju
2k

j + fjk)ijkX
1−ijk
j = Xd+1

j

d∏
k=0

(
u2k

j

)ijk
+ α(Xj),

this gives us

ai10...iNd

N∏
j=1

d∏
k=0

(Xju
2k

j +fjk)ijkX
1−ijk
j = ai10...iNdX

d+1
1 . . . Xd+1

N

N∏
j=1

d∏
k=0

(u2k

j )ijk+β(X1, . . . , XN ).

If we add all terms together we get that the coefficient of Xd+1
1 . . . Xd+1

n is P (u1, . . . , un) = v .

The prover commits themselves for all j = 1, . . . , N to u2
j , . . . , u

2d

j in cuj1 , . . . , cujd . Furthermore,

to the values fjk in cfjk for all k and also to values δ0, . . . , δν in cδ0 , . . . , cν . After seeing the random

challenges x1, . . . , xN ∈ Z∗q the prover opens for all j and k the products cxujkcjjk to f jk = xu2k

j + fjk.

The verifier computes

δ =

1∑
i10,...,iNd=0

ai10...iNd

N∏
j=1

d∏
k=0

f
ijk
jk x

1−ijk
j

and opens

c
xd+1
1 ...xd+1

N
v

d+1∏
k1,...,kN=0

\{k1=...=kN=d+1}
∧l=

∑d+1
i=1 ki(d+1)i

c
δ
x
k1
1 ...x

kN
N

l
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to δ. Unless v = P (u1, . . . , uN ) this check has a negligible probability of being true as

δ =

1∑
i10,...,iNd=0

ai10...iNd

N∏
j=1

d∏
k=0

f
ijk
jk x

1−ijk
j

= xd+1
1 . . . xd+1

n v + xd1x
d+1
2 . . . xd+1

N δν + . . .+ xNδ1 + δ0.

In parallel the prover will give standard 3-move zero-knowledge arguments for all cujk that these

commitments indeed contain the successive powers of u1, . . . , uN , for j = 1, . . . , N and k = 0, . . . , k .

Statement: {G, p, q}, ck, cu10
, . . . , cuN0

, cv ∈ G and

P (X1, . . . , XN ) =

D∑
i1,...,iN=0

ai1...iNX
i1
1 . . . XiN

N ∈ Zp[X1, . . . , XN ]

Prover’s witness: u1, . . . , uN , v, r10, . . . , rN0, t ∈ Zq such that v = P (u1, . . . , uN ) and

cv = comck(v; t) cuj0 = comck(uj ; rj0), j = 1, . . . , N

Initial message: Compute

1. cuj1 = comck(u2
j ; rj1), . . . , cujd = comck(u2d

j ; rjd) for all j where rj1, . . . , rjd ← Zq

2. cfj = comck(fj ; sj) where fj , sj ← Zd+1
q for j = 1, . . . , N

3. ν = (d+ 1)N − 1 and δ0, . . . , δν ∈ Zq such that

1∑
i10,...,iNd=0

ai10...iNd

N∏
j=1

d∏
k=0

(Xju
2k

j + fjk)ijkX1−ijk

= Xd+1
1 . . . Xd+1

N v +Xd
1X

d+1
2 . . . Xd+1

N δν + . . .+XNδ1 + δ0

4. cδ = comck(δ; t) where t← Zνq

5. cfjuj = comck(fj ◦ uj ; ξj) for all j where uj = (uj , u
2
j , . . . , u

2d

j ),

fj = (fj0, . . . , fjd−1), ξjk−1 ← Zdq

Send: cu11
, . . . , cuNd , cf1 , . . . , cfN , cδ, cf1u1

, . . . , cfNuN

Challenge: x1, . . . , xN ← Z∗q

Answer: Compute

1. f jk = xju
2k

j + fjk and rjk = xjrjk + sjk for all j and k

2. ξjk−1 = xjrjk+1 − f jkrjk + ξjk−1 for all j, k

3.

t = xd+1
1 . . . xd+1

N t+

d+1∑
k1,...,kN=0

\{k1=...=kN=d+1}
∧l=

∑d+1
i=1 ki(d+1)i

tlx
k1
1 . . . xkNN
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Send: f10, . . . fNd, r10, . . . , rNd, ξ10, . . . , ξNd−1, t

Verification: Accept if and only if for all j, k

1. cu11
, . . . , cuNd ∈ G, cf1 , . . . , cfN ∈ Gd+1, cδ ∈ G(d+2)N−1, cf1u1

, . . . , cfNuN ∈ Gd

2. f10, . . . fNd, r10, . . . , rNd, ξ10, . . . , ξNd−1, t ∈ Zq

3. cxj
u2k
j

cfjk = comck(f jk; rjk) c
xj

u2k+1
j

c
−fjk
u2k
j

c
fjk−1u2k

j
= comck(0; ξjk)

4.

c
xd+1
1 ...xd+1

N
v

d+1∏
k1,...,kN=0

\{k1=...=kN=d+1}
∧l=

∑d+1
i=1 ki(d+1)i

c
x
k1
1 ...x

kN
N

δl
= comck

(
δ; t
)

where

δ =

1∑
i10,...,iNd=0

ai10...iNd

N∏
j=1

d∏
k=0

f
i jk
jk x

1−ijk
j

Theorem 26. The protocol above is a public coin generalized Σ−protocol of openings u1, . . . , uN and

v such that v = P (u1, . . . , uN ).

Proof. Perfect completeness follows by careful inspection.

We will now argue that we have perfect SHVZK. On challenge x1, . . . , xN ∈ Z∗q the simulator

picks cuj1 , . . . , cujd , cδ1 , . . . , cδν ← G and f j ← Zd+1
q , rj , ξj ← Zdq , t ← Zq and computes for all j

and k

cfjk = comck(f jk; rjk)c−xk
u2k
j

c
fjku2k

j
= comck(0; ξjk)c

−xj
u2k+1
j

c
fjk

u2k
j

and

δ =

1∑
i10,...,iNd=0

ai10...iNd

N∏
j=1

d∏
k=0

f
ijk
jk x

1−ijk
j ,

cδ0 = comck

(
v; t
)
c
−xd+1

1 ...xd+1
N

v

d+1∏
k1,...,kN=0

\{k1=...=kN=d+1}
∧l=

∑d+1
i=1 ki(d+1)i

c
−xk11 ...x

kN
N

l .

This is a perfect simulation. In a real argument cuj1 , . . . , cujd , cδ1 , . . . , cδν are uniformly ran-

dom perfectly hiding commitments and therefore uniformly random, which is the same case in the

simulation for all j = 1, . . . , N . In a real argument f j ∈ Zd+1
q , rj , ξj ∈ Zdq , t ∈ Zq are uni-

formly random since fj0, . . . , fjd, rj0, . . . , rjd, t, ξj0, . . . , ξjd−1 are picked at random. In the simula-

tion f j ∈ Zd+1
q , rj , ξj ∈ Zdq , t ∈ Zq are picked at random; thus, they follow the same distribution.

Finally, both in the simulation and in the real argument these variables uniquely determine the values of

cfj , j = 1, . . . , n and cf0u1 , . . . , cfd−1uN(d−1)
through the verification equations. So, simulated and real

argument have identical probability distributions and the argument is SHVZK.

Next, we have to show that we have generalized special soundness. Given (d + 1)N accepting

transcripts with different challenges xi and given f
(1)

jk , r
(1)
jk and f

(2)

jk , r
(2)
jk in the first two answers to

challenges x11, . . . x1N and x(21, . . . , x2N the extractor can take linear combinations of the verification
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equations to get openings of the commitments c
u2k
j

. More precisely, we have that the two answers satisfy

cx1j
ujk
cfjk = comck(f

(1)

jk ; r
(1)
jk ) cx2j

ujk
cfjk = comck(f

(2)

jk ; r
(2)
jk ).

Picking α1, α2 such that α1x1j + α2x2j = 1 and α1 + α2 = 0 gives us

cujk = c
α1x1)j+α2x2j
ujk cα1+α2

fjk
= comck(α1f

(1)

jk + α2f
(2)

jk ;α1r
(1)
jk + α2r

(2)
jk ),

which is an opening of cujk for all j and k.

Other types of linear combinations of the verification equations give us openings of the other com-

mitments cfjk , cfjk−kujk and cv the prover sends in the initial message. In the case of cl we find the

linear combination as follows. Let

M =


1 x11 x12 . . . xd11x

d+1
12 . . . xd+1

1N

...
...

1 x(ν+1)1 x(ν+1)2 . . . xd(ν+1)1x
d+1
(ν+1)2 . . . x

d+1
(ν+1)N

 .

With overwhelming probability every set of N vectors are linearly independent and therefore all rows

in the matrix are independent and the matrix M is invertible. By taking linear combinations of the

verification equations

c
xd+1
1 ...xd+1

N
v

d+1∏
k1,...,kN=0

\{k1=...=kN=d+1}
∧l=

∑d+1
i=1 ki(d+1)i

c
x
k1
1 ...x

kN
N

δl
= comck

 1∑
ii0,...,iNd=0

ai10...iNd

N∏
j=1

d∏
k=0

f
ijk
ij x

1−ijk
j ; t



we get that


δ0 t0
...

...

δν tν

v s

 = M−1


∑1
ii0,...,iNd=0 ai10...iNd

∏N
j=1

∏d
k=0 f

ijk
ij x

1−ijk
(1)j t

(1)

...
...∑1

ii0,...,iNd=0 ai10...iNd
∏N
j=1

∏d
k=0 f

ijk
ij x

1−ijk
(ν+1)j t

((ν+1)



which gives us openings of cδ0 , . . . , cδν and cv .

We now have openings to all the commitments. Because they are binding, each of them must be

computed as they are by an honest prover in the argument. The verification equations

cxjuj(k+1)
c
−fjk
ujk c

fjku2k
j

= comck(0; ξjk)

now give us that the committed values satisfy

xjuj(k+1) − (xjuj(k) + fjk)uj(j) + φ(jk) = 0



110 Chapter 6. Zero-Knowledge Polynomial Arguments

for j = 1, . . . N, k = 0, . . . , d − 1 with uj(k) being the value inside cujk and φ(jk) being the value

inside c
fjku2k

j
. Since each of the polynomial equalities is of degree 1 and holds for (d + 2)N different

challenges we see that uj(1) = u2
j , uj(2) = u22

j , . . . , uj(d) = u2d

j for all j.

Turning to the verification equation

c
xd+1
1 ...xd+1

N
v

d+1∏
k1,...,kN=0

\{k1=...=kN=d+1}
∧l=

∑d+1
i=1 ki(d+1)i

c
x
k1
1 ...x

kN
N

δl
= comck

 1∑
i10,...,iNd=0

ai10...iNd

N∏
j=1

d∏
k=0

f
ijk
ij x

1−ijk
j ; t



we now have that this corresponds to the multivariate polynomial equation

1∑
ii0,...,iNd=0

ai10...iNd

N∏
j=1

d∏
k=0

(Xju
2k

j + fjk)ijkX
1−ijk
j

= Xd+1
1 . . . Xd+1

N v +Xd
1X

d+1
2 . . . Xd+1

N δν + . . .+Xnδ1 + δ0.

With (d+2)n different values x11, . . . , x(ν+1)n satisfying the equation, we conclude the two polynomials

are identical. Looking at the coefficient for Xd+1
1 . . . Xd+1

N we also conclude that the extracted openings

of cu1
, . . . , cuN and cv satisfy v = P (u1, . . . , uN ). Furthermore, the extracted openings are the same

openings known by the prover. Otherwise the prover could use the extractor to break the commitment

scheme.

Efficiency: The communication consists of (d+ 1)N + 3Nd+N group elements and 3Nd+ 2N field

elements; therefore, the communication cost is O(dN ) = O((logD)N ).

The prover needs 2(d + 1)N + 6nN exponentiations in G to calculate the commitments and also

has to calculate the δi’s. The prover can calculate the degree d polynomials

d∏
k=0

(Xju
2k

j + fjk)ijkX
1−ijk
j

in a binary-tree fashion for all choices of ijk ∈ {0, 1}, which costsO(NdD) multiplications in Zq . They

can then calculate
N∏
j=1

d∏
k=0

(Xju
2k

j + fjk)ijkX
1−ijk
j .

This costs another O(dN ) multiplications for each polynomial; thus, in total O(DNdN ) multiplications.

Lastly, the prover has to handle the ai10...iNd , to do this efficient they multiple the values aijk on the

inner polynomials in X1, i.e.
d∏
k=0

(X1u
2k

1 + f1k)i1kX1−i1k
1 ,

this cost another (D + 1)N (d + 2) multiplications in Zq . Therefore, the total cost of the prover is

O(N logDN ) exponentiations in G and O(DNdN ) multiplications in Zq .

The verifier has to compute (d + 1)N + 3Nd exponentiations in G. To calculate δ the verifier
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need to carry out (D + 1)NNd multiplications in Zq . Beside of this the verifier has to calculate N(d+

1)N + 5Nd multiplications. So the cost for the verifier is O(dN ) exponentiations in G and O(NdDN )

multiplications in Zq .

In the calculation above we have ignored small constants and just focused on the dominant terms.

Similar to the polynomial argument multi-exponentiation techniques such as the sliding window tech-

nique, Section 4.3, optimize the argument further. To reduce the computational burden even more ran-

domized verification and other tricks [BGR98, Gro10] can be applied; hence, the estimates we have

given above are quite conservative.

6.4 Batch Polynomial Argument
This section is joint work with Jens Groth.

Consider the case where we have a batch of polynomials P (1)(X), . . . , P (L)(X) of the form

P (`)(X) =

D∑
i=0

a
(`)
i Xi =

1∑
i0,...,id=0

a
(`)
i0...id

d∏
j=0

(X2j )ij ,

commitments to evaluations v1 = P (1)(u1), . . . , vL = P (L)(uL) in committed values u1, . . . , uL and

we want to show that indeed vi = P (i)(ui) holds for all i. A parallel repetition of the polynomial

argument from Section 5.3 would give a communication complexity of O(L logD) group and field

elements. We will now show that the Hadamard product argument from Section 6.2 can be used to

reduce the cost to O(
√
L logD) when we have L = mn and m ≈ n ≈

√
L.

Like in the Hadamard product argument, we define l(X) =
∏m
i=1(X − ωi) and let

l1(X), . . . , lm(X) be the Lagrange interpolation polynomials for Ω = {ω1, . . . , ωm}, which satisfy

li(X) =

1 mod X − ωi

0 mod l(X)
X−ωi

for i = 1, . . . ,m .

The idea is to batch-verify many polynomials simultaneously to reduce the communication cost.

We will arrange the polynomials and the committed values in an m × n matrix, where L = mn. This

gives us polynomials P (i,k) and the committed values ui,k and vi,k for i = 1, . . . ,m and k = 1, . . . , n.

We will for each k verify the m polynomial evaluations P (i,k)(ui,k) = vi,k simultaneously.

In the argument we pick similar to the Hadamard argument random fj ← Znq and construct

u2j = l(X)fj +

m∑
i=1

li(X)u2j

i .

Looking at the k’th entries u2j ,k of these vectors we have for each i = 1, . . . ,m that u2j ,k ≡ u2j

i,k mod

X − ωi. Inserting this in the polynomial P (i,k) gives us

1∑
i0,...,id=0

a
(i,k)
i0...id

d∏
j=0

(u2j ,k)ij ≡ P (i,k)(ui,k) ≡ vi,k mod X − ωi.
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To verify many polynomials at once, the prover will demonstrate to the verifier that

m∑
i=1

li(X)

1∑
i0,...,id=0

a
(i,k)
i0...id

d∏
j=0

(u2j ,k)ij ≡
m∑
i=1

li(X)vi,k mod l(X).

Statement: {G, p, q}, ck, cu1,20
, cv1 , . . . , cum,20 , cvm ∈ G andL = mn polynomialsP (1,1), . . . , P (m,n)

of the form

P (i,k)(X) =

1∑
i0,...,id=0

a
(i,k)
i0...id

d∏
j=0

(X2j )ij .

Prover’s witness: u1,v1, . . . ,um,vm ∈ Znq and r1,20 , s1, . . . , rm,20 , sm ∈ Zq such that for

i = 1, . . . ,m and k = 1, . . . , n

cui,20 = comck(ui; ri,20) cvi = comck(vi; si)

vi,k = P (i,k)(ui,k) where ui = (ui,1, . . . , ui,n) vi = (vi,1, . . . , vi,n)

Initial message: Compute

1. cf0 = comck(f0; rf0), . . . , cfd = comck(fd; rfd) where fj ← Znq and rfj ← Zq

2. cu1,21
= comck(u21

1 ; r1,21), . . . , cu
m,2d

= comck(u2d

m ; rm,2d) where ri,2j ← Zq

3. cv0 = comck(v0; s0) where v0 ← Znq and s0 ← Zq

4. ∆0, . . . ,∆dm−1 ∈ Znq such that ∆(X) =
∑dm−1
i=0 ∆iX

i for k = 1, . . . , n satisfies

m∑
i=1

li(X)

1∑
i0,...,id=0

a
(i,k)
i0...id

d∏
j=0

(u2j ,k(X))ij − vk(X) = l(X)∆k(X)

where we for j = 0, . . . , d define

u2j (X) = l(X)fj +

m∑
i=1

li(X)u2j

i v = l(X)v0 +

m∑
i=1

li(X)vi

5. c∆0 = comck(∆0; t0), . . . , c∆dm−1
= comck(∆dm−1; tdm−1) where ti ← Zq

Send: cf0 , . . . , cfd , cu1,21
, . . . , cu

m,2d
, cv0 , c∆0

, . . . , c∆dm−1

Give in parallel d product arguments from Section 5.4 for j = 0, . . . , d − 1 with statements

(cui,2j , cui,2j , cui,2j+1 )
m

i=1
using witnesses

(
ui,2j , ri,2j ,ui,2j , ri,2j ,ui,2j+1 , ri,2j+1

)m
i=1

.

Challenge: x← Z∗q \ Ω

Answer: Compute for j = 0, . . . , d

u2j = l(x)fj +

m∑
i=1

li(x)ui,2j r2j = l(x)rfj +

m∑
i=1

li(x)ri,2j
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v = l(x)v0 +

m∑
i=1

li(x)vi s = l(x)s0 +

m∑
i=1

li(x)si t =

dm−1∑
i=0

li(x)ti

Send: u20 , r20 , . . . ,u2d , r2d ,v, s, t

Verification: Compute ∆ ∈ Znq such that for k = 1, . . . , n

m∑
i=1

li(x)

1∑
i0,...,id=0

a
(i,k)
i0...id

d∏
j=0

(u2j ,k)ij − vk = l(x)∆k.

Accept if and only if for all j = 0, . . . , d

1. cl(x)
fj

∏m
i=1 c

li(x)
ui,2j

= comck(u2j ; r2j )

2. cl(x)
v0

∏m
i=1 c

li(x)
vi = comck(v; s)

3.
∏dm−1
i=0 cx

i

∆i
= comck(∆; t)

4. The d product arguments are accepting.

Theorem 27. The protocol above is a public coin generalized Σ−protocol of committed values ui,k and

vi,k satisfying vi,k = P (i,k)(ui,k) for given polynomials P (i,k) ∈ Zq[x].

Proof. Perfect completeness follows from the perfect completeness of the underlying product arguments.

For perfect SHVZK consider the simulator that is given a challenge x ∈ Z∗q for which l(x) 6= 0. It

picks u20 , . . . ,u2d ← Znq and r20 , . . . , r2d ,v, s, t← Zq and cu
1,2d

, . . . , cu
m,2d

, cv1 , . . . , cvm ,

c∆1 , . . . , c∆dm−1
← G. Then it computes for j = 0, . . . , d

cfj =

(
m∏
i=1

c−li(x)
ui,2j

comck(u2j ; r2j )

)l(x)−1

cv0 =

(
m∏
i=1

c−li(x)
vi comck(v; s)

)l(x)−1

c∆0 =

dm−1∏
i=1

c−x
i

∆i
comck(∆; t)

and runs the SHVZK simulator for the d product arguments.

To see this is a perfect simulation note that also in the real argument u20 , . . . ,u2d ∈ Znq and

r20 , . . . , r2d ,v, s, t ∈ Zq and cu1,21
, . . . , cu

m,2d
,cv1 , . . . , cvm ,c∆1

, . . . , c∆dm−1
∈ G are uniformly ran-

dom. Both in a real argument and a simulated argument, the commitments cf0 , . . . , cfd , cv0 , c∆0
are

uniquely determined by the verification equations once the other values are given. Therefore, the real

argument and the simulated argument have identical probability distributions. Perfect SHVZK now fol-

lows from the perfect SHVZK of the d product arguments.

Finally, we will show that we have perfect special soundness. Given (d+ 2)m accepting transcripts

with different challenges xi such that l(x) 6= 0, the extractor E works as follows.

The first m transcripts with challenges x1, . . . , xm for all j = 0, . . . , d satisfy the verification

equations

c
l(x)
fj

m∏
i=1

cli(x)
ui,2j

= comck(u2j ; r2j ) cl(x)
v0

m∏
i=1

cli(x)
vi = comck(v; s).
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Note that for all i = 1, . . . ,m we have li(ωj) = δij . Let α(1)
i , . . . , α

(m)
i be the Lagrange interpolation

coefficient for interpolation to polynomial evaluation in the point rj such that

m∑
k=1

α
(k)
j li(xk) = li(rj) and

m∑
k=1

α
(k)
j l(xk) = l(rj).

This gives us

cvi =

m∏
k=1

(
cl(xk)
v0

m∏
i=1

cli(xk)
vi

)αk
= comck

(
m∑
k=1

αkv
(k);

m∑
k=1

αks
(k)

)
,

which provides an opening of cvi . By taking similar types of linear combinations of verification equa-

tions, we obtain openings of all the commitments cf0 , . . . , cfd , cu1,21
, . . . , cu

m,2d
, cv0 , c∆0

, . . . , c∆dm−1
.

Since the commitments are binding this means that the challenge x now uniquely determines the answers

as

u2j = l(x)fj +
m∑
i=1

li(x)ui,2j r2j = l(x)rfj +
m∑
i=1

li(x)ri,2j

v = l(x)v0 +

m∑
i=1

li(x)vi s = l(x)s0 +

m∑
i=1

li(x)si t =

dm−1∑
i=0

li(x)ti

Furthermore, the d product arguments tell us ui,2j = u2j

i .

We now have (d + 2)m different points x, where the following polynomial equation of degree

(d+ 2)m− 1 holds

m∑
i=1

li(X)

1∑
i0,...,id=0

a
(i,k)
i0...id

d∏
j=0

(u2j ,k(X))ij − vk(X) = l(X)∆k(X).

This implies that the two polynomials are identical. With the two polynomials being identical, we deduce

that the extracted openings for each i = 1, . . . ,m and each k = 1, . . . , n satisfy vi,k = P (i,k)(ui,k).

Furthermore, the extracted openings are exactly the witnesses of the prover. If this is not the case, the

extractor of the argument could be used by the prover to find a second opening of at least one of the

commitments with non-negligible probability and the commitment scheme is broken.

Efficiency: The communication cost is dominated by 2dm group elements, dn field elements and d

product arguments for a total cost of O(dm+ dn) = O(
√
L logD) group and field elements, assuming

m = n =
√
L.

The verifier’s computation is 2dm+ dn exponentiations in G and O(mnD) = O(LD) multiplica-

tions plus the cost of verifying d product arguments, for a total cost of O(dm + dn) = O(
√
L logD)

exponentiations in G and O(LD) multiplications in Zq .

The prover’s computation is 2mnd exponentiations to compute the commitments, plus the cost of d

product arguments, plus the cost of computing ∆(X). This gives a total cost of O(mnd) = O(L logD)

exponentiations in G and O(Dmnd) = O(DL logD) = Õ(DL) multiplications in Zq .
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Let us illustrate how to get quasilinear computation complexity for the prover when we choose the

roots of l(X) as m-th roots of unity. The most expensive part in the prover’s computation for very large

D is to calculate the coefficients of ∆(X). This is a degree dm− 1 polynomial, so our strategy will be

to evaluate it in dm different points and then use Lagrange-interpolation to get the coefficients. Recall,

we defined ∆(X) as the polynomial that for k = 1, . . . , n satisfies

m∑
i=1

li(X)

1∑
i0,...,id=0

a
(i,k)
i0...id

d∏
j=0

(u2j ,k(X))ij − vk(X) = l(X)∆k(X)

where we for j = 0, . . . , d defined

u2j (X) = l(X)fj +

m∑
i=1

li(X)u2j

i v = l(X)v0 +

m∑
i=1

li(x)vi

It is easy to compute v(X) and to evaluate l1(X), . . . , lm(X), l(X) in dm different points. Given

those evaluations, we can compute dm evaluations of u2j (X) = l(X)fj +
∑m
i=1 li(X)u2j

i using

O(m2d2n) multiplications in a naı̈ve implementation or in O(mdn log(md)) using FFT techniques.

Having these values we can compute all the products
∏d
j=0(u2j ,k(X))ij for all i0, . . . , id in a

binary-tree fashion using Dmnd multiplications. Finally, we can rewrite the sum

m∑
i=1

li(X)

1∑
i0,...,id=0

a
(i,k)
i0...id

d∏
j=0

(u2j ,k(X))ij =

1∑
i0,...,id=0

(
m∑
i=1

li(X)a
(i,k)
i0...id

)
d∏
j=0

(u2j ,k(X))ij .

The inner component
∑m
i=1 li(X)a

(i,k)
i0...id

is a degree m − 1 polynomial. It is easy to evaluate the poly-

nomial in the roots of l(X) using only m multiplications since li(ωk) = δik. If these roots are roots of

unity, we furthermore get that an inverse FFT can be computed in timeO(m logm) to get the coefficients

of the polynomial. And in time Õ(dm) we can now evaluate the polynomial in dm different points. We

now have all the components to evaluate ∆(X) for dm different points at a cost ofO(Dmnd) = Õ(DL)

multiplications. Using Lagrange interpolation, we can now compute the coefficients ∆0, . . . ,∆dm−1.

Again, we only counted the dominant part of the calculations and ignored small constants. All

values are conservative and can optimized even further by applying multi-exponentiation techniques,

such as Brickell et al.’s algorithm from Section 4.3.3 or other optimization tricks [BGR98, Gro10].

6.5 Polynomial Evaluation Argument Based on Brands et al.’s [BDD07]

techniques

We will describe for completeness how to use Brands et al.’s [BDD07] techniques to construct a poly-

nomial argument with square root complexity. The original work states a non-membership proof, but

it is easy to transform into a polynomial argument. To prove non-membership of a u ∈ Zq to a list

L = {λ1, . . . , λD}, where without loss of generality D = d2. Brands et al. construct d =
√
D polyno-
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mials

Pj(X) =

d∏
i=1

(X − λ(j−1)d+i)

and prove for each j = 1, . . . , d that Pj(X) evaluated in u is not equal to 0. One part of the argument is

to prove that Pj(u) = vj is indeed the polynomial evaluated on u. The prover also commits themselves

to the values u, u2, u3 . . . , ud and proves that these commitments contain the successive powers of u.

We will use both protocols as building block of the polynomial argument.

In the case of the polynomial argument both parties know a polynomial

P (X) = aDX
D + . . .+ a1X + a0

and the prover wants to show that for committed values u, v it holds P (u) = v. To achieve the square

root complexity we split the polynomial P (X) in d polynomials Pj(X). In more detail we will rewrite

P (X) = Pd(X)XD−d + . . .+ P2(X)Xd + P1(X),

where each polynomial is of degree d =
√
D.

The prover can now calculate Pj(X) = vj for all j = 1, . . . , d and use Brands et al.’s techniques

to prove these equations. The prover also commits themselves to the values uid in cid, i = 2, . . . , d− 1,

and vju(j−1)d in cv∗j for i = 2, . . . , d − 1. The prover then shows that the values uid, i = 2, . . . , d − 1

are indeed successive powers of ud using the techniques given by Brands et al.. Lastly, by using simple

product arguments 5.1 the prover also demonstrate that all the Pj(u)u(j−1)d are constructed correctly.

Finally, the verifier can check
∏d
j=1 cv∗j = cv which convince them that cv contains the commitment

of P (X) evaluated on u.

Statement: G, q, ck,

P (X) =

D∑
i=0

aiX
i = Pd(X)XD−d + . . .+ P2(X)Xd + P1(X) ∈ Zq[X],

Pj(X) ∈ Zq[X] are degree d polynomials and cu, cv ∈ G.

Prover’s witness: u, v, r1, s ∈ Zq such that

v = P (u) cu1
= comck(u; r1) cv = comck(v; s).

Initial message: Compute

1. cui = comck(ui; ri) where ri ← Zq , i = 2, . . . , d

2. cuid = comck(uid; rid) where rid ← Zq , i = 2, . . . , d− 1

3. vj = Pj(u) and wj = aj,drd + . . . aj,2r2 + aj,1r1, j = 1, . . . d

4. cvi = comck(vi;wi), i = 1, . . . , d
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5. cv∗i = comck(viu
(i−1)d; si), i = 2, . . . , d where si ← Zq, sd = s−

∑d−1
i=2 si−w1

6. f1 = comck(ru; t1) fi = cruui−1comck(0; ti), i = 2, . . . , d where ru ← Zq , ti ← Zq

7. fid = c
rud
u(i−1)d

comck(0; tid) where rud
, tid ← Zq, i = 2, . . . , d− 1

8. cdi = comck(di; ρi) ce = comck(e2, σi) where di, ρi, ei, σi ← Zq for i = 2, . . . , d

cfi = cdi
u(i−1)dcomck(0; ρi) for i = 2, . . . , d

Send: cu2
, . . . , cud

, cu2d
, . . . , cu(d−1)d

, cv1 , . . . , cvd , cv∗2 , . . . , cv∗d , f1, . . . , fd, f2d, . . . , f(d−1)d,

cd2 , . . . , cdd , ce1 , . . . , ced , cf1 , . . . , cfd

Challenge: x← Z∗q

Answer: Compute

1. u = xu+ ru ud = xud + rud

2. r1 = xr1 + t1, ri = x(ri − uri−1) + ti for i = 2, . . . , d

3. rid = x(rid − udr(i−1)d) + ti, for i = 2, . . . , d− 1

4. ai = di + xvi ri = ρi + xwi vi = ei + xu(i−1)d si = σi + xrid

ti = ρi − x(ridvi − si) for i = 2, . . . , d

Send: u, ud, r1, . . . , rd, r2d, . . . , r(d−1)d, a2, . . . , ad, r1, . . . , rd, b2, . . . , bd, s2, . . . , sd, t2, . . . , td

Verification: Accept if and only if

1. cu1 , . . . , cud
, cv1 , . . . , cvd , f1, . . . , fd, cu2d , . . . , cu(d−1)d

, f2d, . . . , f(d−1)δ ∈ G,

cv∗2 , . . . , cv∗d , cα2 , . . . , cαd
, cβ2 , . . . , cβd

∈ G

2. u, ud, r1, . . . , rd, r2d, . . . , r(d−1)d, a2, . . . , a(d)d, r2, . . . , rd ∈ Zq ,

b2, . . . , bd, s2, . . . , sd, t2, . . . , td ∈ Zq

3.
∏d
j=1 c

σj
vj = G

∑d
j=1 aj,0σj

∏d
i=1 c

∑d
j=1 aj,iσj

udi
where σj ← Zq , for j = 1, . . . , d

4. comck(u; r1) = f1c
x
u1

cuui−1
comck(0; ri) = fic

x
ui for i = 2, . . . , d

cud
u(i−1)d

comck(0; rid) = fidc
x
uid for i = 2, . . . , d− 1

5. cxvicdi = comck(ai; ri) cxu(i−1)d
cei = comck(bi; si)

cxv∗i cfi = cviu(i−1)d
comck(0; ti), for i = 1, . . . , d

6. cv1
∏d
i=2 cv∗i = cv

Theorem 28. The protocol above is a public key perfect generalized Σ−protocol of committed values

u, v satisfying v = P (u) for given polynomial P(X).

Proof. Perfect completeness follows from careful inspection of the verification equations.

Next, we have to show that the argument has perfect SHVZK. The simulator picks on challenge x

random answers u, ud, r1, . . . , rd, r2d, . . . , r(d−1)d, a2, . . . , ad, r1, . . . , rd, b2, . . . , bd, s2, . . . , sd, t2, . . . , td

and cu2
, . . . , cud

, c2d, . . . , c(d−1)d, cv1∗, . . . , cvd∗ as random commitments to 0. It then sets

f1 = c−xu1
comck(u, r1), fi = cuui−1

comck(0; r)c−xui , for i = 2, . . . d
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fid = cud
u(i−1)d

comck(0; rid)c−xuid for i = 2, . . . , d− 1

cdi = cxvicomck(vi;wi) cei = cxv∗i comck(v∗i ; si

cfi = c−xv∗i
cviu(i−1)d

comck(0; si), for i = 1, . . . , d.

The simulator also picks σi ← Zq and sets

cv1 =

G∑d
j=1 aj,0σj

d∏
i=1

c
∑d
j=1 aj,iσj

udi

d∏
j=2

c−σjvj

σ
−1
1

and cv = cv1

d∏
i=2

cv∗i .

In the real argument the answers are uniformly random distributed. In the simulation the values are

picked at random and therefore they follow the same distribution. The commitment scheme is hiding;

therefore, the commitments of the simulation and the real argument follow the same distribution. So, the

argument is perfect SHVZK.

Finally, we have to see that we have perfect generalized special soundness. Given two accepting

transcripts with different challenges x1, x2 the extractor E can take linear combinations of the verifi-

cation equations to get openings of all commitments. The extracted witnesses satisfies the statement.

As the commitment scheme is binding we can conclude that the commitments cvi∗ contains openings

viu
(i−1)d and from cv = cv1

∏d
i=2 cv∗i that P (u) = v. Therefore, the extracted witnesses satisfy the

statement. Moreover, the extracted openings are exactly the witnesses of the prover. Otherwise, the

extractor of the argument could be used by the prover to find a second opening of at least one of the

commitments with non-negligible probability and the commitment scheme is broken.

Efficiency: During the protocol 9d group elements and 7d fields elements are sent between the parties.

The prover has to calculate 18d exponentiations in G and D + 19d multiplications, whereas the

verifier has to calculate 18d exponentiations and D + 19d multiplications in G.

In the original publication [BDD07] Brands et al. use in step three of the verification d equations

which leads to a computation cost of O(D), but they report themselves of a way to batch these equations

into a single one, which cost onlyO(d) exponentiations. Naturally we chosen the more optimized version

in our description.

The sliding window algorithm, Section 4.3.2, can be used to reduce the computational cost of the

prover and verifier further. Other optimization techniques [BGR98, Gro10] could be applied as well;

thus, the values above are conservative.

Example: Let be G = 〈G〉 = 〈149〉 ⊂ Z∗179, which has prime order q = 89. The statement consists of

{G, p, q} = {〈149〉, 179, 89}, ck = {149, 129} and the polynomials

P (X) = X8 + 40X7 + 53X6 + 7X5 + 68X4 + 32X3 + 17X2 + 68X + 70

= (X2 + 40)X6 + (53X3 + 7X2 + 68X)X3 + (32X3 + 17X2 + 68X + 70)

= P3(X)X6 + P2(X)X3 + P1(X),
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of d = d
√

8e = 3 and of the commitments cu1
= 49 and cv = 47.

The prover knows witnesses u = 47, v = P (u) = 10 and r1 = 57, s = 77 such that

cu1 = comck(u; r1) = 49 cv = comck(v; s) = 47.

To convince the verifier of this claim the prover commits themselves to u2, u3 in

cu2
= comck(u2; r2) = 29, cu3

= comck(u3; r3) = 108

with random picked r2 = 80, r3 = 25. Picking r2d = 52 the prover can calculate the commitments to

cu2d
= comck(u2d; r2d) = comck(u4; r2d) = 82.

Then the prover calculates

v1 = P1(u) = 63 v2 = P2(u) = 88 v3 = P3(u) = 24,

and wi = ai,drd + . . . ai,2r2 + ai,1r1 for i = 1, 2, 3

w1 = 11 w2 = 3 w3 = 20,

and lastly the prover computes cvi = comck(vi;wi)

cv1 = 88 cv2 = 80 cv3 = 51.

In the next step the prover sets s2 = 1 and s3 = 4, and calculates cvi∗ = comck(viu
(i−1)d; si)

cv2∗ = 5 cv3∗ = 177.

Now the prover picks ru = 44, t1 = 45, t2 = 57, t3 = 77 and computes

f1 = 172 f2 = 20 f3 = 81,

and for random ruδ = 26, t2d = 81 they compute f2d = 155.

For the underlying simple product argument, the prover picks d2 = 34, d3 = 88, ρ2 = 36, ρ3 = 16,

e3 = 9, e3 = 71, σ2 = 5, σ3 = 17 and calculates

cd2 = 89 cd3 = 4 ce2 = 87 cd3 = 4 cf2 = 139 cf3 = 153.

The prover sends all the commitments

cu2
= 29 cu3

= 108 cu2d
= 82
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cv1 = 88 cv2 = 80 cv3 = 51 cv2∗ = 5 cv3∗ = 177

f1 = 172 f2 = 20 f3 = 81 f2d = 155

cd2 = 89 cd3 = 4 ce2 = 87 ce3 = 4 cf1 = 139 cf2 = 153,

to the verifier, who picks a challenges x = 26.

To answer the challenge the prover calculates

u = xu+ ru = 78 ud = 22 r1 = 8 r2 = 52 r3 = 54 r2d = 20

a2 = d2 + xv2 = 8 a3 = d3 + xv3 = 0 r2 = ρ2 + xw2 = 25 w3 = ρ3 + xw3 = 2

b2 = e2 + ud = 37 b3 = e3 + u2d = 19 s2 = σi + xrd = 32 s3 = σi + xr2d = 34

t2 = ρ2 − x(rdv2 − s2) = 0 t3 = ρ2 − x(r2dv3 − s3) = 68

and sends these values back to the verifier.

The verifier first checks if all answers are valid and the commitments are really in the group G. He

then picks random σ1 = 64, σ2 = 81, σ3 = 73 and calculates the sums

3∑
i=1

ai,0σi = 30

3∑
i=1

ai,1σi = 53

3∑
i=1

ai,2σi = 37

3∑
i=1

ai,2σi = 33.

and checks
d∏
j=1

cσjvj = 172 = G
∑d
j=1 aj,0σj

d∏
i=1

c
∑d
j=1 aj,iσj

udi
(X)

He also checks

f1 = 171 = c−xu1
Gu+er1 (X) f2d = 155 = cuδu3

Hr2dc−xu2d
(X)

f2 = 20 = cuu1
Hr2c−xu2

(X) f3 = 81 = cuu2
Hr3c−xu3

(X)

cxu2
cd2 = 177 = comck(a2; r2) (X) cxu3

cd3 = 173 = comck(a3; r3) (X)

cxu3
ce2 = 13 = comck(b2; s2) (X)cxu(2d

ce3 = 95 = comck(b3; s3) (X)

cxv∗2 cf2 = 52 = ca2u3
comck(0, t2) (X) cxv∗3 cf3 = 116 = ca3u2d

comck(0, t3) (X)

cv = 45 = cv1cv2∗cv3∗ (X).

Now the verifier is convinced that cv contains a commitment of v = P (u).
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6.5.1 Implementation and practical Results

We implemented Brands et al.’s argument to obtain some experimental results and to analyze the real life

behavior of the protocol. We used different modular subgroups with different security levels. Security

levels were estimated following [Len04] and can be found in Section 4.1.1. We chose two 160-bit sub-

groups modulo a 1 248 and a 1 536-bit prime, we also chosen three different 256-bit subgroups modulo

a 1 536-bit, a 2 432-bit, and a 3 248-bit prime, and the last two groups we use are 384-bit subgroups

modulo a 3 248-bit and a 7 936-bit prime.

Some of these groups are not standard and are not used in the research community, the reason that

we picked these groups is to explore the merit of different parameters, for example subgroup size vs

group size.

For the protocol we build a conservative version which contains the level of optimization we used

to calculate the computation cost of the parties, that means we only optimized processes which contain

a lot of multiplications. We also implemented two levels of optimization, firstly we only used the sliding

window technique and secondly we looked at the merit of Lim-Lee’s technique and Brickells et al.’s

technique, for polynomials with degree < 1 000 we used Lim-Lee’s algorithm otherwise sticked with

Brickells et al.’s technique. To obtain the results we run the protocols for each set of parameters 100

times and calculated the mean. The experiments were carried out on a Mac Book Pro with 2.54 GHz

CPU and 4 GB RAM.

Conservative SW Optimized Ratio
D Prover SW/Cons. Opt./Cons.
10 38 ms 24 ms 24 ms 0.64 0.64

100 118 ms 75 ms 75 ms 0.63 0.63
1 000 409 ms 257 ms 257 ms 0.63 0.63
5 000 915 ms 584 ms 582 ms 0.64 0.64

10 000 1 297 ms 828 ms 826 ms 0.64 0.64
50 000 2 946 ms 1 887 ms 1 882 ms 0.64 0.64

100 000 4 204 ms 2 699 ms 2 691 ms 0.64 0.64
500 000 9 643 ms 6 292 ms 6 273 ms 0.65 0.65

1 000 000 13 916 ms 9 169 ms 9 153 ms 0.66 0.66
Verifier

10 38 ms 33 ms 30 ms 0.86 0.80
100 111 ms 95 ms 89 ms 0.85 0.80

1 000 376 ms 322 ms 299 ms 0.86 0.80
5 000 847 ms 725 ms 675 ms 0.86 0.80

10 000 1 207 ms 1 027 ms 954 ms 0.85 0.79
50 000 2 714 ms 2 322 ms 2 160 ms 0.86 0.80

100 000 3 853 ms 3 300 ms 3 072 ms 0.86 0.80
500 000 8 726 ms 7 484 ms 6 980 ms 0.86 0.80

1 000 000 12 646 ms 10 790 ms 10 018 ms 0.85 0.79

Table 6.11: Comparison of Brands et al.’s polynomial argument for different degree D and different
levels of optimization on a 256-bit subgroup modulo a 1 536-bit prime.

The results for all three optimization levels for a 256-bit subgroup modulo a 1 536-bit prime can

be found in Table 6.11, together with the ratio of the optimized versions against the conservative one.
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D Conservative SW Optimized Ratio
Prover SW/Cons. Opt./Cons

10 206 ms 118 ms 118 ms 0.57 0.57
100 655 ms 370 ms 370 ms 0.57 0.57

1 000 2 251 ms 1 275 ms 1 270 ms 0.57 0.57
5 000 5 084 ms 2 882 ms 2 887 ms 0.57 0.57

10 000 7 196 ms 4 080 ms 4 087 ms 0.57 0.57
50 000 16 241 ms 9 235 ms 9 240 ms 0.57 0.57

100 000 23 050 ms 13 114 ms 13 132 ms 0.57 0.57
500 000 51 956 ms 29 733 ms 29 756 ms 0.57 0.57

1 000 000 73 835 ms 42 428 ms 42 486 ms 0.57 0.58
Verifier

10 205 ms 173 ms 158 ms 0.84 0.77
100 623 ms 518 ms 464 ms 0.83 0.74

1 000 2 125 ms 1 277 ms 1 568 ms 0.83 0.74
5 000 4 787 ms 3 961 ms 3 532 ms 0.83 0.74

10 000 6 755 ms 5 595 ms 4 991 ms 0.83 0.74
50 000 15 239 ms 12 643 ms 11 241 ms 0.83 0.74

100 000 21 911 ms 17 911 ms 15 941 ms 0.82 0.74
500 000 48 525 ms 40 211 ms 35 795 ms 0.83 0.74

1 000 000 68 818 ms 57 031 ms 50 818 ms 0.83 0.74

Table 6.12: Comparison of Brands et al.’s polynomial argument for different degree D and different
levels of optimization on a 384-bit subgroup modulo a 3 248-bit prime.

In Table 6.12 we have the same date for a 384-bit subgroup modulo a 3 248-bit prime. We see that

the influence of the sliding window technique on the provers performance gets higher for increasing

subgroup and group parameters; but inside a setting the merit is the same for all degrees D.

For the verifier the effect of the sliding window technique is less, but again this is the same for all

degreeD. One reason for this reduced influence is that the verifier only calculates 8
√
D exponentiations,

which can be optimized by this techniques, the other 8
√
D exponentiations are single exponentiations in

the first version. This last part was optimized in the second optimization level and we see that Lim-Lee’s

as well Brickell et al’s techniques speed up the verifier further.

The linear number of multiplications do not become dominant over the cost of the exponentia-

tions; however, they have a small noticeable influence on the run-time, see Figure 6.3 for the prover and

Figure 6.4 for the verifier. On the first glare it looks like both parties’ run-times follow a square root

function, but for bigger degree D the cost of the multiplication can be seen.

Table 6.13 states the optimized results of a 256-bit subgroup modulo a 1 536-bit prime, a 2 432-bit

prime, and a 3 248-bit prime. Doubling the size of the modulo from 1 536-bit to 3 248-bit has a big effect

on the run-time, the time gets nearly quadrupled for big D. A similar effect can be seen for |p| = 2 432,

in this case p grows by around 1.5 but the run-time doubles itself. One possible explanation for this

behavior is that the cost of exponentiations gets higher for bigger prime |p| and this cost dominates the

run-time. Equal results can be seen for fixed 160-bit subgroup modulo a 1 248 and a 1 536-bit prime, see

Table 6.14.

The effect of increasing the subgroup size for fixed primes can be found in Table 6.15 for |p| = 1 536
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Figure 6.3: Run-time of Brands et al.’s polynomial argument prover plotted against the degree D for
|q| = 256 and |p| = 1 536, and |q| = 384 and |p| = 3 248
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Figure 6.4: Run-time of Brands et al.’s polynomial argument verifier plotted against the degree D for
|q| = 256 and |p| = 1 536, and |q| = 384 and |p| = 3 248

|q| = 256 |p| = 1 536 |p| = 2 432 |p| = 3 248
D Prover Verifier Prover Verifier Prover Verifier
10 24 ms 30 ms 52 ms 70 ms 81 ms 110 ms

100 75 ms 89 ms 162 ms 204 ms 254 ms 323 ms
1 000 257 ms 299 ms 560 ms 691 ms 875 ms 1 091 ms
5 000 582 ms 675 ms 1 267 ms 1 556 ms 1 978 ms 2 455 ms

10 000 826 ms 954 ms 1 795 ms 2 201 ms 2 800 ms 3 470 ms
50 000 1 882 ms 2 160 ms 4 065 ms 4 959 ms 6 329 ms 7 816 ms

100 000 2 691 ms 3 072 ms 5 783 ms 7 038 ms 8 995 ms 11 090 ms
500 000 6 273 ms 6 980 ms 13 184 ms 15 842 ms 20 375 ms 24 909 ms

1 000 000 9 153 ms 10 018 ms 18 749 ms 22 613 ms 29 088 ms 35 393 ms

Table 6.13: Comparison of Brands et al.’s optimized polynomial argument for different degree D a on
256-bit subgroups modulo a 1 536-bit, a 2 432-bit, and a 3 248-bit prime.

and |q| = 160, 256 and in Table 6.16 we can find the results for a 256-bit subgroup and a 384-bit

subgroup modulo a 3 248-bit prime. We see that increasing the subgroup size by one and a half time, for

example from 160-bit to 256-bit, has a similar increase on the run-time. That means by increasing the

security level by a certain factor we have to expect a similar increase on the run-time.

In conclusion we can say that Brands et al.’s polynomial argument is practical for moderate degrees
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|q| = 160 |p| = 1 248 |p| = 1 536
D Prover Verifier Prover Verifier
10 12 ms 15 ms 16 ms 19 ms

100 38 ms 42 ms 48 ms 56 ms
1 000 130 ms 144 ms 167 ms 88 ms
5 000 294 ms 322 ms 379 ms 424 ms

10 000 421 ms 457 ms 539 ms 600 ms
50 000 967 ms 1 035 ms 1 232 ms 1 360 ms

100 000 1 395 ms 1 476 ms 1 770 ms 1 933 ms
500 000 3 336 ms 3 402 ms 4 172 ms 4 413 ms

1 000 000 4 923 ms 4 951 ms 6 133 ms 6 389 ms

Table 6.14: Comparison of Brands et al.’s optimized polynomial argument for different degree D a on
160-bit subgroups modulo a 1 248-bit, and a 1 526-bit prime.

|p| = 1 536 |q| = 160 |q| = 256
D Prover Verifier Prover Verifier
10 16 ms 19 ms 24 ms 30 ms

100 48 ms 56 ms 75 ms 89 ms
1 000 167 ms 188 ms 257 ms 299 ms
5 000 379 ms 424 ms 582 ms 675 ms

10 000 539 ms 600 ms 826 ms 954 ms
50 000 1 232 ms 1 360 ms 1 882 ms 2 160 ms

100 000 1 770 ms 1 933 ms 2 691 ms 3 072 ms
500 000 4 172 ms 4 413 ms 6 273 ms 6 980 ms

1 000 000 6 133 ms 6 389 ms 9 153 ms 10 018 ms

Table 6.15: Comparison of Brands et al.’s optimized polynomial argument for different degree D a on
160-bit and a 256-bit subgroup modulo a 1 526-bit prime.

|p| = 3 248 |q| = 256 |q| = 384
D Prover Verifier Prover Verifier
10 81 ms 110 ms 118 ms 158 ms

100 254 ms 323 ms 370 ms 464 ms
1 000 875 ms 1 091 ms 1 272 ms 1 568 ms
5 000 1 978 ms 2 455 ms 2 887 ms 3 532 ms

10 000 2 800 ms 3 470 ms 4 087 ms 4 991 ms
50 000 6 329 ms 7 816 ms 9 240 ms 11 241 ms

100 000 8 995 ms 11 090 ms 13 132 ms 15 941 ms
500 000 20 375 ms 24 909 ms 29 756 ms 35 795 ms

1 000 000 29 088 ms 34 393 ms 42 486 ms 50 818 ms

Table 6.16: Comparison of Brands et al.’s optimized polynomial argument for different degree D a on a
256-bit and a 384 subgroups modulo a 3,248-bit prime.

D. But since the square root complexity influences the run-time for big D heavily, the argument is only

feasible for big degree D’s if the security parameter is small. For long time security the impact is to big

even taking in account that for better machines the values speed up and more sophisticated programming

techniques can also speed up the program further.

Lastly, we have to analyze the data size, Table 6.17 states the data size for each round for a 256-bit

subgroup and a 1 536-bit prime p. Round 2 consists only of 1 field element and can be neglected. We
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expect a group element from G to be 6 times bigger that a field element and 8d elements are sent in

round 1, versus 5d field element in round 5 and we expect the argument size of round 1 to be around 9.5

times bigger than round 3. The date supports this assumption.

D Round 1 Round 2 Round 3 Statement
10 12 KB 0.08 KB 2 KB 1 KB

100 37 KB 0.08 KB 5 KB 8 KB
1 000 126 KB 0.08 KB 17 KB 77 KB
5 000 285 KB 0.08 KB 38 KB 381 KB

10 000 403 KB 0.08 KB 53 KB 761 KB
50 000 908 KB 0.08 KB 18 KB 3.9 MB

100 000 1 318 KB 0.08 KB 168 KB 7.8 MB
500 000 2 948 KB 0.08 KB 376 KB 38.9 MB

1 000 000 4 167 KB 0.08 KB 545 KB 77.8 MB

Table 6.17: Size of each round and of the statement for different degreeD for a 256-bit subgroup modulo
a 1 526-bit prime.

|q| 160 160 160 256 256 256 384 384
|p| 1 248 1 536 3 248 1 536 2 432 3 248 3 248 7 984

10 11 KB 13 KB 26 KB 14 KB 20 KB 27 KB 28 KB 63 KB
100 33 KB 40 KB 81 KB 42 KB 63 KB 82 KB 85 KB 196 KB

1 000 113 KB 136 KB 277 KB 142 KB 216 KB 283 KB 291 KB 676 KB
5 000 255 KB 136 KB 625 KB 322 KB 488 KB 639 KB 658 KB 1.5 MB

10 000 360 KB 436 KB 884 KB 456 KB 690 KB 904 KB 931 KB 2.1 MB
50 000 812 KB 982 KB 1.9 MB 1.0 MB 1.5 MB 2.0 MB 2.0 MB 4.7 MB

100 000 1.1 MB 1.4 MB 2.8 MB 1.4 MB 2.2 MB 2.8 MB 2.9 MB 6.7 MB
500 000 2.5 MB 3.0 MB 6.2 MB 3.2 MB 4.8 MB 6.3 MB 6.5 MB 15.0 MB

1 000 000 3.6 MB 4.3 MB 8.7 MB 4.5 MB 6.9 MB 8.9 MB 9.2 MB 21.2 MB

Table 6.18: Size whole argument for different degree D for all choices of groups G.

In general, if a group element is n times bigger than a field element we expect round 1 to be
9
7n ≈ 1.3n times bigger than round 3. Thus, for normal choices of q and p the size of round 3 has more

or less no influence on the complete argument size. We also see that in the argument size for D ≥ 5000

is smaller than the statement, see Table 6.17. The communication between prover and verifier consists of

group and filed elements, whereas the statement consists only of field elements; hence, it takes a while

for the square root complexity to kick in, i.e. that the argument size becomes smaller than the statement.

In Table 6.18 we can find the results of the argument size for different degrees D and group param-

eters. We see that only for small D the argument size consists of a few kilo bytes, whereas for medium

and big degree D the size grows quickly to a few megabytes. In most settings transferring data of a few

megabytes quickly is not a problem; however, there might be applications which only have slow speed

connection and in this setting Brands et al.’s polynomial evaluation argument is not feasible.



126 Chapter 6. Zero-Knowledge Polynomial Arguments

6.6 Comparison

6.6.1 Polynomial Evaluation Argument

Theoretical: The first approaches [CS97, Bra97] to prove for committed u, v ∈ Zq that p(u) = v for

a given polynomial p(X) with order D split in two parts: first they construct commitments c1, . . . , cD

to values u, u2, u3, . . . , uD and then they use the homomorphic property of the commitment scheme to

get p(u) as a linear combination of u, u2, . . . , uD. This approach requires sending D commitments and

the use of D multiplication arguments to show that the commitments c1, . . . , cD have been correctly

constructed and indeed contain the correct powers of u. The cost can be reduced toO(
√
D) as suggested

in Brands et al. [BDD07] by splitting the polynomial in
√
D polynomials of degree

√
D each.

Another approach is to arrange the polynomials in an arithmetic circuit. Cramer and

Damgård [CD98] arithmetic circuit technique leads to linear cost, as they prove each gate separately.

More sophisticated commitment scheme, as the general Pedersen commitment, allowed Groth [Gro09]

to prove correctness of many gates at the same time and therefore to prove the correctness of the circuit

with O(
√
D) communication cost.

Our protocol also has a two part structure, but we only need logD commitments c2, c4, c8, c16, . . . , cD

and logD multiplication arguments to prove they have been correctly formed and contain

u, u2, u4, u8, u16, . . . , uD. By using a more sophisticated combination of these values in combina-

tion with the homomorphic properties of the commitment scheme, we then get the desired argument

for v = P (u). This reduces our communication to only O(logD) group elements, which is a huge

improvement over the former work.

SHVZK Rounds Time P Time V Size
argument Expos Expos Elements
[Bra97, CS97] 3 O(D) O(D) O(D) G +O(D) Zq
[BDD07] 3 O(

√
D) O(

√
D) O(

√
D) G +O(

√
D) Zq

[Gro09] 7 O(D) O(
√
D)

√
D G +

√
D Zq

This work 3 O(logD) O(logD) O(logD) G +O(logD) Zq

Table 6.19: Comparison of our polynomial argument with former work

Table 6.19 states the asymptotic communication cost and computation cost of the polynomial argu-

ments based on the discrete logarithm assumption. The polynomial evaluation argument from Brands et

al. [BDD07] achieves the best complexity, so we will in the following paragraphs give a more detailed

theoretical and practical comparison. In Table 6.20 we give a more detailed theoretical analysis that also

counts the number of multiplications.

SHVZK Rounds Time P Time P Time V Time V Size
argument Expos Multip. Expos Multip. Elements

[BDD07] 3 16
√
D 18

√
D D + 16

√
D D + 10

√
D 8

√
D G + 5

√
D Zq

This work 3 8 logD 2D logD 7 logD 2D 4 logD G + 3 logDZq

Table 6.20: Detailed comparison of our polynomial argument with Brands et al. [BDD07] argument
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Brands et al.’s argument has square root communication complexity, but has to send

8
√
D G + 5

√
D Zq elements in total. This yields a much bigger argument size than the 4 logD G +

3 logDZq elements which are sent by our protocol. So, we expect our argument to be smaller for small

degree D and also expect that the increase of the size of the parameters enforces this effect.

Based on this table we would expect our verifier to run faster than Brands et al.’s as our asymptotic

computation cost is much smaller, both verifiers have the same asymptotic number of multiplications but

the number of exponentiations is much smaller for our verifier.

Just looking at the numbers of exponentiations needed by the prover can be a little deceptive though

since in our polynomial evaluation argument we need O(D logD) multiplications in Zq to compute the

δj’s and for large D this cost becomes prohibitive. Our performance gain for the prover is therefore

largest in the range where D is large enough for logD to be significantly smaller than
√
D yet not so

large that the cost of D logD multiplications in Zq becomes dominant.

For the run-time of the whole protocol however we expect that our argument performs faster in most

cases, since the total asymptotic cost is smaller than Brands et el.’s computation cost. In the case where

D is very big and the group size are small we assume that the influence of the 2D logD multiplications

is so big that our argument runs slower.

Practical: For the comparison for our polynomial evaluation argument we have used a 256-bit subgroup

modulo a 1 536-bits p, and a 256-bit subgroup modulo a 3 248-bit prime, and a 384-bit subgroup modulo

a 7 984-bit prime. This gives us enough data to compare the protocols for different levels of security.

We assume that the polynomial P (X) is pre-computed and measured the run-time for polynomials

with the various degrees D between 10 and 1 000 000. The result of our experiment can be found in

Table 6.21, 6.22, and 6.23.

Elements Prover Verifier Communication Communication
in list D Brands et al. This work Brands et al. This work Brands et al. This work

10 24 ms 13 ms 30 ms 17 ms 14 KB 8 KB
100 75 ms 24 ms 89 ms 30 ms 42 KB 15 KB

1 000 275 ms 41 ms 299 ms 45 ms 142 KB 21 KB
5 000 582 ms 106 ms 675 ms 67 ms 322 KB 27 KB

10 000 826 ms 182 ms 954 ms 81 ms 456 KB 29 KB
50 000 1 882 ms 714 ms 2 160 ms 143 ms 1.0 MB 33 KB

100 000 2 691 ms 1 420 ms 3 072 ms 217 ms 1.4 MB 35 KB
500 000 6 273 ms 7 393 ms 6 980 ms 689 ms 3.2 MB 40 KB

1 000 000 9 153 ms 15 573 ms 10 018 ms 1 313 ms 4.5 MB 42 KB

Table 6.21: Comparison of our polynomial argument with Brands et al. [BDD07]. All experiments used
a 256-bit subgroup modulo a 1 536-bit prime.

As expected our communication cost compares very favorably against Brands et al.’s cost. For

small q, p and small degree D our argument is only slightly smaller than Brands et al.’s argument. But

this advantage grows for medium degree D and for big degrees D our communication is significantly

smaller. For bigger q, p we have a much smaller communication cost for small degree D and increasing

the size of the parameters enforce this effect.
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As foreseen our verifier runs much faster than Brands et al.’s verifier for all combinations of degree

sizes D and group parameters. For moderate size D it is also the case that our prover is more efficient.

However, for |q| = 256, |p| = 1 536 and for very largeD the cost to calculate the δi’s becomes dominant

for our prover and here Brands et al.’s prover is faster. The experiments conducted for large security

Elements Prover Verifier Communication Communication
in list D Brands et al. This work Brands et al. This work Brands et al. This work

10 81 ms 45 ms 110 ms 61 ms 27 KB 16 KB
100 254 ms 82 ms 323 ms 111 ms 82 KB 29 KB

1 000 875 ms 128 ms 1 091 ms 161 ms 283 KB 42 KB
5 000 1 978 ms 234 ms 2 455 ms 219 ms 693 KB 55 KB

10 000 2 800 ms 340 ms 3 470 ms 246 ms 904 KB 59 KB
50 000 6 329 ms 1 072 ms 7 816 ms 340 ms 2.0 MB 67 KB

100 000 8 995 ms 2 112 ms 11 090 ms 439 ms 2.8 MB 71 KB
500 000 20 375 ms 7 745 ms 24 909 ms 935 ms 6.3 MB 80 KB

1 000 000 29 088 ms 16 149 ms 35 393 ms 1 585 ms 8.9 KB 82 KB

Table 6.22: Comparison of our polynomial argument with Brands et al. [BDD07]. All experiments used
a 256-bit subgroup modulo a 3 248-bit prime.

Elements Prover Verifier Communication Communication
in list D Brands et al. This work Brands et al. This work Brands et al. This work

10 508 ms 289 ms 664 ms 401 ms 63 KB 37 KB
100 1 591 ms 506 ms 1 938 ms 702 ms 196 KB 65 KB

1 000 5 483 ms 734 ms 6 563 ms 1 012 ms 676 KB 87 KB
5 000 12 373 ms 1 021 ms 14 779 ms 1 336 ms 1.5 MB 127 KB

10 000 17 537 ms 1 181 ms 120 864 ms 1 451 ms 2.1 MB 137 KB
50 000 39 814 ms 1 976 ms 47 054 ms 1 736 ms 4.7 MB 156 KB

100 000 56 010 ms 2 978 ms 66 580 ms 1 936 ms 6.7 MB 166 KB
500 000 125 775 ms 10 644 ms 149 159 ms 2 757 ms 15.0 MB 186 KB

1 000 000 177 855 ms 20 829 ms 210 890 ms 3 689 ms 21.1 MB 196 KB

Table 6.23: Comparison of our polynomial argument with Brands et al. [BDD07]. All experiments used
a 384-bit subgroup modulo a 7 984-bit prime.

parameters show that this effect occurs as well in these cases but for even bigger D. Thus, our argument

is faster for all reasonable degree sizes.

Our experiments also show that the total run-time for our protocol is faster than the combined one

for Brands et al.’s prover and verifier. The only exception for this could be a combination of small q, p

and very large D.

In conclusion we can say that our argument has a clear performance advantage over Brands et

al.’s protocol and as a result an even bigger advantage over all former arguments which have linear

complexity.

6.6.2 Multivariate Polynomial Argument

To prove for secret u1, u2, . . . , uN , v that

P (u1, . . . , uN ) = v
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for polynomial P (X1, . . . , XN ) ∈ Zq[X1, . . . , XN ] [Bra97, CS97] committed first to all possible val-

ues ui11 . . . uiNN , i1, . . . iN = 1, . . . , D. Next, they used the homomorphic property of the commitment

scheme to show that the correct linear combination of these values is equal to the commitment of v. This

approach is very expensive as the prover has to commit themselves to O(DN ) values. Applying general

circuit techniques [CD98, Gro09] in the discrete logarithmic setting suffer of the same bottleneck, the

prover has to commit themselves to all the coefficients.

In Table 6.24 we compare the communication cost and computation cost of these former approaches

and our solution from Section 6.3. Based on the table and the practical results for N = 1 we expect our

communication cost to be much smaller than the communication cost of the former work. This advantage

should get bigger the bigger N and D gets.

All former protocols have a computation cost of O(DN ) for both parties, whereas our prover and

verifier have only to calculate O((logD)N ) exponentiations. We expect therefore our protocol to be

much lighter and faster than the former one. However, our prover has to calculate a huge number of

multiplications on top of the exponentiations and the same is true for our verifier. These multiplications

become dominant for big D and slow our protocol down.

The data of the single variate argument indicates that for big group parameters, the cost of O(
√
D)

exponentiations is still higher than the cost of the dominant multiplication. In this case we compare

our parties against parties with linear computation cost; thus, we expect our parties still to be faster and

lighter than the former one.

SHVZK Rounds Time P Time V Size
argument Expos Expos Elements
[Bra97, CS97] 3 O(DN ) O(DN ) O(DN ) G +O(DN ) Zq
[CD98] 3 O(DN ) O(DN ) O(DN ) G +O(DN ) Zq
[Gro09] 7 O(DN ) O(DN/2) O(DN/2) G +O(DN/2) Zq
This work 3 O((logD)N ) O((logD)N ) O((logD)N ) G +O((logD)N ) Zq

Table 6.24: Comparison of our multivariate polynomial argument with former work

6.6.3 Batch Polynomial Argument

To prove evaluation of L polynomials at the same time requires for all former techniques [Bra97, CS97,

BDD07, CD98, Gro09] to repeat a single argument L times. This requires L times the original cost.

Our Batch polynomial argument from Section 6.4 can do better, a detailed comparison can be found in

Table 6.25.

SHVZK Rounds Time P Time V Size
argument Expos Expos Elements
[Bra97, CS97, CD98] 3 O(LD) O(LD) O(LD) G +O(LD) Zq
[Gro09] 7 O(LD) O(LD) O(L

√
D) G +O(L

√
D) Zq

[BDD07] 3 O(L
√
D) O(L

√
D) O(L

√
D) G +O(L

√
D) Zq

This work 3 O(L logD) O(
√
L logD)) O(

√
L logD) G +O(

√
L logD) Zq

Table 6.25: Comparison of our batch polynomial argument with former work
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Brands et al.’s [BDD07] argument has for L = 1 the smallest communication cost so far, the data

in Section 6.6.1 shows that our communication cost in this case is much lighter. For L > 1 this cost

grows linear in Brands et al.’s case whereas our cost grows only logarithmic in L. For this reason we

expect that the communication cost of our batch polynomial is much smaller than the cost of all former

protocols.

A similar argument holds for the verifier. In the case L = 1 our verifier is much faster than Brands

et al.’s verifier and again our cost grows less for L > 1 than Brands et al.’s cost. Thus, our verifier seems

to be faster than all former ones.

The cost of our prover grows linearly in L, similar to all other protocols. However, in the case

L = 1 our prover runs faster than Brands et al.’s prover for nearly all cases and therefore we expect the

same for the cases L > 1.

In general we can say that our new batch polynomial argument leads to a much lighter and faster

arguments compared to all former work.



Chapter 7

Zero-Knowledge Non-Membership And

Membership Arguments

The theoretical part of Section 7.2 and some of the practical result from the same section, most parts

of Section 7.4 and 7.6 are published at Eurocrypt 2013[BG13] together with Jens Groth. Section 7.5

summarize Brands et al.’s [BDD07] blacklist argument, and also gives a discussion on practical results

based on our implementation.

7.1 Introduction
Given a public list L = {λ1, . . . , λD} and a committed u, we want to prove that u is not contained

in L such non-membership proofs have many useful applications. As a concrete application of our

polynomial evaluation argument we will look at blacklisting anonymous users, which is a notoriously

difficult cryptographic problem. Anonymising networks such as Tor [Tor13] allow a user to hide their

IP address and are used by a number of groups including undercover police agents, abuse victims and

citizens living under dictatorships. During the Arab Spring, for instance, the Tor network experienced a

spike in users from Libya and Egypt [Din11]. However, anonymous access to services can also lead to

abuse. Wikipedia, for instance, allows anonymous postings, but blocks the IP address of misbehaving

users. This crude solution means that if one user of Tor abuses Wikipedia, all users whose traffic comes

out of the same Tor relay with this IP-address are blocked. So one misbehaving user causes many

innocent users to be punished. Johnson et al. [JKTS07] suggested the Nymble system to deal with this

problem. In this alternative solution IP-addresses are not blocked but instead each user anonymously

proves that they has not been blacklisted. Using the polynomial evaluation argument we construct a

non-membership proof, which enables a user to efficiently prove that they have not been blacklisted.

One downside of Nymble-like systems is, that a user has to obtain a personal token. Depending on

the construction the user has to remember the token and log in every time, or the token is only valid with

one copy of a browser. Both possibilities discourage people from using Nymble-like systems, as they

want to have everything as easy as possible. Unfortunately, using our non-membership proof in real life

would result in similar problems, a user still needs a personal token.

Another application of non-membership proofs is to show that a member of a group signature
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scheme is not revoked. Depending on the setup of the group signature scheme a user could also show

that they has the right to sign using a membership proof.

We can use our polynomial evaluation argument to construct efficient membership proofs. Mem-

bership proofs are useful when operating a whitelist access control system, or in applications such as

e-voting or e-auctions where users want to prove that their votes are valid or their bids belong to a set of

approved values.

We construct zero-knowledge arguments for membership and non-membership with logarithmic

communication complexity, which are based on our polynomial evaluation argument, section 6.2. We

have strived to keep the arguments as simple as possible: they are a 3-move public coin arguments, the

setup consists of just a few group elements in a prime-order group, and security relies on the discrete

logarithm assumption.

7.1.1 Techniques

Given a Pedersen commitment cu and a public list of values L = {λ1, . . . , λD} we give a zero-

knowledge argument of knowledge that cu is a commitment to u ∈ L or u /∈ L. Following Brands

et al.’s [BDD07] approach we compute the polynomial

P (X) =

D∏
i=1

(X − λi)

and commit to P (u) = v. In the case of non-membership u /∈ L and P (u) 6= 0; thus, we will show that

the commitment to v does not contain 0. In the reversed case u ∈ L we know P (u) = 0 and we will

show that the commitment of v does contain v = 0.

The communication complexity of our basic non-membership proof is O(logD) group elements.

This is a significant reduction compared to previous schemes with complexity O(D) or O(
√
D). The

prover’s computation is a logarithmic number of exponentiations and a quasi-linear number of multipli-

cations in Zq . The verifier’s computation is a logarithmic number of exponentiations and a linear number

of multiplications in Zq .

The asymptotic complexity of our membership argument is the same as for the non-membership

protocol. Thus, the argument consists of O(logD) group elements, and both verifier and prover have to

compute O(logD) exponentiations.

We also consider the case from the single sign-on system of Brands et al. [BDD07] where we have

commitments to L values and have L sets for which we want to prove non-membership. Their solution

had a communication cost of O(L
√
D), which we are able to reduce to O(

√
L logD).

We have implemented the zero-knowledge argument for non-membership to demonstrate the prac-

ticality of our protocol, we also coded Brand et al.’s blacklist argument. Performance results indicate that

our argument size is much smaller than previous arguments. Furthermore, our verifier’s computation is

considerably faster. Our prover is faster for small to big blacklists, but for very big blacklists the prover

by Brands et al. is faster.
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7.1.2 Former Work

Proofs for set membership and non-membership for a committed u ∈ L or u /∈ L where

L = {λ1, . . . , λD} have been studied before. The most straightforward approach is to prove in a

single case by single case manner the conjunction λ1 6= u∧ . . .∧λD 6= u in the case of non-membership

or the disjunction λ1 = u∨ . . .∨λD = u in the case of membership. In the context of revoking members

of group signature schemes Bresson and Stern [BS01] proposed such a solution based on the strong RSA

assumption. Peng and Bao [PB10] gave a general discrete logarithm based zero-knowledge arguments

of non-membership with linear complexity. Brands et al. [BDD07] improved the communication com-

plexity to O(
√
D) group elements and later Peng [Pen11] gave a solution for a non-membership proof

with the same complexity using techniques similar to Brands et al. [BDD07].

Accumulators [BdM93, BP97, CL02, Ngu05, CKS09, TX03, WWP07] provide another mecha-

nism for giving membership proofs. An accumulator is a succinct aggregate of a set of values where

it is possible to issue membership proofs for each accumulated value. A party in possession of such a

membership proof, typically a few group elements, can then demonstrate that the value is included in

the set. Non-membership accumulators have been proposed as well [LLX07, YYC+12]. Accumulators,

however, rely on a trusted party to maintain the accumulator and if corrupt this trusted party can issue

arbitrary membership proofs. Furthermore, accumulators rely on cryptographic assumptions that have

been studied less than the discrete logarithm problem, for instance the strong RSA assumption or the

q-SDH assumption in a pairing-based setting. These assumptions also mean that group elements have to

be large and once this has been factored in the accumulator-based solutions end up having larger commu-

nication cost than our membership and non-membership proofs for groups over elliptic or hyper-elliptic

curves. The construction of Camacho et al. [CHKO12] does not rely on a trusted party and only assumes

the existence of hash functions; however, witnesses in their setting depend logarithmically on the number

of accumulated elements.

In Song’s non-membership proof [Son01] the prover publishes a constant number of elements and

the verifier checks these elements against a blacklist by carrying out a few operations for each blacklist

element, several systems along these lines have been proposed [AST02, BS04, NF05, NF06, ZL06]. The

operations consist either of exponentiations or pairings, so this scheme places a heavy computational

burden on the verifier.

Camenisch et al. [CCS08] gave a membership proof where the set elements are signed by a trusted

third party. Now membership can be proven with a constant number of group elements by demonstrat-

ing that the value has been signed. Related ideas have recently been used by Libert et al. [LPY12] in

the context of revoking group signatures, where a trusted third party signs representatives of sets that

cover the whitelist of non-revoked users and the user gives a zero-knowledge proof of belonging to this

set [NNL01].

All these solutions suffer from similar drawbacks that accumulator-based solutions have though.

They require trust in a third party to be honest when blacklisting members or signing messages, and to

get efficient proofs the signatures are built from strong assumptions such as the strong RSA assumption
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or pairing-based assumptions.

A different approach is taken by Nymble-like systems [JKTS07, TKCS11, HHG10, HG11, LH11],

which also rely on a trusted third party. The user obtains a pseudonym, a “nymble”, from the trusted

third party which is only valid for a certain time frame with one server. The blacklist consists of nymbles

by misbehaving users and in [JKTS07, TKCS11, HHG10] the server simply checks if the nymble of a

connecting user is contained in the blacklist. To weaken the trust in the trusted third party Lofgren and

Hopper [LH11] use accumulators together with the Nymble setup, while Henry and Goldberg [HG11]

rely on the techniques of Brands et al. [BDD07] for the user to give a zero-knowledge argument for the

non-membership of the blacklist.

7.2 Non-Membership Argument Based on our Polynomial Evalua-

tion Argument
We will now describe a non-membership argument with logarithmic communication complexity for a

committed value not belonging to a set L = {λ1, . . . , λD}.

Similar to Brands et al.’s approach we define a polynomial P (X) =
∏D
i=1(X − λi) with the

elements in the set as roots. With this choice of polynomial we have u ∈ L if and only if P (u) = 0. The

prover has a commitment cu and will demonstrate that the committed value u does not belong to L by

showing P (u) 6= 0.

The prover computes v = P (u), makes a commitment to v and can now give a SHVZK argument

for v = P (u) using the techniques from Section 6.2. To prove non-membership they just needs to

prove v 6= 0. To do this the prover commits to w = v−1 and uses an inverse argument as described in

Section 5.1 to show vw = 1, which will convince the verifier that v 6= 0. The main cost in this argument

is the polynomial evaluation argument, the inverse argument only costs a couple of group elements.

Statement: {G, p, q}, ck, L = {λ1, . . . , λD} ⊂ Zq , P (X) =
∏D
i=1(X − λi), and cu ∈ G

Prover’s witness: u, r ∈ Zq such that cu = comck(u; r) and u /∈ L

Argument: Compute

1. v = P (u)

2. cv = comck(v; s) where s← Zq

3. Engage in parallel in a SHVZK inverse argument described in Section 5.2 to show v 6= 0

4. In parallel engage in the SHVZK polynomial evaluation argument from Section 6.2 to show

v = P (u).

Send cv

Verification: The verifier accepts u 6∈ L if and only if

1. cv,∈ G
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2. The two SHVZK arguments are valid.

Theorem 29. The protocol above is a public coin perfect generalized Σ−protocol of u ∈ Zq such that

u 6∈ L.

Proof. Perfect completeness follows from the perfect completeness of the two SHVZK arguments.

The SHVZK simulator picks cv ← G at random and runs the SHVZK simulators for the two

underlying SHVZK arguments. Since the commitment scheme is perfectly hiding and the underlying

SHVZK arguments are perfect SHVZK this gives us perfect SHVZK.

The protocol has perfect generalized special soundness. The extractor E runs the extractors for the

two underlying SHVZK arguments to get openings u, v satisfying v 6= 0 and P (u) = v. The second

condition tells us P (u) 6= 0, so u is a not a root of the polynomial and therefore not in the list.

Example: Let be G = 〈G〉 = 〈172〉 ⊂ Z∗179, which has prime order q = 89. The statement consists of a

blacklist L = {9, 26, 49, 48}, the corresponding polynomial

P (X) = X4 + 46X3 + 18X2 + 2X + 81,

cu0 = 142 and {G, p, q} = {〈172〉, 179, 89}, ck = {74, 172}.

The prover knows witnesses u = 84, r0 = 15, such that cu0
= comck(u; r0) and u 6∈ L and wants

to convince the verifier that u is not included in the blacklist. The prover first calculates v = P (u) =

24 ∈ Z89, picks random s = 34, and calculate the commitment to v as

cv = comck(v; s) = 85.

The prover then engages in a integer inverse argument to show v 6= 0 and picking si = 88, ti = 26

they compute

cb = 83.

Both parties also engage in a polynomial argument. For this argument the prover commits them-

selves to u2, u4 in

cu2
= comck(u2; r1) = 17 cu2

= comck(u4; r2) = 46

where r1 = 80, r2 = 1. Next, the prover picks f0 = 43, f1 = 25, f2 = 44, s0 = 16, s1 = 52, s2 = 47

and calculates

cf0 = 139 cf1 = 142 cf2 = 82.

Then, the prover calculates the δi’s for i = 0, 1, 2 as described in Section 6.2, which gives

δ0 = 0, δ1 = 55, δ2 = 47.
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The prover picks t0 = 57, t1 = 77, t2 = 26 and compute the commitment to the δi’s:

cδ0 = 64 cδ1 = 36 cδ2 = 100.

Finally the prover picks ξ0 = 26, ξ1 = 64 and calculates fu0 = 52, fu1 = 2, and

cfu0
= 110 cfu1

= 117,

and sends all the commitments

cv = comck(v; s) = 85 cd = 83 ce = 36 cf = 29

cδ0 = 64 cδ1 = 36 cδ2 = 100

cf0 = 139 cf1 = 142 cf2 = 82 cfu0
= 110 cfu1

= 117

to the verifier.

The verifier challenges the prover with x = 81; so the prover calculates the answers,

a = 46 r = 30

f0 = 83 f1 = 3 f2 = 28 r0 = 74 r1 = 35 r2 = 39

t = 73 ξ0 = 10 ξ1 = 83

and sends them back.

The verifier checks now if the commitments are in G and therefore valid, and also if the answers

are all in Zq . Then the verifier checks if the inverse argument is valid, that means

cb = 83 = caacomck(x; r) (X)

To check the underlying polynomial argument, the verifier first calculates δ = 70 using a binary

tree and tests

cxu0
cf0 = 135 = comck(f0; r0) (X) cxu1

cf1 = 82 = comck(f1; r1) (X)

cxu2
cf2 = 46 = comck(f2; r2) (X)

cxu1
c
−f0
0 cfu0 = 81 = comck(0; ξ0) (X) cxu2

c
−f1
1 cfu1 = 86 = comck(0; ξ1) (X)

cx
3

v c
x2

δ2 c
x
δ1cδ0 = 46 = comck(δ; t) (X).
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7.2.1 Implementation and Practical Results

We implemented the protocol to test the real life performance and to obtain some experimental results.

We chose the same groups as in the case of out polynomial argument, that means a 160-bit subgroup

modulo a 1 248-bit, a 1 536-bit, and a 3 248-bit prime, and subgroups with order |p| = 256 modulo a

1 536-bit prime, a 2 432-bit prime, and a 3 248-bit prime. The groups have different levels of security,

the exact values can be found in Section 4.1.1, and help to analyze the influence of different parameters,

for example group size.

The non-membership proof is a direct application of our polynomial argument with the same asymp-

totic cost and we expect a similar running time for this reason. To validate this assumption, we imple-

mented two different versions. The first one is a conservative un-optimized version and the second one

is optimized using the sliding window algorithm.

Table 7.1 states the run-time of the un-optimized version and the optimized version for a 256-bit

prime modulo a 1 536-bit prime. We see that the influence of the optimization for the verifier is very

small. The reason for this is that the cost of the multiplication is dominant over the very small number

of exponentiations. For the prover the influence of the optimization is bigger for small D but this effect

is canceled out for bigger D, as the cost of the multiplications becomes dominant.

Next, we have to analyze what happens if the order stays fixed and the moduli value increase.

Table 7.2 and 7.3 give the results for the optimized version for fixed order with 160-bit and 256-bit.

We see that the run-time increases slightly for bigger moduli values, but this is negligible compared to

the increase of the moduli. The reason for this is that the run-time is dominated by the multiplications

and this cost only depends on the subgroup size. This result means that we can increase the security

of our protocol slightly by increasing the modulus value of the underlying group without compromising

performance.

Table 7.4 and 7.5 state the result of the reverse case of fixed group size of 1 536-bit and 3 248-bit.

Again the run-time of the protocol gets higher for bigger subgroup size, but this increase is very small,

for bigger D the ratio between the different results is around one. Taking also into account that for small

D the run-time is only a few milliseconds independent of the group size, we can increase the subgroup

Prover Verifier
D Conservative Optimized Ratio Conservative Optimized Ratio
10 29 ms 18 ms 0.62 24 ms 20 ms 0.85

100 46 ms 29 ms 0.63 39 ms 34 ms 0.86
1 000 70 ms 47 ms 0.68 56 ms 49 ms 0 .88
5 000 140 ms 109 ms 0 .78 77 ms 68 ms 0 .89

10 000 220 ms 189 ms 0 .86 90 ms 83 ms 0 .92
50 000 776 ms 754 ms 0 .97 152 ms 148 ms 0 .97

100 000 1 538 ms 1 495 ms 0 .97 228 ms 216 ms 0 .95
500 000 7 396 ms 7 369 ms 1.00 702 ms 693 ms 0 .99

1 000 000 20 423 ms 15 384 ms 1.00 1 469 ms 1 310 ms 0 .99

Table 7.1: Run-time in ms of the blacklist argument on a group G with 256-bit order modulo a 1 536-bit
prime for degree D between 10 and 1 000 000 for the conservative and the optimized version and the
ratio between the two versions.
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|q| = 160 |p| = 1 248 |p| = 1 536
D Prover Verifier Prover Verifier
10 9 ms 10 ms 12 ms 13 ms

100 15 ms 16 ms 9 ms 22 ms
1 000 26 ms 23 ms 31 ms 31 ms
5 000 80 ms 35 ms 91 ms 47 ms

10 000 150 ms 44 ms 159 ms 56 ms
50 000 670 ms 97 ms 678 ms 109 ms

100 000 1 382 ms 160 ms 1 391 ms 174 ms
500 000 6 776 ms 562 ms 6 900 ms 581 ms

1 000 000 14 370 ms 1 095 ms 14 321 ms 1 180 ms

Table 7.2: Comparison of the blacklist argument for different degreeD for optimized version on different
groups with fixed subgroup size of 160-bit.

|q| = 256 |p| = 1 536 |p| = 2 432 |p| = 3 248
Prover Verifier Prover Verifier Prover Verifier

10 18 ms 20 ms 39 ms 48 ms 63 ms 76 ms
100 29 ms 34 ms 62 ms 79 ms 99 ms 125 ms

1 000 47 ms 49 ms 91 ms 113 ms 144 ms 176 ms
5 000 109 ms 68 ms 164 ms 161 ms 253 ms 235 ms

10 000 189 ms 83 ms 240 ms 194 ms 361 ms 261 ms
50 000 754 ms 148 ms 773 ms 411 ms 1 114 ms 358 ms

100 000 1 495 ms 216 ms 1 500 ms 689 ms 2 130 ms 455 ms
500 000 7 369 ms 693 ms 7 445 ms 893 ms 7 827 ms 1 019 ms

1 000 000 15 384 ms 1 310 ms 15 524 ms 1 404 ms 16 137 ms 1 572 ms

Table 7.3: Comparison of the blacklist argument for different degreeD for optimized version on different
groups with fixed subgroup size of 256-bit.

|p| = 1 536 |q| = 160 |q| = 256
D Prover Verifier Prover Verifier
10 12 ms 13 ms 18 ms 20 ms

100 19 ms 22 ms 29 ms 34 ms
1 000 31 ms 31 ms 47 ms 49 ms
5 000 91 ms 47 ms 109 ms 68 ms

10 000 159 ms 56 ms 189 ms 83 ms
50 000 678 ms 109 ms 754 ms 148 ms

100 000 1 391 ms 174 ms 1 495 ms 216 ms
500 000 6 900 ms 581 ms 7 369 ms 693 ms

1 000 000 14 321 ms 1 180 ms 15 384 ms 1 310 ms

Table 7.4: Comparison of the blacklist argument for different degreeD for optimized version on different
subgroups with moduli of 1 536-bit.

size and therefore the security level without compromising the performance.

All these results confirm our assumption that the protocol behaves like the polynomial evaluation

argument, section 6.2, and we can therefore say that this argument is practical for all levels of security

beside the case that D gets very big.

Table 7.6 gives the size of the complete argument for different groups G and different blacklist

sizes D. We see that in all cases the argument size consists only of a few kilobytes, independent of the
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|p| = 3 248 |q| = 160 |q| = 256 |q| = 384
D Prover Verifier Prover Verifier Prover Verifier
10 41 ms 48 ms 63 ms 76 ms 92 ms 111 ms

100 63 ms 79 ms 99 ms 125 ms 148 ms 187 ms
1 000 94 ms 114 ms 144 ms 176 ms 222 ms 276 ms
5 000 169 ms 153 ms 253 ms 235 ms 344 ms 367 ms

10 000 246 ms 171 ms 361 ms 261 ms 447 ms 394 ms
50 000 776 ms 238 ms 1 114 ms 358 ms 1 186 ms 521 ms

100 000 1 495 ms 305 ms 2 130 ms 455 ms 2 144 ms 640 ms
500 000 6 900 ms 736 ms 7 827 ms 1 019 ms 9 845 ms 1 383 ms

1 000 000 14 402 ms 1 268 ms 16 137 ms 1 572 ms 20 257 ms 2 171 ms

Table 7.5: Comparison of the blacklist argument for different degreeD for optimized version on different
subgroups with moduli of 3 248-bit.

|q| 160 160 160 256 256 256 384 384
|p| 1 248 1 536 3 248 1 536 2 432 3 248 3 248 7 984
10 8 KB 10 KB 20 KB 11 KB 16 KB 21 KB 21 KB 50 KB

100 13 KB 16 KB 33 KB 17 KB 25 KB 33 KB 34KB 80 KB
1 000 18 KB 22 KB 45 KB 23 KB 35 KB 46 KB 47 KB 109 KB
5 000 23 KB 29 KB 56 KB 28 KB 44 KB 58KB 60 KB 139 KB

10 000 25 KB 30 KB 59 KB 31 KB 48 KB 61 KB 64 KB 149 KB
50 000 28 KB 34 KB 69 KB 36 KB 54 KB 71KB 73 KB 169 KB

100 000 29 KB 36 KB 73 KB 38 KB 57 KB 75 KB 77 KB 178 KB
500 000 33 KB 40 KB 81 KB 42 KB 63 KB 83 KB 85KB 198 KB

1 000 000 34 KB 41 KB 84 KB 44 KB 65 KB 85 KB 88 KB 302 6KB

Table 7.6: Size of whole blacklist argument for different degree D for all choices of groups G.

group size or blacklist size. This means that our new argument can be used in application with low speed

connection or in settings where many users try at the same time to access a server and the server has to

verify many protocols at the same time, which places a high burden on the system.

7.3 Non-Membership Argument to a Secret List
In this section we will describe how to show that a committed value u does not belong to a committed

set L = {λ1, . . . , λD}.

Similar to the non-membership argument in Section refnmp we define a polynomial

P (X) =

D∏
i=1

(X − λi) =

D∑
i=0

aiX

with all λi ∈ L as roots. With this choice of polynomial we have u ∈ L if and only if P (u) = 0. The

prover has a commitment cu and will demonstrate that the committed value u does not belong to L by

showing P (u) 6= 0.

Since the verifier does not know the list L, he cannot know the polynomial. Therefore, the first step

of the prover is convincing the verifier form the correctness of the polynomial, i.e. that is has the λis

as root.To do that the prover has to commit themselves to the coefficients ai of the polynomial P (X)

and demonstrate that for random challenge x it holds P (x) =
∏D
i=1(λi − x). This can be done using
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a single value product argument, Section 5.3.4. Thus, both parties calculate cbi = cλicomck(−x, 0) for

1 ≤ i ≤ D and cb =
∏D
i=1 c

xi

ai themselves and in the argument to show

D∏
i=1

(λi − x) =

D∑
i=0

aiX.

The prover computes v = P (u), makes a commitment to v and can now give a SHVZK argument

for v = P (u) using the techniques similar to Section 6.2. The only difference is that the verifier cannot

calculate

δ =

1∑
i0,...,id=0

ai0...id

d∏
j=0

f
ij
j x1−ij

themselves, as he do not know the coefficients ai = ai0...id of the polynomial P (X).

More precisely, by padding with zero-coefficients we can without loss of generality assume D =

2d+1 − 1. It is useful to write i in binary, i.e. i = i0 . . . id where ij ∈ {0, 1}. We can then rewrite the

term Xi as

Xi = X
∑d
j=0 ij2

j

=

d∏
j=0

(
X2j

)ij
.

Substituting this in the polynomial we get

P (X) =

D∑
i=0

aiX
i =

1∑
i0,...,id=0

ai0...id

d∏
j=0

(
X2j

)ij
.

The prover will calculate commitments to u2, u4, . . . , u2d and prove that when inserted into the

rewritten polynomial we have
1∑

i0,...,id=0

ai0...id

d∏
j=0

(
u2j
)ij

= v.

Since d = blogDc the prover only makes a logarithmic number of commitments, which will help to

keep the communication cost low. Standard techniques can be used to give arguments of knowledge that

the commitments cu1
, . . . , cud to u21

, . . . , u2d are well-formed and indeed contain the correct powers of

u.

To show the committed powers of u in c0, c1, . . . , cd evaluate to the committed v the prover picks

random values f0, . . . , fd ← Zp and defines a new polynomial

Q(X) =

1∑
i0,...,id=0

ai0...id

d∏
j=0

(Xu2j + fj)
ijX1−ij = Xd+1P (u) +Xdδd + . . .+Xδ1 + δ0.

The idea behind this choice of Q(X) is that for each ij either an Xu2j factor is included or an X factor

is included, hence P (u) is the coefficient of Xd+1. Each fj on the other hand is not multiplied by X

and will therefore only affect the lower degree coefficients δ0, . . . , δd of Q(X).

The prover will now demonstrate that the coefficient ofXd+1 in the secretQ(X) is the same as v in

a way that cancels out the δ0, . . . , δd coefficients. The prover sends the verifier commitments cf0 , . . . , cfd



7.3. Non-Membership Argument to a Secret List 141

to f0, . . . , fd and commitments cδ0 , . . . , cδd to δ0, . . . , δd. Afterwards, the verifier will pick a random

challenge x ← Z∗q . The prover will now open suitable products of the commitments in a way such that

the verifier can check that the committed values u, v satisfy

Q(x) = xd+1v + xdδd + . . .+ δ0.

More precisely, after receiving the challenge x the prover opens each product cxj cfj to fj = xu2j + fj .

Lastly, the prover opens

cx
d+1

v

d∏
j=0

cx
j

δj to cfa ,

to show that P (u) = v. The vector f is definded as

f = (xd+1, f0x
d, f1x

d, . . . ,

d∏
j=1

f j)

with the i-th entry in the vector equals
∏d
j=1 f

ij
j x1−ij for i = i0 . . . id

Note that the verifier can calculate f by themselves and therefore only accepts the opening if

1∑
i0,...,id=0

ai0...id

d∏
j=0

f
ij
j x1−ij = xd+1v + xdδd + . . .+ xδ1 + δ0.

This has negligible probability of being true unless P (u) = v.

Finally, to prove non-membership the prover needs to demonstrate v 6= 0. This is done using a

inverse argument as described in Section 5.2.

Statement: {G, p, q}, ck, cu ∈ G and cλ ∈ GD

Prover’s witness: L = {λ1, . . . , λD} ⊂ Zq s ∈ ZDq such that cλ = comck(L; s), P (X) =∏D
i=1(X − λi) and u, r ∈ Zq such that cu = comck(u; r) and u /∈ L

Initial message: Compute

1. ca = comck(a; τ ) where τ ← ZD+1
q

2. v = P (u)

3. cv = comck(v; s) where s← Zq

4. cu1 = comck(u21

; r1) . . . cud = comck(u2d ; rd) where r1, . . . , rd ← Zq

5. cf0 = comck(f0; s0) . . . cfd = comck(fd; sd) where f0, s0, . . . , fd, sd ← Zq

6. δ0 . . . δd ∈ Zq such that

1∑
i0,...,id=0

ai0...id

d∏
j=0

(Xu2j + fj)
ijX1−ij = Xd+1v +

d∑
j=0

Xjδj

7. cδ0 = comck(δ0; t0), . . . , cδd = comck(δd; td) where t0, . . . , td ← Zq
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8. cfu0
= comck(f0u

20

; ξ0) . . . cfud−1
= comck(fd−1u

2d−1

; ξd−1)

where ξ0, . . . , ξd−1 ← Zq

Send: ca, cv, cu, cf , cδ, cfu

Challenge: x← Z∗q

Answer: Compute

1. f j = xu2j + fj rj = xrj + sj for all j

2. ξj = xrj+1 − f jrj + ξj− for all j

3. t = xd+1s+
∑d
i=0 tix

i −
∑D
i=0 τifi where

fi =

d∏
j=1

f
ij
j x1−ij for i = i0 . . . id.

4. Engage in parallel in a SHVZK inverse argument described in Section 5.2 to show v 6= 0

5. Engage in parallel in a SHVZK single value product argument, Section 5.3.4, to show

D∏
i=1

(λi − x) =

D∑
i=0

aiX
i

Send: f0, r0, . . . , fd, rd, t, ξ0, . . . , ξd−1

Verification: The verifier accepts u 6∈ L if and only if for all j

1. ca ∈ GD, cu, cf , cδ ∈ Gd+1, cfu ∈ Gd, cv ∈ G

2. f0, r0, . . . , fd, rd, t, ξ0, . . . , ξd−1 ∈ Zq

3. cxujcfj = comck(f j ; rj)

4. cxuj+1
c
−fj
uj cfuj = comck(0; ξj)

5. cx
d+1

v

∏d
i=0 c

xi

δi
= cfa comck(0; t) with

fi =

d∏
j=1

f
ij
j x1−ij for i = i0 . . . id.

6. The other two SHVZK arguments are valid.

Theorem 30. The protocol above is a public coin perfect generalized Σ−protocol of commited u ∈ Zq
such that u is not contained in a secrete list L.

Proof. Perfect completeness follows by careful inspection and from the perfect completeness of the two

underlying SHVZK arguments.



7.3. Non-Membership Argument to a Secret List 143

We will now argue that we have perfect SHVZK. Upon being challenged with x ∈ Z∗q the simulator

picks cu1 , . . . , cud , cδ1 , . . . , cδd ← G and f0, r0, . . . , fd, rd, t, ξ0, . . . , ξd−1 ← Zq and sets for all j

cfj = comck(f j ; rj)c
−x
uj cfuj = comck(0; ξj)c

−x
uj+1

c
fj
uj .

It calculates fi =
∏d
j=1 f

ij
j x1−ij for i = i0 . . . id and sets

cδ0 = c−x
d+1

v

d∏
i=0

c−x
i

δi
cfa comck(0; t).

This is a perfect simulation. In a real argument cu1
, . . . , cud , cδ1 , . . . , cδd are uniformly random perfectly

hiding commitments as in the simulation. In a real argument f0, r0, . . . , fd, rd, t, ξ0, . . . , ξd−1 ∈ Zq are

also uniformly random because of the random choice of f0, r0, . . . , fd, rd, t0, ξ0, . . . , ξd−1. Finally,

both in the simulation and in the real argument these choices through the verification equations uniquely

determine the values of cf0 , . . . , cfd , cδ0 and cfu0
, . . . , cfud−1

. This means simulated and real arguments

have identical probability distributions.

The SHVZK simulator picks also cv ← G and ca ← GD at random and runs the SHVZK simulators

for the two underlying SHVZK arguments. Since the commitment scheme is perfectly hiding and the

underlying SHVZK arguments are perfect SHVZK this gives us perfect SHVZK.

Finally, we have to show that we have perfect generalized special soundness. Given d+2 accepting

transcripts with different challenges xi the extractorE runs the extractors for the two underlying SHVZK

arguments to get openings u, v satisfying v 6= 0 and P (u) = v. The extractor E also returns openings

a0, . . . , aD, λ1, . . . , λD satisfying P (X) =
∏D
i=1(X − λi) =

∑D
i=0 aiX by the binding property of the

commitment scheme.

Lastly, the extractor E can extract witnesses ui, fi, si, ri, δi. Given f
(1)

j , r
(1)
j and f

(2)

j , r
(2)
j in the

first two answers to challenges x1 and x2 the extractor can take linear combinations of the verification

equations to get openings of the commitments cuj . More precisely, we have that the two answers satisfy

cx1
ujcfj = comck(f

1

j ; r
1
j ) cx2

ujcfj = comck(f
2

j ; r
2
j ).

Picking α1, α2 such that α1x1 + α2x2 = 1 and α1 + α2 = 0 gives us

cuj = cα1x1+α2x2
uj cα1+α2

fj
= comck(α1f

(1)

j + α2f
(2)

j ;α1r
(1)
j + α2r

(2)
j ),

which is an opening of cuj .

Other types of linear combinations of the verification equations give us openings of the other com-

mitments cfj , cfuj , cv and cδi the prover sends in the initial message. In the case of cδi we find the linear
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combination as follows. Let

M =


1 x1 . . . xd+1

1

...
...

1 xd+2 . . . xd+1
d+2

 .

Since it is a Vandermonde matrix with different x1, . . . , xd+2 it is invertible. By taking linear combina-

tions of the verification equations

cx
d+1

v

d∏
i=0

cx
i

δi = cfa comck(0; t) = comck

 1∑
i0,...,id=0

ai0...id

d∏
j=0

f
ij
j x

1−ij ;xd+1s+

d∑
i=0

tix
i


for different challenges x1, . . . , xd+2 we find that


δ0 t0
...

...

δd td

v s

 = M−1


∑1
i0,...,id=0 ai0...id

∏d
j=0(f

(1)

j )ijx
1−ij
1 xd+1

(1) s+
∑d
i=0 tix

i
(1)

...
...∑1

i0,...,id=0 ai0...id
∏d
j=0(f

(d+2)

j )ijx
1−ij
d+2 xd+1

(d+2)s+
∑d
i=0 tix

i
(d+2)



which gives us openings of cδ0 , . . . , cδd , cv .

We now have openings to all the commitments. Because the commitments are binding, each answer

must be computed as they are by an honest prover in the argument. Therefore, the verification equations

cxj cfj = comck(f j , rj)

give us f j = xuj + fj , where uj is the extracted value in cj and fj is the extracted value in cfj . The

verification equations

cxuj+1
c
−fj
uj cfuj = comck(0; ξj)

now give us that the committed values satisfy

xuj+1 − (xuj + fj)uj + φj = 0

for j = 0, . . . , d− 1 with uj being the value inside cj and φj being the value inside cfuj . Since each of

the polynomial equalities is of degree 1 and holds for d+2 different challenges we see that uj+1 = ujuj .

Since u0 = u this gives us u1 = u21

, u2 = u22

, . . . , ud = u2d .

The verification equation

cx
d+1

v

d∏
i=0

cx
i

δi = cfa = comck

 1∑
i0,...,id=0

ai0...id

d∏
j=0

f
ij
j x

1−ij ; t
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we now have that this corresponds to the degree d+ 1 polynomial equation

Xd+1v +Xdδd + . . .+Xδ1 + δ0 =

1∑
i0,...,id=0

ai0...id

d∏
j=0

(Xu2j + fj)
ijX1−ij .

With d + 2 different values x1, . . . , xd+2 satisfying the equation, we conclude the two polynomials are

identical. Looking at the coefficient for Xd+1 we can see that the extracted openings of cu0
and cv

satisfy P (u) = v. Furthermore, the extracted openings u, v are the same openings known by the prover

If this were not the case the prover could use the extractor to find another opening for at least one of the

commitments, and the commitment scheme would be broken.

Since v 6= 0, as seen above, and the P (u) 6= v, u is a not a root of the polynomial and therefore not

in the list.

Efficiency: The communication consists of D + 4d group elements and 2D + 3d field elements and is

therefore linear in the size of the blacklist.

The prover needs 2D exponentiations to compute the commitments to the coefficients of P (X) and

the exponentiation of the underlying single value product argument, which cost another 3D exponentia-

tions. The prover also has to calculate the δis. These values are defined to satisfy

1∑
i0,...,id=0

ai0...id

d∏
j=0

(Xu2j + fj)
ijX1−ij = Xd+1v +

d∑
j=0

Xjδj .

The prover can calculate the degree d polynomials
∏d
j=0(Xu2j + fj)

ijX1−ij in a binary-tree fashion

for all choices of i0 . . . , id ∈ {0, 1} at a cost of dD multiplications in Zq . Multiplying with the ai0...id ’s

uses another dD multiplications. The total cost for the prover is therefore 5D exponentiations in G and

2dD multiplications in Zq .

The verifier can check the argument using D exponentiations in G. He also needs to compute the

values
d∏
j=0

f
ij
j x1−ij , for i = i0 . . . id

which can be done in a binary tree fashion for all choices of i0, . . . , id ∈ {0, 1} using D multiplications

in Zq .

We have ignored small constants in the calculations above and just focused on the dominant terms.

Using the sliding window technique, from Section 4.3.2, we can reduce the computational burden of the

exponentiations. Applying randomized verification and other tricks [BGR98, Gro10] it is possible to

reduce the computation even further for the prover and verifier, so the estimates we have given above are

quite conservative.

7.4 Membership and Multi Non-Membership Arguments

It is easy to modify our non-membership argument into a membership argument. If u is a member
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of a list L then P (u) = 0. Therefore, to get a membership argument we let the prover give a SHVZK

argument for cv containing v = 0, instead of demonstrating that v is invertible and hence v 6= 0 . Zero

arguments are standard and only cost a couple of group elements in communication [Sch91].

If we have many committed values u1, . . . , uL and blacklists L1, . . . ,LL we can adapt the non-

membership protocol by committing to the different polynomial evaluations

v1 = P (1)(u1), . . . , vL = P (L)(uL)

. We can now use the invertible argument from Section 5.2 and the polynomial evaluation argument from

Section 6.4. This gives a non-membership argument for L blacklists with a communication complexity

of O(
√
L logD) group and field elements.

To get a membership argument for multiple whitelists we can use the multiple polynomial eval-

uation argument together with an argument for v1 = 0, . . . , vL = 0, which can be constructed using

standard techniques [Gro09].

We can also combine whitelists and blacklists where we use the same polynomial evaluation argu-

ment to show v1 = P (1)(u1), . . . , vL = P (L)(uL). The inverse argument from Section 5.2 can now be

used to show exclusion from the blacklists if vi 6= 0. For vi = 0 a selective zero argument can be used to

show inclusion of vi in the whitelists Li. This gives us a communication complexity ofO(
√
L logD) for

simultaneously showing memberships and non-memberships of a mixed set of L whitelists and black-

lists.

7.5 Brands et al.’s [BDD07] Techniques

In this section we will briefly recap Brands et al.’s [BDD07] techniques to construct a non-membership

argument for u ∈ Zq and a list L = {λ1, . . . , λD} which has O(
√
D) communication cost.

To convince a verifier in zero-knowledge that a secret value u ∈ Zq is not contained in a list

L = {λ1, . . . , λD} both parties construct d =
√
D polynomials

Pj(X) =

d∏
i=1

(X − λ(j−1)d+i) = ajdX
d + · · ·+ aj1X + aj0

and the prover shows that for all j = 1, . . . , d that Pj(u) 6= 0.

To do this the prover first picks random values ri ← Zq, r = 1, . . . , d, commits themselves to

u, u2, . . . , ud in cui = comck(ui; ri), calculates vj = Pj(u) and wj = ajdrd + . . .+aj2r2 +aj1r1, and

conceals these values inside vj , wj in cvj = comck(vj ;wj). The prover sends the commitments to the

verifier, who can check that

cvj = cajdud
c
aj(d−1)

ud−1 . . . caj1u comck(aj0, 0).
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If all commitments are constructed correctly the verifier always accept this step as

cajdud
cajd−1
ud−1

. . . caj1u comck(aj0; 0) = comck(ajdu
d + . . .+ aj1u+ aj0; aj,mrm + . . .+ aj1; r1) = Cvj .

This check convince the verifier that the values Pj(u) are hidden inside cvj .

Parallel to this the prover has also to show that cu1
, . . . , cud

are commitments to the successive

powers of u. This is done using standard techniques. To complete the argument the prover has to show

that Pj(u) 6= 0 for all j = 1, . . . d, this is also done by standard techniques.

Statement: {G, p, q}, ck, L = {λ1, . . . , λD} ⊂ Zq , Pj(X) =
∏d
i=1(X − λ(j−1)d+i), and cu ∈ Gq

Prover’s witness: u, r1 ∈ Zq such that u 6∈ L and cu1
= (u; r1)

Initial message: Compute

1. cui = Gu
i

comck(0; ri) where ri ← Zq for i = 2, . . . , d

2. vj = Pj(u) for j = 1, . . . , d

3. wj = aj,drd + . . . aj,2r2 + aj,1r1 for j = 1, . . . d

4. cvj = comck(vj ;wj)

5. f1 = comck(ru; s1) where ru, s1 ← Zq

6. fi = cruui−1
comck(0; si) where and si ← Zq for i = 2, . . . d,

7. fvi = c
rvi
vi comck(0;−rwi) for i = 1, . . . , d where rvi , rwi ← Z∗q

Send: cu2
, . . . , cud

, cv1 , . . . , cvd , f1, . . . , fd, fv1 , . . . , fvd

Challenge: x← Z∗q

Answer Compute

1. u = xu+ ru

2. r1 = xr1 + s1 ri = x(ri − uri−1) + si for i = 2, . . . , d

3. vj = xv−1
i + rvi , for i = 1, . . . d

4. wj = xwkv
−1
i + rwi for i = 1, . . . d

Send: u, r1, . . . , rd, v1, . . . , vd, w1, . . . , wd

Verification: Accept if and only if

1. cu2 , . . . , cud
, cv1 , . . . , cvd , f1, . . . , fd, fv1 , . . . , fvd ∈ G

2. u, r1, . . . , rd, v1, . . . , vd, w1, . . . , wd ∈ Zq

3.
∏d
j=1 c

σj
vj = comck(

∑d
j=1 aj,0σj ; 0)

∏d
i=1 c

∑d
j=1 aaj,iσj

udi
where σj ← Zq , j = 1, . . . , d

4. comck(u; r1)c−xu1
= f1 cuui−1

comck(0; ri)c
−x
ui = fi, for i = 2, . . . , d

5. cvjvj comck(−x;w) = fvj for j = 1, . . . d
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Theorem 31. The protocol above is a perfect public coin perfect generalized Σ−protocol for u ∈ Zq
such that u 6∈ L.

Proof. Perfect completeness can be seen by inspection of the verification equations.

To show that the argument is perfect SHVZK the simulator picks cu2 , . . . , cud
, cv2 , . . . , cvd as ran-

dom commitments to 0 and u, r1, . . . , rd, v1, . . . , vd, w1, . . . , wd ← Zq at random. The simulator picks

σi ← Zq and computes

cv1 =

comck

( d∑
j=1

aj,0σj ; 0
) d∏
i=1

c
∑d
j=1 aj,iσj

udi

d∏
j=2

c−σjvj

σ
−1
1

.

It also sets f1 = comck(u; r1)c−xu1
, fi = cuui−1

comck(0; ri)c
−x
ui , for i = 2, . . . , d and

fvi = cvivicomck(−x;w) for i = 1, . . . d.

The answers are uniformly random in the simulation similar to the real argument. Since the com-

mitment scheme is unconditional hiding; thus all commitments in the simulation and the real argument

follow the same distribution. Therefore, the argument is perfect SHVZK.

Lastly, we have to check that the protocol has perfect generalized special soundness. Given two

accepting arguments with challenges x1 6= x2 the extractor E can extract openings of all commitments.

The found witnesses fulfill the statement, as the commitment scheme is binding. More precisely, as the

commitment scheme is binding, the verification equation

cajdud
cajd−1
ud−1

. . . caj1u comck(aj0; 0)

gives us openings satisfying

ajdũd + . . .+ aj1ũ1 + aj0 = vj ,

for all j, where ũi are the openings of cui . From the equations comck(u; r1)c−xu1
= f1,

cuui−1
comck(0; ri)c

−x
ui = fi if follows that cui contain indeed the successive powers of u and there-

fore vj = Pj(u) for all j.

The equation cvjvj comck(−x;w) = fvj holds for two different challenges x. Since there is only

a negligible chance that this equation holds unless vj is invertible, so the extracted witnesses vj are

invertible and therefore vj 6= 0 for all j.

We can conclude that, the extracted witnesses fulfill the statement and the witness u is not in the

list L. Furthermore, the extracted openings are exactly the witnesses of the prover. If this is not the case,

the extractor of the argument could be used by the prover to find a second opening of at least one of the

commitments with non-negligible probability and the commitment scheme is broken.

Efficiency: During the protocol 4d group elements and 3d field elements are transferred between the

prover and verifier; therefore, the communication cost of the argument is O(d) = O(
√
D).

The prover has to compute 8d exponentiations in G and total number of 2D + 8d multiplications.

The verifier has to calculate 8d exponentiations and 2D+ 3d multiplications. In the original description
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of the protocol by Brands et al. the verifier needed to calculate D + 6d exponentiation in G and D + 3d

multiplications. However, Brands et al. also report that it is possible to collapse the equations of step 3 in

the verification to a single batch verification using techniques by Bellare et al. [BGR98], this technique

is used in our description. Other randomization techniques could be used to reduce the computational

burden of the verifier, see also [Gro10].

Example: Let be G = 〈G〉 = 〈149〉 ⊂ Z∗179, with prime order q = 89. The statement consists of the

blacklist L = {9, 26, 49, 48}, the corresponding polynomials

P1(X) = X2 + 54X + 54 and P2(X) = X2 + 81X + 38, d =
√

4 = 2, the commitment cu1
= 22, and

G = {p, q} = {179, 89}, ck = {149, 76}.

The prover knows u = 84, r1 = 43 such that cu1
= 22. To convince the verifier that the witness

does not belong to the blacklist, the prover picks r2 = 26 at random, and commits themselves to

cu2 = comck(u2; r2) = 36.

They also evaluate P1(X), P2(X) in u to get v1 = P1(u) = 78 and v2 = P2(X) = 14, calculates

wj = aj,drδ + . . . aj,2r2 + aj,1r1 for j = 1, 2,

w1 = 24 ∈ Z89 w2 = 28 ∈ Z89

and commits in these values

cv1 = comck(v1;w1) = 20 cv2 = comck(v2;w2) = 144.

The prover also picks random values ru = 80, s1 = 25, s2 = 52 and computes

f1 = comck(ru; s1) = 82 f2 = cruu H
s1 = 25

and picking random rv1 = 1, rv2 = 47, rw1 = 44, rw2 = 57 the prover sets

fv1 = crv1v1 H
−rw1 = 68 fv2 = crv2v2 H

−rw2 = 75.

Finally, the prover send the committed values

cu2 = 36 cv1 = 20 cv2 = 144 f1 = 82 f2 = 25 fv1 = 68 fv2 = 75

to the verifier.

The verifier picks challenge x = 77 and the prover answers with

u = 51 r1 = 43 r1 = 39

v1 = 83 v2 = 8 w1 = 54 w2 = 33.
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The verifier checks if all commitments are valid and if all answers are in Z89. He picks

σ1 = 26, σ2 = 81 and checks

cσ1
v1 c

σ2
v2 = 202614481 = 100 = G

∑2
j=1 aj,0σj

2∏
i=1

c
∑2
j=1 aj,iσj

udi
(X)

f1 = 82 = Gu+er1cxu1 (X) f2 = 25 = cuu1H
r2c−xu2 (X)

fv1 = 68 = cv1v1G
−(ew1+x) (X) fv2 = 75 = cv2v2G

−(ew2+x) (X)

7.5.1 Implementation and practical results

To obtain some experimental results and analyze the real life behavior we implemented Brands et al.’s

blacklist protocol. We collected data for different groups with different levels of security. We have

chosen subgroups with 160-bit order modulo a 1 248-bit, a 1 536-bit, and a 3 248-bit prime. Three 256-

bit subgroups modulo a 1 536, a 2 432, and a 3 248-bit prime, and lastly a 384-bit subgroups modulo a

3 248-bit prime. Some of these groups are not standard and are not used in real life. We have chosen

these groups to learn more about the influence of the different parameters, for example subgroup size.

The security levels of ours groups together with a detailed discussion why we have chosen them can be

found in Section 4.1.1.

The polynomial argument in Section 6.5 is based on this blacklist argument, but in this setting the

prover and verifier needs to calculate only half of the number of exponentiations; therefore, we expect

faster performance.

We implemented different levels of optimization. First, we wanted to analyze the merit of batching

the d test equations together into one equation. Thus, we coded first the un-batched version and an op-

timized version using the multi-exponentiation techniques from Section 4.3. Then, we implemented the

protocol using the batched verification. Again we optimized this version using the multi-exponentiation

techniques.

In Table 7.7 we can find the results of the un-optimized protocol without batching and with batching

for a 256-bit subgroup modulo a 1 536-bit prime. We see that the performance of the verifier without

batching is very slow compared to the batched verifier, batching alone helps to speed up the protocol by

a factor up to 140 for blacklists with huge number of elements.

The next step is to analyze if the multi-exponentiation techniques give a better performance speed

increase than the batching step. We find in Table 7.7 the data for the optimized un-batched version, and

the optimized batched protocol. We see that optimizing the un-batched version increase the performance

drastically, Brickels et al’s technique gives a asymptotically speed up factor of log(d) when calculating

a multi-exponentiation of d elements. We see that in our implementation the influence of the multi-

exponentiation techniques gets bigger for big d =
√
D, but is less than log(d). We also see that the run-

time of the optimized un-batched version is still slower than the un-optimized version batched version.

Applying multi-exponentiation techniques reduces this run-time even further.
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un-batched: batched:
Elements Conservative
in list D Prover Verifier Prover Verifier

10 23 ms 21 ms 23 ms 20 ms
100 61 ms 109 ms 58 ms 50 ms

1 000 199 ms 880 ms 191 ms 163 ms
5 000 430 ms 3 928 ms 442 ms 377 ms

10 000 596 ms 7 557 ms 615 ms 520 ms
50 000 1 366 ms 36 342 ms 1 373 ms 1 165 ms

100 000 1 935 ms 72 003 ms 1 952 ms 1 650 ms
500 000 4 572 ms 351 593 ms 4 562 ms 3 748 ms

1 000 000 6 742 ms 695 634 ms 6 735 ms 5 541 ms
Optimized

Prover Verifier Prover Verifier
10 16 ms 52 ms 17 ms 15 ms

100 41 ms 171 ms 42 ms 38 ms
1 000 134 ms 684 ms 133 ms 118 ms
5 000 304 ms 1 972 ms 299 ms 260 ms

10 000 444 ms 3 273 ms 423 ms 368 ms
50 000 980 ms 11 270 ms 975 ms 831 ms

100 000 1 408 ms 19 847 ms 1 408 ms 1 186 ms
500 000 3 319 ms 79 660 ms 3 414 ms 2 763 ms

1 000 000 4 863 ms 150 419 ms 5 101 ms 4 075 ms

Table 7.7: Run-time in ms of Brands et al.’s blacklist argument for a verifier without batching and with
batching on a 256-bit subgroup modulo a 1 536-bit prime.

Therefore, we can say that substitution a high number of exponentiation with the same asymptotic

number of multiplications and a fewer number of exponentiations has a great effect on the run-time.

That means that in general batching many equations into one helps to reduce the computational burden

drastically.

We also have to investigate the influence of the different multi-exponentiations techniques on the

batched protocol. Table 7.8 and 7.9 state the data for the un-optimized version, a version only optimized

with the sliding window technique, and the last version also optimized with Lim-Lee’s respectively

Brickels et al.’s technique for two different groups G. We see that the merit of the sliding window

technique is bigger for bigger moduli p, but for all degree D in one setting is more or less the same.

This means that exponentiations are dominant over the multiplication. The influence on the prover

is bigger than the influence on the verifier, but this was expected, as the verifier has to calculate the

batched verification equation. We see that the cost of this equation can be reduced using the other multi-

exponentiation techniques, again the merit is bigger the bigger the moduli p gets. One explanation is that

in this case the cost for a single-exponentiation gets higher and therefore the optimization works better.

Table 7.10 states the results for subgroups with fixed order of 160-bit modulo a 1 248-bit prime

and a 1 536-bit prime, whereas Table 7.11 states the results for fixed 256-bit prime modulo different

primes. The first thing we see is that the performance in all cases is less than half of the performance

of the polynomial argument, see Section 6.5, but this was expected. We also see that increasing the

moduli values slows the run-time down of the protocol. This effect is super-linear with the increase of
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Conservative SW Optimized Ratio
D Prover SW/Cons. Opt./Cons.
10 23 ms 16 ms 17 ms 0.68 0.72

100 58 ms 39 ms 42 ms 0.67 0.72
1 000 191 ms 126 ms 133 ms 0.66 0.70
5 000 442 ms 285 ms 299 ms 0.64 0.67

10 000 615 ms 407 ms 423 ms 0.66 0.69
50 000 1 373 ms 998 ms 975 ms 0.73 0.71

100 000 1 952 ms 1 343 ms 1 408 ms 0.69 0.72
500 000 4 562 ms 3 230 ms 3 414 ms 0.71 0.75

1 000 000 6 735 ms 5 091 ms 5 101 ms 0.76 0.76
Verifier

10 20 ms 18 ms 17 ms 0.91 0.79
100 50 ms 46 ms 38 ms 0.91 0.76

1 000 163 ms 147 ms 118 ms 0.90 0.72
5 000 377 ms 330 ms 260 ms 0.87 0.69

10 000 520 ms 470 ms 368 ms 0.90 0.71
50 000 1 165 ms 1 138 ms 831 ms 0.98 0.71

100 000 1 650 ms 1 515 ms 1 186 ms 0.92 0.72
500 000 3 748 ms 3 524 ms 2 763 ms 0.94 0.74

1 000 000 5 541 ms 5 116 ms 4 075 ms 0.92 0.74

Table 7.8: Comparison of Brands et al.’s blacklist argument for different blacklist sizes and different
levels of optimization on a 256-bit subgroup modulo a 1 536-bit prime.

Cons. SW Opt. Ratio
D Prover SW/Cons. Opt./Cons.
10 88 ms 54 ms 55 ms 0.61 0.62

100 221 ms 135 ms 138 ms 0.61 0.63
1 000 718 ms 440 ms 439 ms 0.61 0.61
5 000 1 593 ms 985 ms 975 ms 0.62 0.61

10 000 2 246 ms 1 393 ms 1 377 ms 0.62 0.61
50 000 5 015 ms 3 114 ms 3 114 ms 0.62 0.62

100 000 7 076 ms 4 432 ms 4 436 ms 0.63 0.63
500 000 15 951 ms 10 064 ms 10 190 ms 0.63 0.64

1 000 000 22 962 ms 14 782 ms 14 694 ms 0.64 0.64
Verifier

10 74 ms 66 ms 54 ms 0.89 0.73
100 192 ms 172 ms 137 ms 0.90 0.71

1 000 620 ms 556 ms 425 ms 0.90 0.69
5 000 1 389 ms 1 249 ms 936 ms 0.90 0.67

10 000 1 946 ms 1 766 ms 1 316 ms 0.91 0.68
50 000 4 352 ms 3 924 ms 2 954 ms 0.90 0.68

100 000 6 139 ms 5 560 ms 4 189 ms 0.91 0.68
500 000 13 693 ms 12 409 ms 9 475 ms 0.91 0.69

1 000 000 19 627 ms 17 729 ms 13 558 ms 0.90 0.69

Table 7.9: Comparison of Brands et al.’s blacklist argument for different blacklist sizes and different
levels of optimization on a 256-bit subgroup modulo a 3 248-bit prime.

the moduli, the bigger the prime p gets the more noticeable is the effect. One explanation for this is

that for bigger moduli the cost for the exponentiations gets higher and the increase of this cost is not

linear. Together with the dominance of the exponentiations’ cost this effect occurs. That means, it is
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|q| = 160 |p| = 1 248 |p| = 1 536
D Prover Verifier Prover Verifier
10 9 ms 7 ms 11 ms 10 ms

100 21 ms 18 ms 27 ms 24 ms
1 000 67 ms 54 ms 85 ms 75 ms
5 000 150 ms 120 ms 192 ms 165 ms

10 000 214 ms 169 ms 272 ms 233 ms
50 000 502 ms 390 ms 634 ms 532 ms

100 000 737 ms 565 ms 923 ms 762 ms
500 000 1 887 ms 1 393 ms 2 301 ms 1 808 ms

1 000 000 2 918 ms 2 142 ms 3 505 ms 2 719 ms

Table 7.10: Comparison of Brands et al.’s blacklist argument for different blacklist sizes for a fixed
160-bit subgroup modulo a 1 248-bit prime and a 1 536-bit prime.

|q| = 256 |p| = 1 536 |p| = 2 432 |p| = 3 248
D Prover Verifier Prover Verifier Prover Verifier
10 17 ms 15 ms 36 ms 35 ms 55 ms 54 ms

100 42 ms 38 ms 89 ms 88 ms 138 ms 137 ms
1 000 133 ms 118 ms 283 ms 271 ms 439 ms 425 ms
5 000 299 ms 260 ms 629 ms 596 ms 975 ms 936 ms

10 000 423 ms 368 ms 888 ms 839 ms 1 377 ms 1 316 ms
50 000 975 ms 831 ms 2 016 ms 1 885 ms 3 114 ms 2 954 ms

100 000 1 408 ms 1 186 ms 2 882 ms 2 676 ms 4 436 ms 4 189 ms
500 000 3 414 ms 2 763 ms 6 706 ms 6 094 ms 10 190 ms 9 475 ms

1 000 000 5 101 ms 4 075 ms 9 751 ms 8 756 ms 14 694 ms 13 558 ms

Table 7.11: Comparison of Brands et al.’s blacklist argument for different blacklist sizes for a fixed
256-bit subgroup modulo a 1 536-bit, a 2 432-bit and a 3 248-bit prime.

not possible to enlarge security by keeping the same group order and choosing a bigger moduli, without

compromising performance.

|p| = 1 536 |q| = 160 |q| = 256
D Prover Verifier Prover Verifier
10 11 ms 10 ms 17 ms 15 ms

100 27 ms 24 ms 42 ms 38 ms
1 000 85 ms 75 ms 133 ms 118 ms
5 000 192 ms 165 ms 299 ms 260 ms

10 000 272 ms 233 ms 423 ms 368 ms
50 000 634 ms 532 ms 975 ms 831 ms

100 000 923 ms 762 ms 1 408 ms 1 186 ms
500 000 2 301 ms 1 808 ms 3 414 ms 2 763 ms

1 000 000 3 505 ms 2 719 ms 5 101 ms 4 075 ms

Table 7.12: Comparison of Brands et al.’s blacklist argument for different blacklist sizes for different
order sizes modulo a fixed prime p with 1 536-bit.

In Table 7.12 and Table 7.13 we can find the reverse case of fixed moduli size. Again we see that

increasing the group order increases the run-time of the protocol. But in this case the increase of the time

is more or less linear with the increase of the group order. A consequence of this is, that increasing the

security level by a certain factor the run-time of the protocols slows down by the same factor. Thus, we
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|p| = 3 248 |q| = 160 |q| = 256 |q| = 384
D Prover Verifier Prover Verifier Prover Verifier
10 35 ms 35 ms 55 ms 54 ms 79 ms 80 ms

100 87 ms 88 ms 138 ms 137 ms 179 ms 200 ms
1 000 279 ms 269 ms 439 ms 425 ms 632 ms 619 ms
5 000 621 ms 569 ms 975 ms 936 ms 1 407 ms 1 369 ms

10 000 877 ms 838 ms 1 377 ms 1 316 ms 1 986 ms 1 925 ms
50 000 1 987 ms 1 881 ms 3 114 ms 3 924 ms 4 508 ms 4 330 ms

100 000 2 837 ms 2 674 ms 4 436 ms 4 189 ms 6 409 ms 6 122 ms
500 000 6 582 ms 6 073 ms 10 190 ms 9 475 ms 14 785 ms 13 863 ms

1 000 000 9 556 ms 8 743 ms 14 694 ms 13 558 ms 21 381 ms 19 876 ms

Table 7.13: Comparison of Brands et al.’s blacklist argument for different blacklist sizes for different
order sizes modulo a fixed prime p with 3 248-bit.

can conclude that higher security compromises speed.

We see that Brands et al.’s blacklist argument is practical for small blacklist sizes D for all levels of

security, but for bigger D the practicality suffers for medium and higher security levels.

Next, we have to consider the argument size, Table 7.14 states the size for all three rounds separately

for a 256-bit subgroup modulo a 1 536-bit prime. We see that the challenge in round adds nothing to

the complete argument size. We also see that the size of round 3 is much smaller that round 1, and adds

more or less no weight. More precisely, we send 4d group elements in round 1 and 3d field elements in

round 3, if a group element is n times bigger than a field element, round 1 should be approximately 3n
4

times bigger than round 3. In our case this factor should be 8, which is the case in reality.

We also see that Brands et al.’s communication cost is smaller than the statement for D ≤ 5 000,

and the sublinear asymptotic is fulfilled for growing D.

D Round 1 Round 2 Round 3 Statement
10 11 KB 0.08 KB 1 KB 1 KB

100 33 KB 0.08 KB 4 KB 8 KB
1 000 115 KB 0.08 KB 12 KB 72 KB
5 000 260 KB 0.08 KB 27 KB 381 KB

10 000 367 KB 0.08 KB 39 KB 761 KB
50 000 827 KB 0.08 KB 87 KB 3.9 MB

100 000 1.2 MB 0.08 KB 123 KB 7.8 MB
500 000 2.6 MB KB 0.08 KB 275 KB 38.9 MB

1 000 000 1.9 MB 0.8 KB 238 KB 77.8 MB

Table 7.14: Size of each round and of the statement for different degreeD for a 256-bit subgroup modulo
a 1 526-bit prime.

In Table 7.15 we find the size of the complete argument for different combinations of order and

moduli values. We see that that for small D the size consists only of a few kilobytes but for bigger D

the square root asymptotic kicks in and the size grows to a few megabytes. In web based applications,

for example blacklist access to Wikipedia, this could lead to a problem as the traffic can get high if many

people try to access at the same time.

In conclusion we can say, Brands et al.’s blacklist argument is practical in situations where the
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|q| 160 160 256 256 256 384 384
|p| 1 248 1 536 1 536 2 432 3 248 3 248 7 984
10 7 KB 8 KB 9 KB 13 KB 17 KB 17 KB 40 KB

100 17 KB 20 KB 21 KB 32 KB 42 KB 43 KB 100 KB
1000 53 KB 64 KB 67 KB 102 KB 133 KB 137 KB 318 KB
5000 117 KB 142 KB 148 KB 225 KB 295 KB 303 KB 704 KB

10000 165 KB 200 KB 209 KB 317 KB 415 KB 427 KB 991 KB
50000 370 KB 448 KB 468 KB 710 KB 929 KB 955 KB 2.2 MB

100000 524 KB 634 KB 662 KB 1.0 MB 1.3 MB 1.4 MB KB 3.1 MB
500000 1.2 MB KB 1.5 MB 1.5 MB 2.2 MB 2.9 MB 3.0 MB 7.0 MB

1 000 000 1.6 MB 1.9 MB 2.0 MB 3.0 MB 4.0 MB 4.1 MB 9.5 MB

Table 7.15: Size whole blacklist argument for different degree D for all choices of groups G.

blacklist size is relatively small and the verifier does not need to verify many protocols in parallel.

7.6 Comparison

SHVZK Rounds Time P Time V Size
argument Expos Expos Elements

[BDD07] 3 6
√
D D + 5

√
D 5

√
D G + 3

√
D Zp

[PB10] 3 8D 8D 8D G + 6D Zp
[Pen11] 3 7

√
D 10

√
D 5

√
D G + 5

√
D Zp

This work 3 8 logD 7 logD 4 logD G + 3 logD Zp

Table 7.16: Comparison of our non-membership argument with earlier work

Theoretical: In the setting of membership and non-membership arguments, the communication cost can

be reduced to O(
√
D) as suggested in Brands et al. [BDD07] by splitting the polynomial into

√
D poly-

nomials of degree
√
D each. Table 7.16 gives a theoretical performance comparison of our argument to

other solutions of non-membership proofs. The best solution so far achieved only O(
√
D) communica-

tion cost, we only require O(logD) communication cost.

The verifier in [Pen11], which is the best so far, only needs O(
√
D) exponentiations but also has

to solve a D dimensional system of linear equations on top of this. Our verifier needs only to calculate

7 logD exponentiations, which is cheap even if D gets very large.

Just looking at the numbers of exponentiations needed by the prover can be a little deceptive since

in our polynomial evaluation argument we need O(D logD) multiplications in Zq to compute the δj

values and for very large D this cost becomes dominant. Our performance gain for the prover is largest

in the medium range, where D is large enough for logD to be significantly smaller than
√
D yet not so

large that the cost of D logD multiplications in Zp becomes dominant.

Practical: We implemented our non-membership argument for a single blacklist and we also imple-

mented Brands et al.’s [BDD07] technique. To compare both approaches we used a 256-bit subgroup

modulo a 1 536-bit prime and a 3 248-bit prime, and a 384-bit subgroup modulo a 7 936-bit prime,

assumed that the polynomial P (X) had been pre-computed and obtained the run-time for blacklists be-

tween 10 and 1 000 000 elements. This gives us enough data to compare the protocols for different levels
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of security. The results can be found in Table 7.17, 7.18, and 7.19.

Elements Prover Verifier Size
in list D Brands et al. This work Brands et al. This work Brands et al. This work

10 17 ms 18 ms 15 ms 20 ms 9 KB 11 KB
100 42 ms 29 ms 38 ms 34 ms 21 KB 17 KB

1 000 133 ms 47 ms 118 ms 49 ms 67 KB 23 KB
5 000 299 ms 109 ms 260 ms 68 ms 148 KB 28 KB

10 000 423 ms 189 ms 368 ms 83 ms 209 KB 31 KB
50 000 975 ms 754 ms 831 ms 148 ms 468 KB 36 KB

100 000 1 408 ms 1 495 ms 1 186 ms 216 ms 662 KB 38 KB
500 000 3 414 ms 7 369 ms 2 763 ms 693 ms 1.5 MB 42 KB

1 000 000 5 101 ms 15 384 ms 4 075 ms 1 310 ms 4.1 MB 42 KB

Table 7.17: Comparison of our non-membership argument with Brands et al. [BDD07]. All experiments
used a 256-bit subgroup modulo a 1 536-bit prime.

Elements Prover Verifier Size
in list D Brands et al. This work Brands et al. This work Brands et al. This work

10 55 ms 63 ms 54 ms 76 ms 17 KB 21 KB
100 138 ms 99 ms 137 ms 125 ms 42 KB 33 KB

1,000 439 ms 144 ms 425 ms 176 ms 133 KB 46 KB
5,000 975 ms 253 ms 936 ms 235 ms 295 KB 58 KB

10,000 1,377 ms 361 ms 1,316 ms 261 ms 415 KB 61 KB
50,000 3,114 ms 1,114 ms 2,954 ms 358 ms 929 KB 71 KB

100,000 4,436 ms 2 130 ms 4 189 ms 455 ms 1.3 MB 75 KB
500 000 10 190 ms 7 827 ms 9 475 ms 1 019 ms 2.9 MB KB 83 KB

1 000 000 14 694 ms 16 137 ms 13 558 ms 1 572 ms 4.0 MB 85 KB

Table 7.18: Comparison of our non-membership argument with Brands et al. [BDD07]. All experiments
used a 256-bit subgroup modulo a 3 248-bit prime.

Elements Prover Verifier Size
in list D Brands et al. This work Brands et al. This work Brands et al. This work

10 325 ms 397 ms 332 ms 483 ms 40 KB 50 KB
100 817 ms 630 ms 841 ms 808 ms 100 KB 80 KB

1 000 2 615 ms 892 ms 2 600 ms 1 161 ms 318 KB 109 KB
5 000 5 818 ms 1 192 ms 5 743 ms 1 497 ms 704 KB 139 KB

10 000 8 201 ms 1 358 ms 8 060 ms 1 621 ms 991 KB 149 KB
50 000 18 409 ms 2 190 ms 18 032 ms 1 894 ms 2.2 MB 169 KB

100 000 26 070 ms 3 179 ms 25 547 ms 2 090 ms 3.1 MB 178 KB
500 000 58 649 ms 10 839 ms 57 131 ms 2 857 ms 7.0 MB 198 KB

1 000 000 83 300 ms 21 119 ms 80 775 ms 3 790 ms 9.5 MB 203 KB

Table 7.19: Comparison of our non-membership argument with Brands et al. [BDD07]. All experiments
used a 384-bit subgroup modulo a 7 984-bit prime.

For very small blacklists L our argument is only slightly smaller than Brands et al.’s communication

and for size D > 100 our protocol outperforms Brands et al.. This advantage grows and for medium to

large lists our communication cost is noticeable smaller.

Brands et al.’s [BDD07] approach has a verifier that has square root cost, where as our verifier need
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only to calculate a logarithmic number of exponentiations. As expected our verifier runs faster than their

verifier apart from the cases with very small blacklists. The bigger the blacklist gets and the higher the

security parameters are chosen the more noticeable is the different between the two verifiers.

Our prover is faster for moderate blacklist sizes, but we see that for big D the cost to calculate

the δi’s becomes more expensive and Brands et al.’s prover becomes faster. But it is the case that very

large D is required before the prover of Brands et al. becomes better from a computational perspective,

for moderate size D we have a clear performance advantage. Overal our argument is faster than the

combined prover and verifier of Brands et al., the only exception for this are settings with a very small

security parameter and a very large D.

Thus, we can conclude that our protocol gives better performance than Brands et al. in all reasonable

settings.
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Chapter 8

Zero-Knowledge Shuffle Argument

This chapter was joint work with Jens Groth and published at Eurocrypt 2012 [BG12]. We have added a

deeper discussion on implementation results.

8.1 Introduction
In recent years the governments of various countries considered establishing e-voting for major elections.

Practical and secure e-voting schemes are still under construction, for this reason various countries tested

different approaches in local elections. For instance in England tests were carried out for various elec-

tions since 2000 and in Estonia since 2005 e-voting is used for general elections1.

All the approaches used have in common that the construction should guarantee the correctness

and secrecy of the vote. One major approach to construct e-voting schemes uses mix-nets [Cha81]. A

mix-net is a multi-party protocol which can also be used for other applications which require anonymity,

such as anonymous broadcast. It allows a group of senders to input a number of encrypted messages to

the mix-net, which then outputs them in random order. It is common to construct mix-nets from shuffles.

Other applications for shuffles are among others onion-routing and oblivious databases.

Informally, a shuffle of ciphertexts C1, . . . CN is a set of ciphertexts C ′1, . . . , C
′
N with the same

plaintexts in permuted order. In this chapter we will examine shuffle protocols constructed from homo-

morphic encryption schemes. That means for a given public key pk, messages M1,M2 and randomness

ρ1, ρ2 the encryption function satisfies Epk(M1M2; ρ1 +ρ2) = Epk(M1; ρ1)Epk(M2; ρ2). Thus, we may

construct a shuffle of C1, . . . , CN by selecting a permutation π ∈ ΣN and randomizers ρ1, . . . ρN , and

calculating C ′1 = Cπ(1)Epk(1; ρ1), . . . , C ′N = Cπ(N)Epk(1; ρN ).

A common construction of mix-nets is to let the mix-servers take turns in shuffling the ciphertexts.

If the encryption scheme is IND-CPA secure the shuffle C ′1, . . . , C
′
N output by a mix-server does not

reveal the permutation or the messages. But this also means that a malicious mix-server in the mix-net

could substitute some of the ciphertexts without being detected. In a voting protocol, it could for in-

stance replace all ciphertexts with encrypted votes for candidate X. Therefore, the goal is to construct an

interactive zero-knowledge argument that makes it possible to verify that the shuffle was done correctly

(soundness), but reveals nothing about the permutation or the randomizers used (zero-knowledge).

1http://en.wikipedia.org/wiki/Electronic_voting_examples
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We propose a practical efficient honest verifier zero-knowledge argument for the correctness of a

shuffle. Our argument is very efficient, in particular we drastically decrease the communication com-

plexity compared to previous shuffle arguments. We cover the case of shuffles of ElGamal ciphertexts

but it is possible to adapt our argument to other homomorphic cryptosystems as well.

Our argument has sublinear communication complexity. When shuffling N ciphertexts, arranged in

an m × n matrix, our argument transmits O(m + n) group elements giving a minimal communication

complexity of O(
√
N) if we choose m = n. In comparison, Groth and Ishai’s argument [GI08] commu-

nicates Ω(m2 + n) group elements and all other state of the art shuffle arguments communicate Θ(N)

elements.

The disadvantage of Groth and Ishai’s argument compared to the schemes with linear communica-

tion complexity was that the prover’s computational complexity was on the order of O(Nm) exponen-

tiations. It was therefore only possible to choose small m. In comparison, our prover’s computational

complexity is O(N logm) exponentiations for constant round arguments and O(N) exponentiations if

we allow a logarithmic number of rounds. In practice, we do not need to increase the round complexity

until m gets quite large, so the improvement in the prover’s computational speed is significant compared

to Groth and Ishai’s work and is comparable to the complexity seen in arguments with linear commu-

nication complexity. Moreover, the verifier is fast in our argument making the entire process very light

from the verifier’s point of view.

8.1.1 Techniques

Groth [Gro09] proposed efficient sublinear size arguments to be used in connection with linear algebra

over a finite field. We combine these techniques with Groth and Ishai’s sublinear size shuffle argument.

The main problem in applying Groth’s techniques to shuffling is that they were designed for use in finite

fields and not for use with group elements or ciphertexts. It turns out though that the operations are

mostly linear; therefore, it is possible to carry them out “in the exponent”, somewhat similar to what is

often done in threshold cryptography. Using this adaptation we are able to construct an efficient multi-

exponentiation argument that a ciphertext C is the product of a set of known ciphertexts C1, . . . , CN

raised to a set of hidden committed values a1, . . . , aN . This is the main bottleneck in our shuffle argu-

ment; therefore, gives us a significant performance improvement.

Groth’s sublinear size zero-knowledge arguments also suffered from a performance bottleneck in

the prover’s computation. At some juncture it is necessary to compute the sums of the diagonal strips in

a product of two matrices. This problem is made even worse in our setting because when working with

group elements we have to compute these sums in the exponents. By adapting techniques for polynomial

multiplication such as Toom-Cook [Too00, Coo66] and the Fast Fourier Transform [CT65] we are able

to reduce this computation.

8.1.2 Former Work

The idea of a shuffle was introduced by Chaum [Cha81] but he didn’t give any method to guarantee the

correctness. In fact this construction was broken by Pfitzmann and Pfitzmann [PP90]. Park et al. [PIK94]

were the first to consider ElGamal encryption for mixing. Since then many suggestions have been made
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how to build mix-nets or prove the correctness of a shuffle, many of the suggested approaches have been

partially or fully broken [JJ01, JJR02], and the remaining schemes sometimes suffer from other draw-

backs. The scheme of Desmedt and Kurosawa [DK00] assumed that only a small number of mix-servers

are corrupt. Peng et al. [PBDV04] restricted the class of possible permutations and also required that

a part of the senders are honest. None of these drawbacks are suffered by the shuffle scheme of Wik-

ström [Wik02] and approaches based on zero-knowledge arguments. Since zero-knowledge arguments

achieve better efficiency they will be the focus of our work.

An early contribution using zero-knowledge arguments were made by Sako and Killian [SK95]

achieving an universal verifiable protocol. Michels and Horster [MH96] showed that in order to achieve

this property each server leaks some information and this leak makes the whole scheme insecure and at-

tackable. Even after Abe [Abe98] fixed the scheme the protocol is known as insecure. Another downside

of this method was its high computation and communication cost.

Abe suggested in [Abe98] a version of a mix-net with lower computation cost. In 1999 Abe [Abe99]

published a construction of a mix-net based on the permutation network of [Wak68] and later he fixed

together with Hoshino [AH01] a security gap.

Furukawa and Sako took in [FS01] a completely different approach to construct and prove the

correctness of a shuffle. Their approach was based on permutation matrices and was refined further by

Furukawa [Fur05], and Groth and Lu [GL07]. Furukawa, Miyachi, Mori, Obana, and Sako [FMM+02]

presented an implementation of a shuffle argument based on permutation matrices and tested it on mix-

nets handling 100 000 ElGamal ciphertexts. Recently, Furukawa and Sako [FMS10] have reported on

another implementation based on elliptic curve groups.

Wikström [Wik09] also used the idea of permutation matrices and suggested a shuffle argument

which splits in an offline and online phase. Furthermore, Terelius and Wikström [TW10] constructed

conceptually simple shuffle arguments that allowed the restriction of the shuffles to certain classes of

permutations. Both protocols are implemented in the Verificatum mix-net library [Wik10].

The contributions based on the permutation matrices and the followings by Neff were the first ones

based on ElGamal encryption and have a complexity that depends linearly on the number of ciphertexts.

Neff [Nef01] published another way to construct a proof of shuffling of ciphertexts, his main idea

is the invariance of polynomials P (X) =
∏N
i=1(mi −X) under permutation of roots.

Using the same paradigm Groth [Gro10] published a version of a proof protocol for shuffling ci-

phertexts. Stamer [Sta05] reported on an implementation of this scheme. Later Groth and Ishai [GI08]

proposed the first shuffle argument where the communication complexity is sublinear in the number of

ciphertexts.

de Hoogh et al. [dHSSV09] solutions are based on similar ideas to [Nef01], but they only consider

rotations instead of general permutations. One of their shuffle arguments is based on the discrete Fourier

transform, but the approach is completely different to our use of the FFT. Furthermore, both proposed

solutions have only linear complexity.

However, all of the protocols above have linear computation and communication cost, besides the
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work of Groth and Ishai, which has sublinear communication cost at the cost of higher computation time.

But efficiency is a major concern in arguments for the correctness of a shuffle. In large elections

it is realistic to end up shuffling millions of votes. This places considerable strain on the performance

of the zero-knowledge argument both in terms of communication and computation complexity. We will

construct an honest verifier zero-knowledge argument for correctness of a shuffle that is highly efficient

in terms of communication as well as computation complexity.

8.2 Shuffle Argument

We will give an argument of knowledge of a permutation π ∈ ΣN and randomness {ρi}Ni=1 such that

for given ciphertexts {Ci}Ni=1, {C ′i}Ni=1 we have C ′i = Cπ(i)Epk(1; ρi). The shuffle argument combines

a multi-exponentiation argument, which allows us to prove that the product of a set of ciphertexts raised

to a set of committed exponents yields a particular ciphertext and a product argument, which allows us

to prove that a set of committed values has a particular product. The multi-exponentiation argument

is given in Section 8.3 and the product argument is given in Section 5.3. In this section, we will give

an overview of the protocol and explain how a multi-exponentiation argument can be combined with a

product argument, see Section 5.3, to yield an argument for the correctness of a shuffle.

The first step for the prover is to commit to the permutation. This is done by committing to

π(1), . . . , π(N). The prover will now receive a challenge x and commit to xπ(1), . . . , xπ(N). The prover

will give an argument of knowledge of openings of the commitments to permutations of respectively

1, . . . , N and x1, . . . , xN and demonstrate that the same permutation has been used in both cases. This

means the prover has a commitment to x1, . . . , xN permuted in an order that was fixed before the prover

saw x.

To check that the same permutation has been used in both commitments the verifier sends random

challenges y and z. By using the homomorphic properties of the commitment scheme the prover can in

a verifiable manner compute commitments to

d1 − z = yπ(1) + xπ(1) − z, . . . , dN − z = yπ(N) + xπ(N) − z.

Using the product argument from Section 5.3 the prover shows that

N∏
i=1

(di − z) =

N∏
i=1

(yi+ xi − z).

Observe that we have two identical degree N polynomials in z since the only difference is that the roots

have been permuted. The verifier does not know a priori that the two polynomials are identical but can by

the Schwartz-Zippel lemma deduce that the prover has negligible chance over the choice of z of making

a convincing argument unless indeed there is a permutation π such that

d1 = yπ(1) + xπ(1), . . . , dN = yπ(N) + xπ(N).
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Furthermore, there is negligible probability over the choice of y of this being true unless the first com-

mitment contains π(1), . . . , π(N) and the second commitment contains xπ(1), . . . , xπ(N).

The prover now has commitments to xπ(1), . . . , xπ(N) and uses the multi-exponentiation argument

from Section 8.3 to demonstrate that there exists a ρ such that

N∏
i=1

Cx
i

i = Epk(1; ρ)

N∏
i=1

(C ′i)
xπ(i)

.

The verifier does not see the committed values and therefore does not learn what the permutation is.

However, from the homomorphic properties of the encryption scheme the verifier can deduce

N∏
i=1

Mxi

i =

N∏
i=1

(M ′i)
xπ(i)

for some permutation π that was chosen before the challenge x was sent to the prover. Taking discrete

logarithms we have the polynomial identity

N∑
i=1

log(Mi)x
i =

N∑
i=1

log(M ′π−1(i))x
i.

There is negligible probability over the choice of x of this equality holding true unless

M ′1 = Mπ(1), . . . ,M
′
N = Mπ(N). This shows that we have a correct shuffle.

Statement: {G, p, q}, pk, ck, C,C ′ ∈ HN with N = mn.

Prover’s witness: π ∈ ΣN and ρ ∈ ZNq such that C ′ = Epk(1;ρ)Cπ.

Initial message: Compute

1. a =
{
π(i)

}N
i=1

2. cA = comck(a; r), where r ← Zmq .

Send cA

Challenge: x← Z∗q

Answer Compute

1. b = {xπ(i)}Ni=1

2. cB = comck(b; s), where s ∈ Zmq .

Send cB

Challenge: y, z ← Z∗q
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Answer: 1. Define c−z = comck(−z, . . . ,−z; 0) and cD = c yAcB . Compute openings d = ya+ b

and t = yr + s of cD, and engage in a product argument as described in Section 5.3 of

openings d1 − z, . . . , dN − z and t such that

cDc−z = comck(d− z; t ) and
N∏
i=1

(di − z) =

N∏
i=1

(yi+ xi − z).

2. Compute ρ = −ρ · b and set x = (x, x2, . . . , xN )T . Engage in a multi-exponentiation

argument as described in Section 8.3 of b, s and ρ such that

Cx = Epk(1; ρ)C ′b and cB = comck(b; s)

The two arguments can be run in parallel. Furthermore, the multi-exponentiation argument can be

started already in round 3 after the computation of the commitments cB .

Verification: Compute
∏N
i=1(yi+ xi − z), Cx, and compute c−z, cD as described above.

The verifier accepts if and only if

1. cA, cB ∈ Gm

2. The product argument is valid.

3. The multi-exponentiation argument is valid.

Theorem 32. The protocol is a public coin perfect generalized Σ−protocol of π ∈ ΣN and ρ ∈ ZNq
such that C ′ = Epk(1;ρ)Cπ .

Proof. Let us first argue that we have perfect completeness. Note that di = yπ(i) + xπ(i) so we have

N∏
i=1

(di − z) =

N∏
i=1

(yπ(i) + xπ(i) − z) =

N∏
i=1

(yi+ xi − z).

Also, we have with C ′i = Epk(1; ρi), bi = xπ(i) and ρ = −ρ · b that

Epk(1; ρ)C ′b = Epk(1;−ρ)b (Epk(1,ρ)Cπ)
b

= Cb
π =

N∏
i=1

Cx
π(i)

π(i) = Cx.

Perfect completeness now follows from the perfect completeness of the product argument and the perfect

completeness of the multi-exponentiation argument.

Perfect SHVZK follows from the fact that the commitments are perfectly hiding and the underly-

ing arguments are perfect SHVZK. To simulate the entire argument we can pick random commitments

cA, cB ← comck(0, . . . , 0) which can be done without knowing the witness for the correctness of the

shuffle. The simulator then runs perfect SHVZK simulations of the product and multi-exponentiation

arguments.
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Finally, we have to show that we have perfect generalized special soundness. Given accepting

transcripts with different challenges x, y, z, the extractor runs the extractors of the underlying product

and multi-exponentiation argument to get openings.

We will now argue that with overwhelming probability the extracted openings of cA must be of the

form a = {π(i)}Ni=1 for some permutation π ∈ ΣN . Consider the situation after round 3 where the

prover has sent cB . The extractor of the multi-exponentiation argument gives us the opening b, s of cB

showing that the opening of cD must be of the form d = ya+ b. The product argument shows that

N∏
i=1

(di − z) =

N∏
i=1

(yi+ xi − z).

This has negligible probability over z in succeeding unless there exists a permutation π such that di =

yπ(i) + xπ(i). This shows yai + bi = yπ(i) + xπ(i), which has negligible probability over y of being

true unless ai = π(i). Furthermore, we see that bi = xπ(i).

Each choice xj gives us a witness containing ρ(j) such that

Cxj = Epk(1; ρ(j))

N∏
i=1

(C ′i)
x
π(i)
j = Epk(1; ρ(j))C ′

xj
π−1 .

The N ×N matrix

X =


x1

1 . . . x1
N

...
...

xN1 . . . xNN


can be viewed as a submatrix of a transposed Vandermonde matrix. If x1, . . . , xN are different then X

is invertible. We now have

C = (CX)X
−1

=
(
Epk(1;ρ)C ′

X
π−1

)X−1

= Epk(1;ρX−1)C ′π−1 .

This gives us a permutation π and ρ ′ = (−ρX−1)π such that C ′ = Epk(1;ρ ′)Cπ . All the extracted

witnesses are the witnesses known by the prover. Otherwise, the prover could use the extractor to break

the commitment scheme and find a second opening for one of the commitments.

Efficiency: The argument consists of m commitments plus the cost of the product argument and the

multi-exponentiation argument. Therefore, it consists in total of 5n field elements, 7m commitments

and 2m ciphertexts. The last two terms are equal to a cost of 11m group elements if H = G×G. Thus,

the cost is O(m+ n).

The prover has to calculate to 2N exponentiations to commit to a and b; together with the underly-

ing protocols the computation cost is O(N logm) exponentiations in G, since the multi-exponentiation

technique yields the most exponentiations. Allowing extra interaction the cost of the prover can be

reduced to O(N) exponentiations in G. Furthermore, the prover has to calculate O(N logm) multipli-

cations in Zq , this cost arises mainly from the product argument.
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The verifier has to calculate 12m + 8n exponentiations plus the cost to calculate Cx and C in the

underlying multi-exponentiation argument, which costs 2N exponentiations in H. Thus, the verifier’s

computation cost is O(N) exponentiations in G, if H = G×G. and the cost to calculate N + 15m+ 9n

multiplications in Zq .

Both parties can use multi-exponentiations techniques, see Section 4.3, to reduce the computation

burden or gain performance speed up from batch verification [BGR98, Gro10]. Thus, the values are

quite conservative counting only single exponentiations.

Example: Let G = 〈G〉 = 〈46〉 ⊂ Z∗179, with prime order |q| = 89. The public keys and group de-

scription are pk = 74 and {G, p, q} = {〈46〉, 179, 89}, ck = {G1, . . . , G4, H} = {G1, . . . , G4, H} =

{46, 177, 161, 100, 72}. The input ciphertexts are

C =


(76, 141) (47, 89) (146, 36) (149, 59)

(161, 47) (31, 14) (59, 145) (93, 43)

(13, 5) (141, 108) (80, 149) (22, 60)


and the output ciphertexts

C ′ =


(20, 66) (75, 149) (144, 57) (42, 88)

(15, 9) (51, 64) (25, 15) (59, 138)

(158, 29) (61, 142) (116, 88) (106, 65)

 .

The prover knows permutation π =

1 2 3 4 5 6 7 8 9 10 11 12

5 12 7 10 9 6 2 8 1 11 3 4

 and random

elements

ρ = (35, 35, 86, 11, 29, 25, 77, 45, 20, 48, 58, 73)T

such that C ′ = Epk(1;ρ)Cπ .

The prover first sets a = (5, 12, 7, 10, 9, 6, 2, 8, 1, 11, 3, 4)T , picks rA = (64, 88, 65)T , and

commits themselves to a in

ca = (16, 15, 116)T .

The verifier picks random challenge x = 48 and the prover calculates

b = xπ(i) = (83, 85, 60, 36, 23, 68, 79, 32, 48, 37, 54, 11)T ,

picks rb = (47, 34, 15)T and computes

cb = (48, 61, 19)T .

Now, the verifier answers with random challenge z = 51 and y = 24. Both parties define
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z = (−z, . . . ,−z), compute

c−z = comck(z; 0) = 95 cD = cyAcB = (121, 42, 67)T

and engage in a product argument of openings d+ z and t such that

cDc−z = comck(d+ z; t ) = (22, 89, 81)T and
N∏
i=1

(di − z) =

N∏
i=1

(yi+ xi − z) = 10.

The prover can calculate the openings of cD themselves as

d = ya+ b = (31, 21, 79, 62, 38, 55, 48, 14, 24, 86, 72, 7)T

t = yr + s = (42, 33, 80)T ,

and engage in a product argument.

The prover computes ρ = −ρ · b = 38, sets

x = (48, 79, 54, 11, 83, 68, 60, 32, 23, 36, 37, 85)T .

Then both parties engage in a multi-exponentiation argument of b, s and ρ such that

Cx = Epk(1; ρ)C ′b and cB = comck(b; s).

The verifier accepts if cA, cB ∈ Gm and the both underlying arguments are valid.

8.3 Multi-exponentiation Argument

Given ciphertexts C11, . . . , Cmn and C we will in this section give an argument of knowledge of open-

ings of commitments cA to A = {aij}n,mi,j=1 such that

C = Epk(1; ρ)

m∏
i=1

c ai
i and cA = comck(A; r)

where ci = (Ci1, . . . , Cin) and aj = (a1j , . . . , anj)
T .

To explain the idea in the protocol let us for simplicity assume ρ = 0 and the prover knows the

openings of cA, and leave the question of SHVZK for later. In other words, we will for now just explain

how to convince the verifier in a communication-efficient manner that C =
∏m
i=1 c

ai
i . The prover can

calculate the ciphertexts

Ek =
∏

1≤i,j≤m
j=(k−m)+i

c
aj
i ,
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where Em = C. To visualize this consider the following matrix

(
a1 . . . am

)


c1

c2

...

cm





c a1
1

. . . c am
1

c a1
2

. . . c am
2

. . . . . . . . . . . .

c a1
m

. . . c am
m


E2m−1

...

Em+1

E1 . . . Em−1 Em

The prover sends the ciphertextsE1, . . . , E2m−1 to the verifier. The ciphertextC = Em is the product of

the main diagonal and the otherEk’s are the products of the other diagonals. The prover will use a batch-

proof to simultaneously convince the verifier that all the diagonal products give their corresponding Ek.

The verifier selects a challenge x← Z∗q at random. The prover sets

x = (x, x2, . . . , xm)T ,

opens c x
A to a =

∑m
j=1 x

jaj , and the verifier checks

Cx
m

2m−1∏
k=1
k 6=m

Ex
k

k =

m∏
i=1

c
(xm−ia)
i .

Since x is chosen at random, the prover has negligible probability of convincing the verifier unless the

xk-related terms match on each side of the equality for all k. In particular, since a =
∑m
j=1 x

jaj the

xm-related terms give us

Cx
m

=

m∏
i=1

c

xm−i
∑

1≤j≤m
m=m−i+j

xjaj

i =

(
m∏
i=1

c ai
i

)xm

and allow the verifier to conclude C =
∏m
i=1 c

ai
i .

Finally, to make the argument honest verifier zero-knowledge we have to avoid leaking information

about the exponent vectors a1, . . . ,am. The prover therefore calculates the commitment to a random

vector a0 ← Znq and after seeing the challenge x they reveal a = a0 +
∑m
j=1 x

jaj . Since a0 is chosen

at random this vector does not leak any information about the exponents.

Another possible source of leakage is the products of the diagonals. The prover will therefore

randomize eachEk by multiplying it with a random ciphertext Epk(Gbk ; τk). Now eachEk is a uniformly

random group element in H; thus, it will not leak information about the exponents. Of course, this would

make it possible to encrypt anything in the Ek and allow cheating. To get around this problem the prover

has to commit to the bk’s used in the random encryptions and the verifier will check that the prover uses

bm = 0. The full argument that also covers the case ρ 6= 0 can be found below.
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Statement: {G, p, q}, pk, ck, c1, . . . , cm ∈ Hn , C ∈ H and cA ∈ Gm.

Prover’s witness: A = {aj}mj=1 ∈ Zn×mq , r ∈ Zmq and ρ ∈ Zq such that

C = Epk(1; ρ)

m∏
i=1

c ai
i and cA = comck(A; r).

Initial message: Compute

1. cA0
= comck(a0; r0), where a0 ← Znq , r0 ← Zq

2. cbj = comck(bj ; sj) for j = 0, . . . , 2m− 1 where bj , sj ← Zq and bm = 0, sm = 0

3. For k = 0, . . . , 2m− 1, τk ← Zq and τm = ρ

Ek = Epk(Gbk ; τk) ·
m,m∏

i=1,j=0
j=(k−m)+i

c
aj
i

Send: cA0 , {cbj}2m−1
j=0 , {Ek}2m−1

k=0

Challenge: x← Z∗q

Answer: Set x = (x, x2, . . . , xm)T and compute

1. a = a0 +Ax r = r0 + r · x

2. b = b0 +
∑2m−1
j=1 bjx

k s = s0 +
∑2m−1
k=1 sjx

j

3. τ = τ0 +
∑2m−1
j=1 τjx

k

Send: a, r, b, s, τ .

Verification: Accept if and only if

1. cA0 , cb0 , . . . , cb2m−1 ∈ G

2. E0, . . . , E2m−1 ∈ H

3. a ∈ Znq , and r, b, s, τ ∈ Zq

4. cbm = comck(0; 0) and Em = C
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5. cA0
c x
A = comck(a; r) cb0

∏2m−1
j=1 cx

j

bj
= comck(b; s)

6. E0

∏2m−1
k=1 Ex

k

k = Epk(Gb; τ)
∏m
i=1 c

xm−ia
i .

Theorem 33. The protocol above is a public coin perfect generalized Σ−protocol of openings

a1, . . . ,am, r and randomness ρ such that C = Epk(1; ρ)
∏m
i=1 c

ai
i .

Proof. It follows by direct verification that Em = C and cA0c
x
A = comck(a; r) and

cb0

2m−1∏
k=1

cx
k

bk
= comck(b; s).

Perfect completeness now follows from

E0

2m−1∏
k=1

Ex
k

k =

2m−1∏
k=0

Epk(Gbk ; τk)

m,m∏
i=1,j=0

j=(k−m)+i

c
aj
i


xk

= Epk

(
G

∑2m−1
k=0 bkx

k

;

2m−1∑
k=0

τkx
k

)
2m−1∏
k=0

m,m∏
i=1,j=0

j=(k−m)+i

c
xkaj
i

= Epk(Gb; τ)

m∏
i=1

m∏
j=0

c
xm−i+jaj
i

= Epk(Gb; τ)

m∏
i=1

c
xm−i

∑m
j=0 x

jaj
i = Epk(Gb; τ)

m∏
i=1

c x
m−ia

i .

Now we will prove that we have perfect SHVZK. On challenge x the simulator picks

a ← Znq and r ← Zq at random and sets cA0
= comck(a; r)c −xA . The simulator also picks

b, s, s1, . . . , sm−1, sm+1, . . . , s2m−1 ← Zq and defines sm = 0. It computes commitments

cb1 , . . . , cb2m−1
as cbk = comck(0; sk) and cb0 = comck(b; s) ·

∏2m−1
k=1 c −x

k

bk
. Finally it picks ran-

dom ciphertexts E1, . . . , Em−1, Em+1, . . . , E2m−1 ← H and τ ← Zq , sets Em = C and computes

E0 = Epk(Gb; τ)

m∏
i=1

c
(xm−ia)
i

2m−1∏
k=1

E−x
k

k .

The simulated argument is cA0
, {cbj}2m−1

j=0 , {Ek}2m−1
k=0 , x,a, r, b, s, τ .

The next step is to prove that the simulation on challenge x is indistinguishable from a real argu-

ment with challenge x. The commitment scheme is perfectly hiding so the distribution of the commit-

ments cb1 , . . . , cbm−1
, cbm+1

, . . . , cb2m−1
is identical to the distribution we get in a real argument and

cbm = comck(0; 0) as in a real argument. The ciphertexts E1, . . . , Em−1, Em+1, . . . , E2m−1 are uni-

formly random as in a real argument and Em = C as in a real argument. In the real argument the

values a0, r0, b0, s0, and τ0 are picked at random giving us that a, r, b, s, τ are uniformly random just

as in the simulation. So, up to this point we have the same probability distribution in both real argu-

ments and simulated arguments and the remaining parts cA0
, cb0 , E0 are now uniquely defined by the
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verification equations. It follows that real arguments and simulated arguments have identical probability

distributions.

Finally, we will show that the argument has perfect generalized special soundness. Given 2m

accepting transcripts with no collision among the challenges, the extractor can extract witness as follows.

The first m+ 1 transcripts give us a transposed Vandermonde matrix

X =


1 1 . . . 1

x1 x2 . . . xm+1

...
...

...

xm1 xm2 . . . xmm+1

 .

Since x1, . . . , xm+1 are different X is invertible.

We now have for each x` an opening of cA0
c x`
A = comck(a(`), r(`)). Let Ax be the matrix with

columns a(1) . . . a (m+1) and let rx = (r(1), . . . , r(m+1)). We then have

(cA0
, . . . , cAm) =

(
(cA0

, . . . , cAm)X
)X−1

= comck(Ax; rx)X
−1

= comck(AxX
−1; rxX

−1),

which gives us openings a0, r0, . . . ,am, rm of the commitments cA0
, . . . , cAm . In a similar way the

extractor can compute openings b0, s0, . . . , b2m−1, s2m−1 of cB0 , . . . , cB2m−1 . We now have for

` = 1, . . . , 2m that a(`) =
∑m
j=0 x

j
`aj , this means

m∏
i=1

c
xm−i` a(`)

i =

m∏
i=1

c
∑m
j=0 x

m+j−i
` aj

i =

2m−1∏
k=0

 m∏
j=0

1≤m−k+j≤m

c
aj

(m−k)+j


xk`

.

Let E = (E0, . . . , E2m−1) and let Y be the inverse of the 2m× 2m matrix

X =


1 1 . . . 1

x1 x2 . . . x2m

...
...

...

x2m−1
1 x2m−1

2 . . . x2m−1
2m
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and let yi be the i-th column vector in Y (numbered 0 through 2m−1). We get for each i = 0, . . . , 2m−1

Ei = EXyi =

2m∏
`=1

(
2m−1∏
k=0

E
xk`
k

)y`i

=

2m∏
`=1

Epk(Gb(`) ; τ (`)
) 2m−1∏

k=0

( m∏
j=0

1≤m−k+j≤m

c
aj

(m−k)+j

)xk`

y`i

= Epk
(
G

∑2m
`=1 b

(`)y`i ;

2m∑
`=1

τ (`)y`i

) 2m−1∏
k=0

 m∏
j=0

1≤m−k+j≤m

c
aj

(m−k)+j


∑2m
`=1 x

k
` y`i

= Epk
(
Gbi ; τi

) m∏
j=0

1≤m−i+j≤m

c
aj

(m−i)+j ,

where τi =
∑2m
`=1 τ

(`)y`i.

The verifier checks cbm = comck(0; 0) so the binding property implies that there is negligible

probability for the extractor extracting bm 6= 0. Since Em = C we now have

C = Epk(G0; τm)

m∏
j=0

1≤m−m+j≤m

c
aj
m−m+j = Epk(1; ρ)

m∏
i=1

c ai
i

with ρ = τm. This shows that we have extracted a valid witness for the statement. This opening is the

same as known by the prover. If this is not the case, the prover could run the extractor to find an different

opening for at least one of their commitments with non-negligible probability, and the commitment

scheme is broken.

Efficiency: During the protocol the prover sends 2m ciphertexts, 2m commitments, and n field elements

to the verifier; thus, the communication complexity is O(m+ n).

The prover has to compute 2m commitment which needs 2m exponentiations. Furthermore they

have to calculate the ciphertexts Ek, naı̈vely this costs mN exponentiations in H. Using the technique

described in the next section, this cost can be brought down to O(N logm) exponentiations in G. Al-

lowing more rounds of interaction we can even achieve a computation cost of O(N). Both techniques

gain from multi-exponentiation techniques, see Section 4.3, to bring the cost of the prover down further.

On top off this the prover has to calculate N + 10m+ n multiplications.

The verifier has to calculate 7m + 2n exponentiations in G, plus N exponentiations in H, so the

cost is O(N). He also has to calculate the same number of multiplications. Again the verifier gains from

multi-exponentiations techniques, see Section 4.3, or batch verification [BGR98, Gro10].

Example: Let G = 〈G〉 = 〈46〉 ⊂ Z∗179, with prime order |q| = 89. The public keys and

the group description are pk = 74 and {G, p, q} = {〈47〉, 179, 89}, ck = {G1, . . . , G4, H} =
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{46, 177, 161, 100, 72}. The ciphertexts

C ′ =


(20, 66) (75, 149) (144, 57) (42, 88)

(15, 9) (51, 64) (25, 15) (59, 138)

(158, 29) (61, 142) (116, 88) (106, 65)

 ,

C = (64, 173), and cA = (48, 61, 19)T . The prover knows witnesses

A =


83 85 60 36

23 68 79 32

48 37 54 11

 ,

r = (67, 34, 15)T , ρ = 38 such that

C = Epk(1; ρ)

m∏
i=1

caii and cA = comck(a; r).

The prover picks random a0 = (82, 12, 54, 52)T ← Z4
89, r0 = 47, computes

cA0
= 48,

picks

b = (17, 53, 0, 56, 0)T s = (76, 35, 60, 84, 74)T

and computes the commitments to the values bk.

cb = (1, 29, 156, 1, 67, 22)T .

Lastly, the prover calculates the values

ek =

m,m∏
i=1,j=0

j=(k−m)+i

c
aj
i ,

e =
(
(124, 67) (161, 156) (83, 52) (19, 22) (116, 161) (12, 51)

)
,

picks τ = (13, 14, 53, 83, 70, 31)T , and re-encrypts e as follows

Ek = Epk(Gbk , τk)ek

=
(
(20, 70) (76, 124) (141, 49) (64, 173) (146, 61) (52, 151)

)
.
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The prover sends all values cA0
, cb,E to the verifier, who answers with challenge x = 62. Then the

prover calculates answers

a = (52, 46, 0, 4)T r = 50 b = 63 s = 23 τ = 19.

The verifier, after receiving the answers, checks if all commitments are in G, all ciphertexts are in H and

all answers are valid. He defines x = (x, x2, x3, x4) and further checks

cbm = 1 = comck(0; 0) (X) Em = (64, 173) = C (X)

cA0
cxA = 87 = comck(a; r) (X) cb0

2m−1∏
k=1

cx
k

bk
= 107 = comck(b; s) (X)

E0

2m−1∏
k=1

Ex
k

k = (66, 46) = Epk(Gb; τ)

m∏
i=1

cx
m−iai
i .

8.3.1 The prover’s computation

The argument we just described has efficient verification and very low communication complexity, but

the prover has to compute

E0, . . . , E2m−1.

In this section we will for clarity ignore the randomization needed to get honest verifier zero-knowledge,

which can be added in a straightforward manner at little extra computational cost. So, let us say we need

to compute for k = 1, . . . , 2m− 1 the elements

Ek =

m,m∏
i=1,j=1

j=(k−m)+i

c
aj
i .

This can be done by first computing the m2 products c aj
i and then computing the Ek’s as suitable

products of some of these values. Since each product c aj
i is of the form

n∏
`=1

C
aj`
i`

this gives a total of m2n exponentiations in H. For large m this cost is prohibitive.

It turns out that we can do much better by using techniques inspired by multiplication of inte-

gers and polynomials, such as Karatsuba [KO63], Toom-Cook [Too00, Coo66], and the Fast Fourier

Transform [CT65]. A common theme in these techniques is to compute the coefficients of the prod-

uct p(x)q(x) of two degree m − 1 polynomials p(x) and q(x) by evaluating p(x)q(x) in 2m − 1

points ω0, . . . , ω2m−2 and using polynomial interpolation to recover the coefficients of p(x)q(x) from

p(ω0)q(ω0), . . . , p(ω2m−2)q(ω2m−2).
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If we pick ω ∈ Zq we can evaluate the vectors

m∏
i=1

c ω
m−i

i

m∑
j=1

ωj−1aj .

This gives us

(
m∏
i=1

c ω
m−i

i

)∑m
j=1 ω

j−1aj

=

2m−1∏
k=1

 m,m∏
i=1,j=1

j=(k−m)+i

c
aj
i


ωk−1

=

2m−1∏
k=1

E ωk−1

k .

Picking 2m− 1 different ω0, . . . , ω2m−2 ∈ Zp we get the 2m− 1 ciphertexts

2m−1∏
k=1

E
ωk−1

0

k , . . . ,

2m−1∏
k=1

E
ωk−1

2m−2

k .

The ω0, . . . , ω2m−2 are different and therefore the transposed Vandermonde matrix


1 . . . 1
...

...

ω2m−2
0 . . . ω2m−2

2m−2


is invertible. Let yi = (y0, . . . , y2m−2)T be the i-th column of the inverse matrix. We can now compute

Ei as

Ei =

2m−2∏
`=0

(
2m−1∏
k=1

E
ωk−1
`

k

)y`
=

2m−2∏
`=0

(( m∏
i=1

c
ωm−i`
i

)∑m
j=1 ω

j−1
` aj

)y`
This means the prover can compute E1, . . . , E2m−1 as linear combinations of

(
m∏
i=1

c
ωm−i0
i

)∑m
j=1 ω

j−1
0 aj

. . .

(
m∏
i=1

c
ωm−i2m−2

i

)∑m
j=1 ω

j−1
2m−2aj

.

The expensive step in this computation is to compute
∏m
i=1 c

ωm−i0
i , . . . ,

∏m
i=1 c

ωm−i2m−2

i .

If 2m − 2 is a power of 2 and 2m − 2|q − 1 we can pick ω1, . . . , ω2m−2 as roots of unity, i.e.

ω2m−2
k = 1. This allows us to use the Fast Fourier Transformation “in the exponent” to simultaneously

calculate
∏m
i=1 c

ωm−ik
i in all of the roots of unity using only O(mn logm) exponentiations. This is

asymptotically the fastest technique we know for computing E0, . . . , E2m−2.

Unfortunately, the FFT is not well suited for being used in combination with multi-exponentiation

techniques and in practice it takes a while before the asymptotic behavior kicks in. Therefore, for small

m it is useful to consider other strategies. Inspired by the Toom-Cook method for integer multiplication,

we may for instance choose ω0, ω1, . . . , ω2m−2 to be small integers. When m is small even the largest

exponent ω2m−2
k will remain small. For instance, if m = 4 we may choose

ωk ∈ {0,−1, 1,−2, 2,−3, 3}, which makes the largest exponent ωm−1
k = 33 = 27. This makes it cheap
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to compute each
∏m
i=1 c

ωm−ik
i because the exponents are very small.

The basic step of Toom-Cook outlined above can be optimized by choosing the evaluation points

carefully. However, the performance degrades quickly as m grows. Using recursion it is possible to

get subquadratic complexity also for large m, however, the cost still grows relatively fast. In the next

section we will therefore describe an interactive technique for reducing the prover’s computation. In our

implementation, see Section 8.5, we have used a combination of the interactive technique and Toom-

Cook as the two techniques work well together.

8.3.2 Trading computation for interaction

We will present an interactive technique that can be used to reduce the prover’s computation. The prover

wants to show thatC has the same plaintext as the product of the main diagonal of following matrix (here

illustrated for m = 16). The technique is based on [GI08] interaction technique to reduce the numbers

of multiplication needed in their protocol.



c a1
1 c a2

1 c a3
1 c a4

1

c a1
2 c a2

2 c a3
2 c a4

2

. . .

c a1
3 c a2

3 c a3
3 c a4

3

c a1
4 c a2

4 c a3
4 c a4

4

. . .

c a13
13 c a14

13 c a15
13 c a16

13

. . . c a13
14 c a14

14 c a15
14 c a16

14

c a13
15 c a14

15 c a15
15 c a16

15

c a13
16 c a14

16 c a15
16 c a16

16


In the previous section the prover calculated all m2 entries of the matrix. But we are only interested

in the product along the diagonal so we can save computation by just focusing on the blocks close to the

main diagonal.

Let us explain the idea in the case of m = 16. We can divide the matrix into 4× 4 blocks and only

use the four blocks that are on the main diagonal. Suppose the prover wants to demonstrate

C =

16∏
i=1

c ai
i .

Let us for now just focus on soundness and return to the question of honest verifier zero-knowledge later.

The prover starts by sending E0, E1, E2, E3, E4, E5, E6 that are the products along the diagonals of the

elements in the blocks that we are interested in, i.e.

E0 =

4∏
i=1

c
a4i−3

4i , . . . , E6 =

4∏
i=1

c a4i
4i−3

and E3 = C. The verifier sends a random challenge x and using the homomorphic properties of the en-
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cryption scheme and of the commitment scheme both the prover and the verifier can compute c′1, . . . , c
′
4

and cA′1 , . . . , cA′4 as

c′i = c x
3

4i−3c
x2

4i−2c
x

4i−1c4i cA′j = cA4j−3c
x
A4j−2

c x
2

A4j−1
c x

3

A4j
.

They can also both compute C ′ =
∏6
k=0E

xk

k . The prover and the verifier now engage in an SHVZK ar-

gument for the smaller statement C ′ =
∏4
i=1 c

′ a′i
i . The prover can compute a witness for this statement

with a′i = a4i−3 + xa4i−2 + x2a4i−1 + x3a4i. This shows

Cx
3

6∏
k=0
k 6=3

Ex
k

k =

4∏
i=1

(c x
3

4i−3c
x2

4i−2c
x

4i−1c4i)
(a4i−3+xa4i−2+x2a4i−1+x3a4i).

Looking at the x3-related terms, we see this has negligible chance of holding for a random x unless

C =
∏16
i=1 c

ai
i , which is what the prover wanted to demonstrate.

We will generalize the technique to reducing a statement c1, . . . , cm, C, cA1 , . . . , cAm with a factor

µ to a statement c′1, . . . , c
′
m′ , C

′, cA′1 , . . . , cA′m′ wherem = µm′. To add honest verifier zero-knowledge

to the protocol, we have to prevent the Ek’s from leaking information about a1, . . . ,am. We do this by

randomizing each Ek with a random ciphertext Epk(Gbk ; tk). To prevent the prover using the random-

ization to cheat they will have to commit themselves to the bk’s before seeing the challenge x.

Statement: {G, p, q}, pk, ck, c1, . . . , cm ∈ Hn, C ∈ H and cA1
, . . . , cAm ∈ G where m = µm′.

Prover’s witness: A ∈ Zn×mq , r ∈ Zmq and ρ ∈ Zq such that

C = Epk(1; ρ)

m∏
i=1

c ai
i and cA = comck(A; r).

Initial message: Compute

1. cb = comck(b; s), where b = (b0, . . . , b2µ−2), s← Z2µ−1
q , and bµ−1 = sµ−1 = 0

2. For k = 0, . . . , 2µ− 1, τk ← Zq and τµ−1 = ρ

Ek = Epk(Gbk ; τk)

m′−1∏
`=0

µ,µ∏
i=1,j=1

j=(k+1−µ)+i

c
aµ`+j
µ`+i

Send: cb,E = (E0, . . . , E2µ−2).

Challenge: x← Z∗q

Answer: Set x = (1, x, . . . , x2µ−2)T and compute

1. b = b · x s = s · x
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2. a′` =
∑µ
j=1 x

j−1aµ(`−1)+j r′` =
∑µ
j=1 x

j−1rµ(`−1)+j for ` = 1, . . . ,m′

3. ρ′ = τ · x

4. c′` =
∏µ
i=1 c

xµ−i

µ(`−1)+i cA′` =
∏µ
j=1 c

xj−1

Aµ(`−1)+j
for ` = 1 . . .m′

5. C ′ = Epk(G−b; 0)Ex

Engage in an SHVZK argument of openings a′1, . . . ,a
′
m′ , r

′ and ρ′ such that

C ′ = Epk(1; ρ′)

m′∏
`=1

c
′ a′`
` .

Verification: Accept if and only if

1. cb ∈ G2µ−1

2. E0, . . . , E2µ−2 ∈ H

3. b, s ∈ Zq

4. cbµ−1 = comck(0; 0) Eµ−1 = C c x
b = comck(b; s)

5. The SHVZK argument for c′1, . . . , c
′
m′ , C

′, cA′1 , . . . , cA′m′ is valid.

Theorem 34. The protocol above is a public coin perfect generalized Σ−protocol of a1, . . . ,am, r such

that C = Epk(1; ρ)
∏m
i=1 c

ai
i

Proof. Let us first argue that we have perfect completeness. It follows by straightforward verification

that cbµ−1
= comck(0; 0), and C = Eµ−1, and c x

b = comck(b; s). Both the prover and the verifier

can compute the reduced statement c′1, . . . , c
′
m′ , C

′, cA′ as described above and the prover can compute

openings of cA′ and ρ′ = τ · x. Perfect completeness now follows from the perfect completeness of the

underlying SHVZK argument because C ′ = Epk(1; ρ′)
∏m′

i=1 c
′ a′i
i . To see this is the case, we compute
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C ′ = Epk(G−b; 0)

2µ−2∏
k=0

Ex
k

k

= Epk(G−b·x; 0)

2µ−2∏
k=0

Epk(Gbk ; τk)

m′−1∏
`=0

µ,µ∏
i=1,j=1

j=(k+1−µ)+i

c
aµ`+j
µ`+i


xk

= Epk
(
G0; τ · x

) 2µ−2∏
k=0

m′−1∏
`=0

µ,µ∏
i=1,j=1

j=(k+1−µ)+i

(
c x

µ−i

µ`+i

) xj−1aµ`+j

= Epk(1; ρ′)

m′∏
`=1

2µ−2∏
k=0

µ,µ∏
i=1,j=1

j=(k+1−µ)+i

(
c x

µ−i

µ(`−1)+i

) xj−1aµ(`−1)+j

= Epk(1; ρ′)

m′∏
`=1

c
′ a′`
`

Let us now describe the SHVZK simulator. On challenge x it picks cb1 , . . . , cb2µ−2
← G, b, s← Zq ,

and E0, . . . , E2µ−2 ← H. It sets cbµ−1
= comck(0; 0) and Eµ−1 = C, and computes

cb0 = comck(b; s)

2µ−2∏
j=1

c −x
j

bj
.

Now it runs the simulator for the SHVZK argument on c′1, . . . , c
′
m′ , C

′, cA′1 , . . . , cA′m′ .

Both in real arguments and simulated arguments we have uniformly random ciphertexts

E0, . . . , Eµ−2, Eµ, . . . , E2µ−2, andEµ−1 = C. The commitment scheme is perfectly hiding, so we have

that cb1 , . . . , cbµ−2
, cbµ , . . . , cb2µ−2

are uniformly random in real arguments and cbµ−1
= comck(0; 0)

just as in the simulation. In a real argument we have b0, s0 ← Zq chosen at random, which implies

that b, s are uniformly random just as in the simulation. Given all these values the verification equation

uniquely defines

cb0 = comck(b; s)

2µ−2∏
k=1

c −x
k

bk
.

It now follows from the perfect SHVZK of the underlying argument that the simulation is perfect.

Now, we have to show that the argument has perfect generalized special soundness.

Suppose now the extractor E has satisfactory answers to 2µ− 1 challenges x1, . . . , x2µ−1, with no

collision. The matrix X with columns of the form x` = (1, x`, . . . , x
2µ−2
` )T is a transposed Vander-

monde matrix and as x1, . . . , x2µ−1 are different X is invertible. Define bx = (b(1), . . . , b(2µ−1)) and

sx = (s(1), . . . , s(2µ−1)). We now have

cb = (c Xb )X
−1

= comck(bx; sx)X
−1

= comck(bxX
−1; sxX

−1)

which gives us openings b0, . . . , b2µ−1, s0, . . . , s2µ−1 of all the commitments cb0 , . . . , cb2µ−2
the prover

sent.
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The extractor E for the underlying SHVZK arguments provides us with openings (a′j)
(`), (r′j)

(`)

of cA′j =
∏µ
k=1 c

xj−1

Ajµ+k
. Using a similar technique as we did for the bi’s we can by taking appropriate

linear combinations find openings a1, r1, . . . ,am, rm of cA1 , . . . , cAm .

The extractor of the underlying argument give us ρ′(1), . . . , ρ′(2µ−1) in response to the challenges

x1, . . . , x` satisfying C ′(`) = Epk(1; ρ′(`))
∏m′

i=1

(
c
′(`)
i

) a
′(`)
i . We will now argue that a linear combina-

tion of those will give us the desired ρ, needed to complete our argument. Let y = (y1, . . . , y2µ−1) be

the (µ− 1)-th column of X−1 such that

2µ−1∑
`=1

xk` y` = 1

for k = µ− 1, else 0, and define

ρ =

2µ−1∑
`=1

ρ′(`)y`.

The verifier checks cbµ−1
= comck(0; 0), so the binding property implies that bµ−1 = 0. We then have

C = Eµ−1 =

2µ−1∏
`=1

(
2µ−2∏
k=0

E
xk`
k

)y`
=

2µ−1∏
`=1

(
Epk(Gb

(`)

; 0)C ′(`)
)y`

=

2µ−1∏
`=1

Epk(Gb
(`)

; ρ′(`))

m′∏
u=1

(
c′(`)u

) a′(`)u

y`

= Epk
(
G

∑2µ−1
`=1 b(`)y` ;

2µ−1∑
`=1

ρ′(`)y`

) 2µ−1∏
`=1

m′−1∏
u=0

( µ∏
i=1

c
xµ−i`
uµ+i

)∑µ
j=1 x

j−1
` auµ+j

y`

= Epk(Gbµ−1 ; ρ)

2µ−1∏
`=1

m′−1∏
u=0

2µ−2∏
k=0

( 2µ−2∏
i=1,j=1

j=(k−µ+1)+i

c
auµ+j
uµ+i

)xk`
y`

= Epk(G0; ρ)

m′−1∏
u=0

2µ−2∏
k=0

( 2µ−2∏
i=1,j=1

j=(k−µ+1)+i

c
auµ+j
uµ+i

)∑2µ−1
`=1 y`x

k
`

= Epk(1; ρ)

m′−1∏
u=0

2µ−2∏
i=1,j=1

j=(µ−1−µ+1)+i

c
auµ+j
uµ+i = Epk(1; ρ)

m∏
i=1

c ai
i .

This means E has extracted a valid witness, which is the same as the witness known by the prover.

Otherwise, the commitment scheme is broken, as the prover can use the extractor to find a second opening

for one of their commitments.

Efficiency: In each call of the argument with m = m′µ the prover sends 2µ ciphertexts and 2µ commit-

ments to the verifier. So the communication cost for one round is O(µ).

To calculate the commitments the prover has to calculate 4µ exponentiations in G. The cost to

calculate on Ek consists of m′µ2n exponentiations in H; therefore, the cost to calculate all 2µ values of

Ek is m′µ3n. On top of this the prover has to calculate 2m′µ3n+m′µn+ 7µ multiplications.
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The verifier needs to calculate 6µ exponentiations in G and 4µ multiplications to check the argu-

ment. Furthermore, the verifier has to calculate the new C ′ which costsm′n exponentiations in H. Thus,

the computation cost of the prover is O(N).

Assuming m = µν and both parties engage in u rounds of the protocol. The total communication

cost is then 2µν elements of H and 2µν group elements. The provers cost adds to approximately µ2N

exponentiations in H and (3µ3 +µ)N+7νµmultiplications. In each call of the argument the verifier has

to calculate C ′ this costs adds to O(N) exponentiations in H, whereas the cost to check all arguments

counts to 6µν exponentiations in G and 4µν multiplications.

8.4 Implementation and Practical Results
To obtain some experimental results and to analyze the shuffle argument further we implemented it in

C++ using the approach described in Chapter 4. We collected data for different groups, we looked at

different combination of groups with order 160-bit, 256-bit, and 384-bit, and moduli values of 1 248-bit,

1 536-bit, 2 432-bit and a 3 248-bit. Furthermore, we run the argument on a 160-bit subgroup modulo a

1 024-bit prime to compare our implementation with early protocols.

Most of the groups we used are not standard in research community but we chose them to analyze

the behavior of our shuffle argument in more detail. Please see also Section 4.1.1 for a more detailed

discussion on the security and usability of these groups.

In total we experimented with five different implementations to compare their relative merit:

1. Without any optimizations at all.

2. Using multi-exponentiation techniques.

3. Using multi-exponentiation and the Fast Fourier Transform.

4. Using multi-exponentiation and a round of the interactive technique with µ = 4 and Toom-Cook

for m′ = 4 giving m = µm′ = 16.

5. Using multi-exponentiation and two rounds of the interactive technique first with µ = 4 and

Toom-Cook for m′ = 4 giving m = µ2m′ = 64.

In our first experiment we used the same underlying group G for the Pedersen commitments, that

means the commitments are generated in G, and the ElGamal encryption works over H = G × G. G

was chosen as an order q subgroup of Z∗p, where |q| = 160 and |p| = 1 248. We also used a group G

with a 256-bit order modulo a 1 536-bit prime to conduct the same experiment. The results can be found

in Table 8.1, 8.2 , 8.3, 8.4.

Table 8.1 states the results for different values m = 1, 8, 16, 64 for N = 10 000 for |q| = 160 and

|p| = 1 248, and Table 8.2 for N = 100 000 for the same group. Firstly, we see that the performance of

the un-optimized prover gets slower for growing m. The increase of the runtime is less than the increase

ofm, it seems that the calculations of theEk dominates the performance. For the version optimized with

multi-exponentiation techniques or FFT we notice a similar behavior for the prover.
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N = 10 000 Optimization Total time Time P Time V
m = 1 Un-optimized 72 s 39 s 33 s

Multi-expo 20 s 11 s 9 s
m = 8 Un-optimized 77 s 63 s 15 s

Multi-expo 17 s 14 s 3 s
FFT 26 s 23 s 3 s

m = 16 Un-optimized 122 s 109 s 13 s
Multi-expo 28 s 25 s 3 s
FFT 32 s 29 s 3 s
Toom-Cook 20 s 14 s 6 s

m = 64 Un-optimized 407 s 394 s 13 s
Multi-expo 128 s 124 s 4 s
FFT 50 s 46 s 4 s
Toom-Cook 23 s 17 s 6 s
Time Shuffle 7 s

Table 8.1: Run-time of the shuffle arguments in seconds for N = 10 000 and different choices of m for
a subgroup of order 160-bit modulo a 1 248-bit prime.

N = 100 000 Optimization Total time Time P Time V
m=1 Un-optimized 724 s 393 s 331 s

Multi-expo 366 s 205 s 161 s
m=8 Un-optimized 773 s 628 s 145 s

Multi-expo 196 s 157 s 41 s
FFT 301 s 251 s 50 s

m=16 Un-optimized 1 227 s 1 094 s 133 s
Multi-expo 251 s 223 s 28 s
FFT 323 s 294 s 29 s
Toom-Cook 191 s 137 s 54 s

m=64 Un-optimized 4 064 s 3 941 s 124 s
Multi-expo 822 s 795 s 26 s
FFT 440 s 413 s 26 s
Toom-Cook 181 s 126 s 55 s
Time Shuffle 71 s

Table 8.2: Run-time of the shuffle arguments in seconds for N = 100 000 and different choices of m for
a subgroup of order 160-bit modulo a 1 248-bit prime.

For the un-optimized verifier we see that for growing m the performance gets better, this indicates

that the asymptotic cost of N + 15m + 9n multiplications influences the run-time. Again the same is

true for the first two optimized versions. In the case of Toom-Cook we see that the verifier runs around

two times slower than the optimized verifier, this is explained by the slightly increase in the number of

exponentiation.

We also see that the un-optimized version is slow and the performance gains a lot from any opti-

mization technique. For the prover it seems that the multiplication has no influence at all; however, for

the verifier the cost of the multiplications seems to have some influence.

We see that the plain multi-exponentiation techniques yield better results than the FFT method for

small m; the better asymptotic behavior of the FFT only kicks in for m > 16. We expected that the
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N = 10 000 Optimization Total time Time P Time V
m=1 Un-optimized 163 s 88 s 74 s

Multi-expo 40 s 22 s 18 s
m=8 Un-optimized 175 s 142 s 33 s

Multi-expo 35 s 29 s 7 s
FFT 55 s 48 s 7 s

m=16 Un-optimized 278 s 247 s 30 s
Multi-expo 60 s 53 s 7 s
FFT 68 s 61 s 7 s
Toom-Cook 41 s 29 s 12 s

m=64 Un-optimized 920 s 892 s 28 s
Multi-expo 280 s 271 s 9 s
FFT 107 s 98 s 9 s
Toom-Cook 47 s 34 s 13 s
Time Shuffle 15 s

Table 8.3: Run-time of the shuffle arguments in seconds for N = 10 000 and different choices of m for
a subgroup of order 256-bit modulo a 1 536-bit prime.

N = 100 000 Optimization Total time Time P Time V
m=1 Un-optimized 1 635 s 888 s 746 s

Multi-expo 684 s 378 s 3104 s
m=8 Un-optimized 1 748 s 1418 s 330 s

Multi-expo 451 s 360 s 91 s
FFT 5620 s 534 s 86 s

m=16 Un-optimized 2 778 s 2 477 s 301 s
Multi-expo 536 s 476 s 60 s
FFT 695 s 631 s 64 s
Toom-Cook 384 s 273 s 111 s

m=64 Un-optimized 9 204 s 8 925 s 279 s
Multi-expo 1 745 s 1 690 s 56 s
FFT 941 s 886 s 56 s
Toom-Cook 355 s 245 s 110 s
Time Shuffle 145 s

Table 8.4: Run-time of the shuffle arguments in seconds for N = 100 000 and different choices of m for
a subgroup of order 256-bit modulo a 1 536-bit prime.

Toom-Cook inspired version with added interaction give us the best running time and communication

cost; however, this only true for large N . In the case of N = 100 000 the performance of the prover

optimized with Toom-Cook and two extra rounds of interaction out performances all other settings and

therefore the complete argument is fastest even considering the slower verifier in this case. For N =

10 000 plain multi-exponentiation techniques lead to best performance in overall when m is chosen as

8. All these conclusions are backed up by the data for |q| = 256 and |p| = 1 536, which can be found in

Table 8.3 and 8.4.

In the following experiments we will focus on data obtained with m = 8, 16, 64 and with the four

different levels of optimization. Just to find out how fast our argument can be in different settings, it

would be enough just to collect data for the Toom-Cook versions for big N and for the plain multi-
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exponentiation techniques for small N . However, the influence of the FFT might change for different

settings.

We want to see how the shuffle argument behave for even bigger N ; thus, we collected data for all

levels of optimizations for N = 1 000 000 and different m. The result for |q| = 160 and |p| = 1 248,

and |q| = 256 and |p| = 1 536 can be found in Table 8.5 and Table 8.6. We see that in this case

the version with two extra rounds of interaction leads also to the best performance. But, we also see

that the asymptotic behavior of the FFT kicks in for smaller m and FFT beats the multi-exponentiation

techniques for m > 8.

N = 1 000 000 Optimization Total time Time P Time V
m = 8 Multi-expo 3 061 s 2 457 s 603 s

FFT 3 424 s 2 819 s 605 s
m = 16 Multi-expo 4 615 s 4 036 s 546 s

FFT 3 916 s 3 370 s 546 s
Toom-Cook 2 770 s 2 052 s 718 s

m = 64 Multi-expo 12 131 s 11 566 s 412 s
FFT 4 937 s 4 519 s 418 s
Toom-Cook 2 410 s 1 781 s 629 s
Time Shuffle 679 s

Table 8.5: Run-time of the shuffle arguments in seconds for N = 1 000 000 and different choices of m
for a subgroup of order 160-bit modulo a 1 248-bit prime.

N = 1 000 000 Optimization Total time Time P Time V
m = 8 Multi-expo 5 627 s 4 525 s 1 102 s

FFT 6 883 s 5 778 s 1 105 s
m = 16 Multi-expo 8 435 s 7 461 s 974 s

FFT 7 956 s 6 985 s 972 s
Toom-Cook 5 316 s 3 882 s 1 434 s

m = 64 Multi-expo 23 066 s 22 328 s 738 s
FFT 10 399 s 9 665 s 734 s
Toom-Cook 4 467 s 3 262 s 1 205 s
Time Shuffle 1 461 s

Table 8.6: Run-time of the shuffle arguments in seconds for N = 1 000 000 and different choices of m
for a subgroup of order 256-bit modulo a 1 536-bit prime.

For the next experiment we kept the size of the subgroup fixed and used different moduli values.

Table 8.7 states the data for N = 10 000 for |q| = 160 and |p| = 1 248, 1 536 and 3 248; whereas

Table 8.8 give the data for N = 100 000 for the same groups. In tables 8.9 and 8.10 we find the same

date for a fixed 256-bit subgroup modulo a 1 536-bit, a 2 432-bit, and a 3 248-bit prime.

We notice that increasing the modulo value by a certain factor, increases the complete run-time;

however, the increase is not linear with the increase of the moduli value, the bigger p gets the more

suffers the performance of the argument. One possible reason for this is that exponentiations get more

expensive for bigger moduli and as seen before the cost of the exponentiations is the dominant part of

the argument; thus, this cost slows everything down. This finding means that increasing the security of
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|q| = 160 |p| = 1 248 |p| = 1 536 |p| = 3 248
N = 10 000 Optimization Time P Time V Time P Time V Time P Time V
m = 8 Multi-expo 14 s 3 s 17 s 4 s 54 s 13 s

FFT 23 s 3 s 31 s 4 s 110 s 13 s
m = 16 Multi-expo 25 s 3 s 31 s 4 s 102 s 13 s

FFT 29 s 3 s 40 s 4 s 145 s 13 s
Toom-Cook 14 s 6 s 19 s 7 s 63 s 24 s

m = 64 Multi-expo 124 s 4 s 156 s 5 s 544 s 18 s
FFT 46 s 4 s 64 s 5 s 235 s 18 s
Toom-Cook 17 s 6 s 21 s 8 s 73 s 28 s
Time Shuffle 7 s 10 s 37 s

Table 8.7: Run-time of the shuffle arguments in seconds for N = 10 000 for different m for a subgroup
of order 160-bit modulo |p| = 1 248, 1 536, and 3, 248.

|q| = 160 |p| = 1 248 |p| = 1 536 |p| = 3 248
N = 100 000 Optimization Time P Time V Time P Time V Time P Time V
m = 8 Multi-expo 157 s 40 s 187 s 50 s 539 s 130 s

FFT 251 s 50 s 325 s 50 s 1 109 s 130 s
m = 16 Multi-expo 223 s 28 s 277 s 36 s 880 s 108 s

FFT 294 s 29 s 403 s 35 s 1 431 108 s
Toom-Cook 137 s 54 s 176 s 67 s 585 s 227 s

m = 64 Multi-expo 795 s 26 s 989 s 33 s 3 248 s 105 s
FFT 413 s 26 s 581 s 33 s 2 138 s 105 s
Toom-Cook 126 s 55 s 158 s 69 s 515 s 231 s
Time Shuffle 71 s 100 s 369 s

Table 8.8: Run-time of the shuffle arguments in seconds for N = 100 000 for different m for a subgroup
of order 160-bit modulo |p| = 1 248, 1 536, and 3 248.

|q| = 256 |p| = 1 536 |p| = 2 432 |p| = 3 248
N = 10 000 Optimization Time P Time V Time P Time V Time P Time V
m = 8 Multi-expo 29 s 7 s 57 s 14 s 87 s 21 s

FFT 48 s 7 s 109 s 14 s 171 s 21 s
m = 16 Multi-expo 53 s 7 s 106 s 13 s 164 s 21 s

FFT 61 s 7 s 142 s 13 s 225 s 21 s
Toom-Cook 29 s 12 s 63 s 25 s 99 s 40 s

m = 64 Multi-expo 271 s 9 s 564 s 19 s 880 s 29 s
FFT 98 s 9 s 230 s 19 s 365 s 29 s
Toom-Cook 34 s 13 s 73 s 28 s 115 s 44 s
Time Shuffle 15 s 36 s 57 s

Table 8.9: Run-time of the shuffle arguments in seconds for N = 10 000 for different m for a subgroup
of order 256-bit modulo |p| = 1 536, 2 432, and 3 248.

the shuffle argument by increasing the modulo value leads to a slower performance, and the increase in

the run-time is higher than the increase of the security.

Tables 8.11, 8.12, 8.13, 8.14, state the data for the reverse case, that means the modulo value stays

fixed and the order of the group changes. In this setting we decided to use |p| = 1 536 and |p| = 3 248,

we see that the run-time gets slower for bigger subgroup sizes. For the prover we notice that the increase
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|q| = 256 |p| = 1 536 |p| = 2 432 |p| = 3 248
N = 100 000 Optimization Time P Time V Time P Time V Time P Time V
m = 8 Multi-expo 360 s 91 s 606 s 154 s 894 s 214 s

FFT 534 s 86 s 1 122 s 153 s 1 737 s 214 s
m = 16 Multi-expo 476 s 60 s 923 s 125 s 1 415 s 175 s

FFT 631 s 64 s 1 409 s 117 s 2 220 s 175 s
Toom-Cook 266 s 109 s 586 s 241 s 921 s 375 s

m = 64 Multi-expo 1 690 s 56 s 3 408 s 110 s 5,279 s 169 s
FFT 886 s 56 s 2 093 s 110 s 3 320 s 169 s
Toom-Cook 259 s 81 s 514 s 234 s 808 s 365 s
Time Shuffle 145 s 572 s 572 s

Table 8.10: Run-time of the shuffle arguments in seconds forN = 100 000 for differentm for a subgroup
of order 256-bit modulo |p| = 1 536, 2 432, and 3 248.

of the performance is linear with the increase of the subgroup size, this behavior seems to be the same

for all values N . For the verifier we see a similar performance; however, for small N the increase of

the run-time is slightly bigger and for big N slightly smaller than the increase of |p|. This indicates that

increasing the security of our shuffle argument by adjusting the group size leads to a similar change in

the run-time.

|p| = 1 536 |q| = 160 |q| = 256
N = 10 000 Optimization Time P Time V Time P Time V
m = 8 Multi-expo 17 s 4 s 29 s 7 s

FFT 31 s 4 s 48 s 7 s
m = 16 Multi-expo 31 s 4 s 53 s 7 s

FFT 40 s 4 s 61 s 7 s
Toom-Cook 19 s 7 s 29 s 12 s

m = 64 Multi-expo 158 s 5 s 271 s 9 s
FFT 64 s 5 s 98 s 9 s
Toom-Cook 21 s 8 s 34 s 13 s
Time Shuffle 10 s 15 s

Table 8.11: Run-time of the shuffle arguments in seconds for N = 10, 000 for different m for different
subgroups modulo a 1 536-bit prime.

The next experiment is inspired by the discussion of Groth [Gro10] on how to speed up shuffle

arguments in practice. He claims that it is possible to speed up the shuffle by choosing two different

groups for the commitment scheme and the encryption. The only constraint is that both modular groups

have the same order. To analyze this in more detail we decided to run our shuffle argument for this

setting. We fixed our order to be 160-bit and used three different combinations for the moduli values.

First we used the same group for the commitments and the encryption, in our case for a 1 248-bit, a

2 432-bit, and a 3 248-bit prime. Then, we tested the shuffle for different groups for the commitment

and the encryption, here we set the commitment modulus to be 1 248-bit and the encryption modulus to

be 2 432-bit or 3 248-bit. The results can be found in Table 8.15 - 8.18. We also conducted the same

experiment for |q| = 256 and |p| = 1 536, 2 432, 3 248.

Keeping the commitment group fixed and changing the group underlying encryption obvious leads
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|p| = 1 536 |q| = 160 |q| = 256
N = 100 000 Optimization Time P Time V Time P Time V
m = 8 Multi-expo 187 s 50 s 360 s 91 s

FFT 325 s 50 s 534 s 86 s
m = 16 Multi-expo 277 s 36 s 476 s 60 s

FFT 403 s 35 s 631 s 64 s
Toom-Cook 176 s 67 s 266 s 109 s

m = 64 Multi-expo 989 s 33 s 1 690 s 56 s
FFT 581 s 33 s 886 s 56 s
Toom-Cook 158 s 69 s 259 s 81 s
Time Shuffle 100 s 145 s

Table 8.12: Run-time of the shuffle arguments in seconds for N = 100 000 for different m for different
subgroups modulo a 1 536-bit prime.

|p| = 3 248 |q| = 160 |q| = 256 |q| = 384
N = 10 000 Optimization Time P Time V Time P Time V Time P Time V
m = 8 Multi-expo 54 s 13 s 87 s 21 s 129 s 31 s

FFT 110 s 13 s 171 s 21 s 243 s 31 s
m = 16 Multi-expo 102 s 13 s 164 s 21 s 244 s 31 s

FFT 145 s 13 s 225 s 21 s 321 s 31 s
Toom-Cook 63 s 24 s 99 s 40 s 146 s 57 s

m = 64 Multi-expo 545 s 18 s 880 s 29 s 1,310 s 44 s
FFT 235 s 18 s 365 s 29 s 522 s 44 s
Toom-Cook 73 s 28 s 115 s 44 s 171 s 62 s
Time Shuffle 37 s 57 s 83 s

Table 8.13: Run-time of the shuffle arguments in seconds for N = 10 000 for different m for different
subgroups modulo a 3 248-bit prime.

|p| = 3 248 |q| = 160 |q| = 256 |q| = 384
N = 100 000 Optimization Time P Time V Time P Time V Time P Time V
m = 8 Multi-expo 539 s 130 s 894 s 214 s 1 355 s 309 s

FFT 1 109 s 130 s 1 737 s 214 s 2 475 s 306 s
m = 16 Multi-expo 880 s 108 s 1 415 s 175 s 2 100 s 258 s

FFT 1 431 s 108 s 2 220 s 175 s 3 165 s 258 s
Toom-Cook 585 s 227 s 921 s 375 s 1 356 s 537 s

m = 64 Multi-expo 3 284 s 105 s 5 279 s 169 s 7 836 s 250 s
FFT 2 138 s 105 s 3 320 s 169 s 4 745 s 250 s
Toom-Cook 514 s 231 s 808 s 365 s 1 192 s 519 s
Time Shuffle 369 s 572 s 824 s

Table 8.14: Run-time of the shuffle arguments in seconds for N = 100 000 for different m for different
subgroups modulo a 3 248-bit prime.

to an increase of the run-time. For the verifier this increase is similar to the rise of the modulo value p,

as their run-time is dominated by the verification of the ciphertexts. A similar increase can be seen for

the prover.

If we compare the run-time of the case with two different groups to the situation with one group

with big modulo value, we see that there is only a small increase in the performance of the verifier. This
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|p1| = |p2| = |p1| = |p2| = |p1| = |p2| =
|q| = 160 1 248 1 248 1 248 2 432 2 432 2 432

N = 100 000 Optimization Time P Time V Time P Time V Time P Time V
m=8 Multi-expo 157 s 40 s 317 s 83 s 342 s 91 s

FFT 251 s 50 s 656 s 79 s 676 s 88 s
m=16 Multi-expo 223 s 28 s 530 s 72 s 549 s 76 s

FFT 294 s 29 s 843 s 66 s 858 s 68 s
Toom-Cook 137 s 54 s 336 s 135 s 358 s 139 s

m=64 Multi-expo 795 s 26 s 2 003 s 64 s 2 011 s 65 s
FFT 413 s 26 s 1 262 s 64 s 1 273 65 s
Toom-Cook 126 s 55 s 217 s 61 s 316 s 140 s
Time Shuffle 71 s 222 s 218 s

Table 8.15: Run-time of the shuffle arguments in seconds for N = 100 000 for different m for |q| = 160
and different moduli values p1 p2 with |p1| = 1 248, 2 432, |p2| = 1 248, 2 432 .

|p1| = |p2| = |p1| = |p2| = |p1| = |p2| =
|q| = 160 1 248 1 248 1 248 3 248 3 248 3 248

N = 100 000 Optimization Time P Time V Time P Time V Time P Time V
m=8 Multi-expo 157 s 40 s 480 s 114 s 539 s 130 s

FFT 251 s 50 s 1 062 s 115 s 1 109 s 130 s
m=16 Multi-expo 223 s 28 s 835 s 101 s 880 s 108 s

FFT 294 s 29 s 1 392 s 101 s 1 431 s 108 s
Toom-Cook 137 s 54 s 536 s 217 s 585 s 227 s

m=64 Multi-expo 795 s 26 s 3 232 s 101 s 3 284 s 105 s
FFT 413 s 26 s 2 102 s 102 s 2 138 s 105 s
Toom-Cook 126 s 55 s 338 s 95 s 514 s 231 s
Time Shuffle 71 s 368 s 369 s

Table 8.16: Run-time of the shuffle arguments in seconds for N = 100 000 for different m for |q| = 160
and different moduli values p1, p2 with |p1| = 1 248, 3 248, |p2| = 1 248, 3 248 .

|p1| = |p2| = |p1| = |p2| = |p1| = |p2| =
|q| = 256 1 536 1 536 1 536 2 432 2 432 2 432

N = 100 000 Optimization Time P Time V Time P Time V Time P Time V
m = 8 Multi-expo 360 s 91 s 544 s 140 s 606 s 154 s

FFT 534 s 86 s 1 035 s 134 s 1 122 s 153 s
m = 16 Multi-expo 476 s 60 s 854 s 105 s 923 s 125 s

FFT 631 s 64 s 1 312 s 107 s 1 409 s 117 s
Toom-Cook 266 s 109 s 534 s 225 s 586 s 241 s

m = 64 Multi-expo 1 690 s 56 s 3 213 s 104 s 3 408 s 110 s
FFT 886 s 56 s 1 953 s 103 2 093 s 110 s
Toom-Cook 259 s 81 s 343 s 96 s 514 s 234 s
Time Shuffle 145 s 354 s 358 s

Table 8.17: Run-time of the shuffle arguments in seconds for N = 100 000 for different m for |q| = 256
and different moduli values p1, p2 with |p1| = 1 536, 2 432 |p2| = 1 536, 2 432 .

was expected as the verifier calculated only a small number of commitments. For the prover the rise of

the run-time is noticeable, but they have to calculate a big number of commitments.

All in all, the difference between the two versions is small for our parameter, choosing the different
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|p1| = |p2| = |p1| = |p2| = |p1| = |p2| =
|q| = 256 1 536 1 536 1 536 3 248 3 248 3 248

N = 100 000 Optimization Time P Time V Time P Time V Time P Time V
m = 8 Multi-expo 360 s 91 s 815 s 193 s 894 s 214 s

FFT 534 s 86 s 1 660 s 192 s 1 737 s 214 s
m = 16 Multi-expo 476 s 60 s 1 350 s 164 s 1 415 s 175 s

FFT 631 s 64 s 2 153 s 164 s 2 220 s 175 s
Toom-Cook 266 s 109 s 852 s 362 s 921 s 375 s

m = 64 Multi-expo 1 690 s 56 s 5 228 s 165 s 5 279 s 168 s
FFT 886 s 56 s 3 259 s 165 s 3 320 s 169 s
Toom-Cook 259 s 81 s 534 s 149 s 808 s 365 s
Time Shuffle 145 s 573 s 572 s

Table 8.18: Run time of the shuffle arguments in seconds for N = 100 000 for different m for |q| = 160
and different moduli values p1, p2 with |p1| = 1 248, 3 248, |p2| = 1 248, 3 248 .

between p1 and p2 bigger would lead to an increased performance gain using two different groups.

However, one has to be careful to choose all values in a way that the required security level is still

accomplished.

Round 1 2 3 4 5 6 7 8 9
m = 1 1 KB 0.1 KB 1 KB 0.2 KB 4 KB 778 KB 782 KB 1 KB 5.5 MB
m = 8 4 KB 0.1 KB 4 KB 0.2 KB 26 KB 99 KB 107 KB 1 KB 487 KB
m = 16 7 KB 0.1 KB 1 KB 0.2 KB 51 KB 50 KB 65 KB 3 KB 238 KB
m = 64 30 KB 0.1 KB 30 KB 0.2 KB 208 KB 22 KB 74 KB 10 KB 61 KB

Table 8.19: Size of each round for N = 10 000 for different m for |q| = 256 and |p| = 1536.

Next, we have to say a few words on the shuffling operations. All tables also state the time of one

shuffle operation, we see that in general the total execution of one zero-knowledge argument is around 3

times of the execution of one shuffle operation. However, if for the commitments a smaller moduli value

is used we see that our argument can be evaluated in a similar time as the entire shuffle operation.

Lastly, we have to discuss the argument size, Table 8.19 states the size of each round for |q| = 256,

|p| = 1 536, and N = 100 000. In round 2, 4, 6 and 8 the verifier sends challenges to the prover. We

see that challenges in round 2 and 4 are really cheap. Whereas in round 6 and 8 the challenge contains

a few kilobytes. However, the cost of these two rounds can be reduced to 0.1 kilobytes, with a slightly

increase of the run-time, in our implementation the verifier transfers vectors (x, x2, . . .) to the prover.

The size of round 1, 3 are dominated by the size of O(m) commitments and round 5 by the size

of O(m) commitments and ciphertexts, and we see that the size for all 3 rounds behave linear to the

increase of m. Round 9 is dominated by the transfer of 5n field elements, for our different values m,n

we see that the cost of this round gets smaller for bigger values m. We also see that the cost of this

round dominates the argument size for small m, which seems a little bit surprising as we only send field

elements instead of group elements in round 1, 3, 5. But, the number of commitments is very small in this

round and the huge number of field elements leads to the effect we see. In round 7 the prover sends 2m

group elements and 7n field elements, again for small m the huge number of field elements dominates
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the argument size. For growing m the number of field elements drops and with this also the size of the

round until the number of commitments take over and the size grows again. This effect occurs for m

between 16 and 64.

Theoretically we should get best communication performance for m = n =
√
N ; nevertheless, the

practical analysis of the different parameters shows that the actual minimum of the argument size occurs

much earlier. For this special parameters setting, the minimum occurs for m = 64, Table 8.20 states the

complete run-time for different combination of q and p and N = 10 000. We see that in this case the

minimum seems also to occur between 16 and 64.

|q| = 160 160 160 256 256 256 384
|p| = 1 248 1 536 3 248 1 536 2 432 3 248 3 248

Statement 15 MB 19 MB 39 MB 19 MB 29 MB 39 MB 39 MB
Witness 0.5 MB 0.5 MB 0.5 MB 0.8 MB 0.8 MB 0.8 MB 1.3 MB

m = 8 Multi-expo 0.5 MB 0.5 MB 0.5 MB 0.7 MB 0.8 MB 0.8 MB 1.1 MB
m = 16 Multi-expo 0.3 MB 0.4 MB 0.4 MB 0.4 MB 0.5 MB 0.5 MB 0.7 MB

Toom-Cook 0.3 MB 0.3 MB 0.4 MB 0.4 MB 0.4 MB 0.5 MB 0.7 MB
m = 64 Multi-expo 0.3 MB 0.6 MB 0.8 MB 0.4 MB 0.6 MB 0.8 MB 0.9 MB

Toom-Cook 0.2 MB 0.3 MB 0.4 MB 0.3 MB 0.4 MB 0.5 MB 0.5 MB

Table 8.20: Size of the shuffle argument in Mega Byte for N = 10 000 for different m and for different
values q, p.

In Table 8.21 we find the same data for N = 100 000. As the values of m are fixed for each

experiment n is 10 time bigger for this N than before. So, we expect that the number of field elements

dominates the argument size for bigger m and in fact we cannot determine the minimum for our choices

of m; it seems that it occurs for m > 64. So, we see that for growing N the minimum occurs later and

therefore, the assumed minimum for n = m is asymptotically correct.

The former discussion has shown that for N = 10 000 we have best performance for m = 8 and

in Table 8.20 we see that size for m = 8 is less than 1 megabyte for all security parameters. This is

much smaller than the size of the input and output ciphertexts. Therefore, our argument has size which

is sublinear in the statement size. Moreover, Table 8.20 also states the size of the witnesses we see that

the argument is also sublinear in the witness size.

Similar observations can be made for N = 100 000, in this case Toom-Cook with extra interaction

leads to best run-time and also to a very small argument. For |p| ≤ 2 432 the whole argument is under 1

megabytes and even for |p| = 3 248 we have an argument size under 2 megabyte, for parameters which

give the best run-time.

Lastly, in Table 8.22 we see the argument size of for a group of 256-bit order modulo a 1 536-bit

prime and for N = 10 000, 100 000, and N = 1 000 000. We see that for small m the size of our shuffle

argument behaves linearly with the increase of the number of ciphertexts. However for bigger m this is

not the case and the increase of the size is bigger, the exact reason for this is not clear. We see that also

for N = 1 000 000 the size of the shuffle argument is still small under 10 megabytes for Toom-Cook

with extra interaction which leads to the best computation performance.

To conclude, our shuffle argument has a very small argument size, independent from the underlying



8.5. Comparison 191

|q| = 160 160 160 256 256 256 384
|p| = 1 248 1 536 3 248 1 536 2 432 3 248 3 248

Statement 151 MB 186 MB 392 MB 186 MB 294 MB 392 MB 392 MB
Witness 5.5 MB 5.5 MB 5.5 MB 8.6 MB 8.6 MB 8.6 MB MB

m = 8 Multi-expo 4.3 MB 4.3 MB 4.4 MB 6.9 MB 6.9 MB 6.9 MB 10.3 MB
m = 16 Multi-expo 2.2 MB 2.3 MB 2.3 MB 3.5 MB 3.5 MB 3.6 MB 5.0 MB

Toom-Cook 2.2 MB 2.2 MB 2.3 MB 3.5 MB 3.5 MB 3.5 MB 5.2 MB
m = 64 Multi-expo 0.8 MB 1.1 MB 1.2 MB 1.2 MB 1.4 MB 1.6 MB 2.0 MB

Toom-Cook 0.6 MB 0.8 MB 0.9 MB 0.9 MB 1.0 MB 1.2 MB 1.5 MB

Table 8.21: Size of the shuffle argument in Mega Byte for N = 100 000 for different m and for different
values q, p.

N = 10 000 N = 100 000 N = 1 000 000

Statement 19 MB 186 MB 1 859 MB
Witness 0.8 MB 8.6 MB 85 MB

m = 1 Multi-expo 5.5 MB 51.9 MB 544.9 MB
m = 8 Multi-expo 0.7 MB 6.9 MB 68.6 MB
m = 16 Multi-expo 0.4 MB 3.5 MB 34.2 MB

Toom-Cook 0.4 MB 3.5 MB 34.1 MB
m = 64 Multi-expo 0.4 MB 1.2 MB 8.4 MB

Toom-Cook 0.3 MB 0.9 MB 7.5 MB

Table 8.22: Size of the shuffle argument in Mega Byte for N = 10 000, 100 000, 1 000 000 for different
m for |q| = 256 and |p| = 1536.

groups and security parameters. The performance for medium range N ≤ 100 000 is on our personal

computer under 20 minutes, even for long term security. In real life applications, such as e-voting, the

protocol runs on high speed servers which leads to much better performance. For N = 1 000 000 our

performance takes over one hour for medium range parameters, and interpolating this with the other

results, we expect a run-time around of three to four hours for long term security. This seems not

practical; however, the use of high speed computers and better implementation techniques would help to

reduce the run-time and in this case our argument might be usable in real life for huge N .

8.5 Comparison

8.5.1 Theoretical comparison

Previous work in the literature mainly investigated the case where we use ElGamal encryption and com-

mitments over the same group G, i.e. H = G ×G were used. Table 8.23 gives the asymptotic behavior

of these protocols compared to our protocol for N = mn as m and n grow.

We see that our argument size is much smaller than the former ones. Furthermore, our verifier gives

best asymptotic behavior so far. It seems so far that 4N exponentiations is the asymptotic cost for the

verifier using ElGamal encryption and counting single exponentiations, as they have to handle each input

and output ciphertext at least once.

For the prover, our computation cost is bigger than the computation cost of former provers. How-

ever, for smallmwe are in a similar range and together with our light verifier the run-time of the complete
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SHVZK Rounds Time P Time V Size
argument Expos Expos Elements
[FS01] 3 8N 10N 5N G+ N Zq
[FMM+02] 5 9N 10N 5N G + N Zq
[Gro10] 7 6N 6N 3N Zq
[Fur05] 3 7N 8N N G+ 2N Zq
[TW10] 5 9N 11N 3N G + 4N Zq
[GI08] 7 3mN 4N 3m2 G+ 3n Zq
This work 9 2 log(m)N 4N 11m G+ 5n Zq

Table 8.23: Comparison of the protocols with ElGamal encryption.

argument should be in a similar range or faster.

In our protocol, we may as detailed in Section 8.3.1 use FFT techniques to reduce the prover’s

computation to O(N logm) exponentiations as listed in Table 8.23. Furthermore, by increasing the

round complexity as in Section 8.3.2 we could even get a linear complexity of O(N) exponentiations.

These techniques do not apply to the other shuffle arguments, in particular it is not possible to use FFT

techniques to reduce the factor m in the shuffle by Groth and Ishai [GI08].

As the multi-exponentiation argument, which is the most expensive step, already starts in round 3

we can insert two rounds of interactive reduction as described in Section 8.3.2 without increasing the

round complexity above 9 rounds. For practical parameters this would give us enough of a reduction to

make the prover’s computation comparable to the schemes with linear O(N) computation.

The figures in Table 8.23 are for non-optimized versions of the schemes. All of the schemes may

for instance benefit from the use of multi-exponentiation techniques, see Section 4.3 for how to compute

a product of n exponentiations using onlyO
(

n
logn

)
multiplications. The schemes may also benefit from

randomization techniques, where the verifier does a batch verification of all the equations it has to check.

8.5.2 Comparison with other implementations

Furukawa, Miyauchi, Mori, Obana, and Sako [FMM+02] gave performance results for a mix-net using

a version of the Furukawa-Sako [FS01] shuffle arguments. They optimized the mix-net by combining

the shuffling and decryption operations into one. They used three shuffle centers communicating with

each other and their results included both the process of shuffling and the cost of the arguments. So,

to compare the values we multiply our shuffle argument times by 3 and add the cost of our shuffling

operation on top of that. The comparison can be found in Table 8.24.

N = 100 000 [FMM+02] This paper
Single argument 51 min 15 min
Argument size 66 MB 2 MB
Total mix-net time 3 hrs. 44 min 53 min

Table 8.24: Run-time comparison of [FMM+02] (CPU: 1 GHz, Ram: 256 MB) to our shuffle argument
(Toom-Cook with m = 64, CPU: 1.4 GHz, Ram: 256 MB) for a group G with order 160-bit modulo a
1 024-bit prime.

We expected to get better performance than they did, as their shuffle needs 19N exponentiation
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in total and our protocol with Toom-Cook and 2 extra rounds of interaction needs 16 exponentiations.

Indeed we see that our argument is faster and the communication cost is a factor 33 smaller. When

adding the cost of shuffling and decryption to our argument we still have a speed increase by a factor 3

in Table 3 when comparing the two mix-net implementations and taking the difference in the machines

into account.

Recently, Furukawa et al. [FMS10] announced a new implementation based on elliptic curve groups.

Due to the speed of using elliptic curves this gave them a speedup of a factor 3. A similar speedup can

be expected for our shuffle argument if we switch to using elliptic curves in our implementation.

Stamer [Sta05] reported on an implementation of Groth’s shuffle [Gro10]. However, this was an

un-optimized version and he only reported on results up to N = 1 000.

Recently Wikström made a complete implementation of a mix-net in Java in [Wik10] called Verifi-

catum, which is based on the shuffle argument in [TW10]. To produce comparable data, we ran the demo

file with only one mix party in the non-interactive mode using the same modular group as in our protocol.

Verificatum is a full mix-net implementation, for fairness in the comparison we only counted the time

of the relevant parts for the shuffle argument. As described in Table 8.23 the theoretical performance of

Verificatum’s shuffle argument is 20N exponentiations, while our prover with Toom-Cook and 2 extra

rounds of interaction uses 12N exponentiations and our verifier 4N , so in total 16N exponentiations.

So, we expect a similar run-time for the Verificatum mix-net. As shown in Table 8.25 we perform better,

but due to the different programming languages used and different levels of optimization in the code we

will not draw any conclusion except that both protocols are efficient and usable in current applications.

In terms of size it is clear that our arguments leave a much smaller footprint than Verificatum; we save a

factor 50 in the communication cost.

N = 100 000 [TW10] This paper Toom-Cook
Single argument 5 min 2 min
Argument size 37.7 MB 0.7 MB

Table 8.25: Run-time comparison of [TW10] to our shuffle argument for a group G with order 160-bit
modulo a 1 024-bit prime.
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Chapter 9

Conclusion

One of the important challenges in modern cryptology is to find efficient zero-knowledge proof systems

which can be used to construct real life protocols [Joh00]. In this work we addressed this problem

and were able to answer the challenge positively for zero-knowledge arguments based on the discrete

logarithm assumption. Our new zero-knowledge arguments are all sublinear in the statement size; in

addition, our shuffle argument is also sublinear in the witness size. Furthermore, they all have low

computation cost which is usable in real-world applications.

There are various reasons why we accomplished construction of light zero-knowledge arguments.

First we have chosen our commitment scheme carefully. The general Pedersen commitment is homo-

morphic and therefore allows to verify sophisticated combinations of commitments, it therefore reduces

the computation complexity. Also the Pedersen commitment is length reducing, since it allows to con-

ceal many elements in one commitment, which is important to get sublinear communication cost. The

next reason is the use of Vandermonde challenges. This affords us the sophisticated batch verification

and therefore reduce the communication and computation complexity.

The previous two reasons apply to all our protocols; in addition, we used special techniques for

different settings. To reduce the complexity of our polynomial arguments, we have written the Xi in

binary, similar to multi-exponentiation techniques, which gives us a logarithmic cost. Another trick we

used for different arguments, for example batch-polynomial evaluation or shuffle argument, is to arrange

the witness in a m × n matrix, together with the general Pedersen commitment this leads to sublinear

communication complexity. Lastly, we used Lagrange interpolation polynomials in our constructions,

which leads to sophisticated ways to verify our commitments.

All these techniques combined gave us zero-knowledge arguments for various applications, which

all have sublinear cost; therefore, compare very favorably against former work for the same problems.

Theoretical comparison also showed that the asymptotic computation cost of our verifier is less than

the cost of the comparable verifier of former protocols, for example our verifier in the non-membership

argument, section 7.2, is much lighter than Brands et al.’s [BDD07] verifier.

On the downside, the comparison also showed that our prover of the polynomial argument and

the non-membership argument have increased asymptotic complexity compared to the state of the

art [BDD07]. Furthermore, our prover in the shuffle argument has only quasilinear computational com-
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plexity. Nevertheless, for reasonable parameters the complexity is in the same range as for provers with

linear complexity [TW10, Fur05, Gro10].

Therefore, just from the theoretical comparison, it was not clear if we were able to answer the chal-

lenge proposed by Johnson [Joh00] successfully. On the one hand we have the very light communication

cost and fast verifier. On the other hand we have the prover with increased computation. To be able to

say that we found practical zero-knowledge arguments, more work would be needed.

To evaluate the practicality of our new zero-knowledge arguments we implemented them in C++.

We tested data for different parameters and different security levels.

For our polynomial evaluation argument we decided to implement the state of the art [BDD07] to

have a direct comparison. We have seen that in this case our new argument size is much smaller than

Brands et al.’s argument. Moreover, the running time of our complete argument is faster than Brands

et al.’s argument; however, in the case of very big degree polynomials our prover needs more time than

Brands et al.’s.

We also implemented also our non-membership argument and Brands et al.’s non-membership ar-

gument. We found out that also in this case our argument has the better running time and the better

behavior for higher security levels. Nevertheless, our prover runs slower than Brands et al.’s prover for

big blacklists and for really big blacklists the complete running time of Brands can be faster than our

argument.

Finally, we also compared our shuffle argument with former implementations [FMS10, TW10] and

found out that the complete run time of our argument can be faster than former work, if the parameters

are chosen correctly; however, also for other parameter settings we are in the same performance range.

More importantly our argument is much smaller than the argument of all former shuffle protocols; in

addition, our argument size is even sublinear in the witness size.

To recap, the data showed for our implementation that the run time of our arguments is fast enough

to be considered practical for parameters which offer medium to long time security, and therefore they are

usable in real life. Randomization techniques [BGR98, Gro10] can be used to reduce the computational

burden further. Furthermore, more sophisticated implementation techniques and faster machines would

speed up the performance even further and this might be enough to make them practical for bigger

parameter ranges or for higher security levels.

Our practical experiments showed four other points. Firstly, it is misleading only to look at the

asymptotic computation cost of the most expensive operation to compare arguments theoretically. Ex-

tensive use of some cheap operation can dominate the run-time, and ignoring this cost in the asymptotic

comparison can lead to false conclusions. To make this more clear, our polynomial evaluation argument

prover needs only to calculate O(logD) exponentiations, whereas Brands et al.’s [BDD07] prover has

to calculate O(
√
D) exponentiations. However, the conclusion that our prover performs asymptotically

better than Brands et al.’s prover is wrong, as we have seen in Section 6.6.1. For big degrees of D the

cost of the cheap multiplications dominate the performance of our prover.

As expected, the data supports the belief that replacing the most expensive operation by the same
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asymptotic number of a cheaper operation and some smaller number of the expensive operation leads to

better performance. In the case of Brand et al.’s non-membership argument we have seen that batching

many equations together and therefore reducing the linear cost of the exponentiations to a square root

cost but adding a linear multiplication cost on top, helped to reduce the run time of the verifier drasti-

cally. Therefore, we can conclude that it is always preferable to reduce the asymptotic cost of the most

expensive operation in an interactive protocol; however, one has to be careful that at the same time the

number of cheap operations do not start to dominant and the total asymptotic cost gets more expensive.

Next, we have seen that adding some cheap zero-knowledge protocols which consists of a few

operations can lead to much slower performance. To convert Brands et al.’s non-membership proof into

a polynomial evaluation argument one has to add only simple multiplication arguments which are by

themselves cheap and efficient. However, in this case a large number of these arguments were added

and in summation this cost doubled the original cost. Thus, it can be deceptive to say that two protocols

behave the same, as they consist of the same basic protocol and only cheap operations were added.

Asymptotically this might be correct, but for the performance it makes a huge difference. Depending on

the numbers of operations added this cost can dominate the run-time and the performance can change

drastically.

For our polynomial and blacklist protocols we have seen that the biggest part of the argument size

comes from the group elements. In both arguments the cost of the challenges and the answers are very

small compared to the group elements, since we send approximately the same number of elements. For

our shuffle argument we have seen that a huge number of field elements can dominate the argument size,

if the number of ciphertexts and commitments are very small compared to the number of field elements.

That means comparing only the asymptotic communication number of elements, which are sent

between the two parties, of two different protocols can lead to a wrong conclusion, as the size of the

different elements influence the size of the cost. For instance Groth’s [Gro10] shuffle argument has

linear communication cost; however, this cost arises from the linear number of field elements and only

a constant small number of groups elements are sent in this argument. For certain parameters the cost

of this shuffle argument could be smaller than our square root communication cost, since our number of

group elements is not constant.

These results are not surprising; however, the results give real evidence that the points should be

kept in mind when comparing different protocols. Only comparing the asymptotic cost of the most

expensive operation of protocols can lead to wrong conclusions, the cost of the other operations should

always be considered, as they can be dominant. Comparing the asymptotic cost of argument size has

also to be done carefully, the different sizes of different elements has to be taken in account.

To conclude, our work has made a big step in answering the challenge presented by Johnson [Joh00]

to construct practical and efficient zero-knowledge arguments which can be used as building blocks

successfully. All our arguments have sublinear communication cost and perform best for medium size

parameters, for example the degree of the polynomial or the number of ciphertexts in a shuffle. If the

parameters are chosen in this range our zero-knowledge arguments are practical for medium to long time
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security.

Further research might investigate if our techniques can be applied to other cryptographic proto-

cols and make them more practical for the same medium parameter range, or find ways to reduce the

computation cost of the prover.

To calculate the protocols’ run-time we implemented it, but implementing is error-prone and time

consuming. The implication of this being that to implement a new protocol every time a new protocol

is constructed is undesirable. One way around the implementation could be a cost model. Knowing the

costs of multiplications and exponentiations, along with the cost of memory access, we can compute the

detailed cost of a protocol. Building such cost tables and checking them against real implementations,

could be another direction to go.

One of the downsides of our shuffle argument is the high round complexity. To reduce this cost, one

could use the linear algebra techniques by Seo [Seo11] as a starting point to construct a zero-knowledge

product argument with fewer rounds, but similar computation and communication complexity.

Another interesting question is if it is possible to construct zero-knowledge protocols for big pa-

rameters as well. The practical evaluation and discussion of our results indicates that research could

concentrate on reducing the number of commitments while keeping the number of all other elements

small. This approach could lead to zero-knowledge protocols with very light communication.

Regarding the computational cost, our techniques lead to light verifiers and not so efficient provers.

To make the protocols applicable for long term security and big parameter ranges, new ideas are needed

to keep the number of exponentiations small without suffering the high number of multiplications, as we

did.
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.1 Proof for matrix M invertible

In this section we will demonstrate that a matrix

M =


l(x1) l1(x1) . . . lm(x1)

...

l(xm+1) l1(xm+1) . . . lm(xm+1)


is always invertible, for xi 6= xj for all 1 ≤ i, j ≤ m and i 6= j. Linear algebra tells us, that a matrix A is invertible if detA 6= 0; thus, we have to show that detM 6= 0. We

also know that if

A = B · C,

then

detA = detB detC.
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The first step is to rewrite the matrix M as

M =


l(x1) l1(x1) . . . lm(x1)

...

l(xm+1) l1(xm+1) . . . lm(xm+1)



=


1 + a1x1 + . . .+ amx

m
1 1 + a11x1 + . . .+ a1m−1x

m−1
1 . . . 1 + am1x1 + . . .+ amm−1x

m−1
1

...

1 + a1xm+1 + . . .+ amx
m
m+1 1 + a11xm+1 + . . .+ a1m−1x

m−1
m+1 . . . 1 + am1xm+1 + . . .+ amm−1x

m−1
m+1



=


1 x1 . . . xm1

1 x2 . . . xm2
...

1 xm+1 . . . xmm+1

 ·



1 1 . . . 1

a1 a11 . . . am1

...

am−1 a1m−1 . . . amm−1

am 0 . . . 0


= V · P

V is a transposed Vandermonde matrix, and therefore we have detV 6= 1. The next step is to show that detP 6= 0. To do this we expand along the last row and we get

detP = am det


1 . . . 1

a11 . . . am1

...

a1m . . . amm

 = amQ.

Each column of the matrix Q consists of the coefficient of the Lagrange polynomials l1(x), . . . , lm(x), sine the Lagrange polynomials are linear independent we can conclude
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that the columns of the matrix are independent. Therefore, we have

detM = detV · detP = am︸︷︷︸
6=0

detV︸ ︷︷ ︸
6=0

·detQ︸ ︷︷ ︸
6=0

6= 0,

and can conclude that M is invertible for all values x1, . . . , xm, for xi 6= xj and 1 ≤ i, j ≤ m, i 6= j.
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