80,273 research outputs found

    Chord Label Personalization through Deep Learning of Integrated Harmonic Interval-based Representations

    Get PDF
    The increasing accuracy of automatic chord estimation systems, the availability of vast amounts of heterogeneous reference annotations, and insights from annotator subjectivity research make chord label personalization increasingly important. Nevertheless, automatic chord estimation systems are historically exclusively trained and evaluated on a single reference annotation. We introduce a first approach to automatic chord label personalization by modeling subjectivity through deep learning of a harmonic interval-based chord label representation. After integrating these representations from multiple annotators, we can accurately personalize chord labels for individual annotators from a single model and the annotators' chord label vocabulary. Furthermore, we show that chord personalization using multiple reference annotations outperforms using a single reference annotation.Comment: Proceedings of the First International Conference on Deep Learning and Music, Anchorage, US, May, 2017 (arXiv:1706.08675v1 [cs.NE]

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure

    Fast and Accurate OOV Decoder on High-Level Features

    Full text link
    This work proposes a novel approach to out-of-vocabulary (OOV) keyword search (KWS) task. The proposed approach is based on using high-level features from an automatic speech recognition (ASR) system, so called phoneme posterior based (PPB) features, for decoding. These features are obtained by calculating time-dependent phoneme posterior probabilities from word lattices, followed by their smoothing. For the PPB features we developed a special novel very fast, simple and efficient OOV decoder. Experimental results are presented on the Georgian language from the IARPA Babel Program, which was the test language in the OpenKWS 2016 evaluation campaign. The results show that in terms of maximum term weighted value (MTWV) metric and computational speed, for single ASR systems, the proposed approach significantly outperforms the state-of-the-art approach based on using in-vocabulary proxies for OOV keywords in the indexed database. The comparison of the two OOV KWS approaches on the fusion results of the nine different ASR systems demonstrates that the proposed OOV decoder outperforms the proxy-based approach in terms of MTWV metric given the comparable processing speed. Other important advantages of the OOV decoder include extremely low memory consumption and simplicity of its implementation and parameter optimization.Comment: Interspeech 2017, August 2017, Stockholm, Sweden. 201

    Embedding-Based Speaker Adaptive Training of Deep Neural Networks

    Full text link
    An embedding-based speaker adaptive training (SAT) approach is proposed and investigated in this paper for deep neural network acoustic modeling. In this approach, speaker embedding vectors, which are a constant given a particular speaker, are mapped through a control network to layer-dependent element-wise affine transformations to canonicalize the internal feature representations at the output of hidden layers of a main network. The control network for generating the speaker-dependent mappings is jointly estimated with the main network for the overall speaker adaptive acoustic modeling. Experiments on large vocabulary continuous speech recognition (LVCSR) tasks show that the proposed SAT scheme can yield superior performance over the widely-used speaker-aware training using i-vectors with speaker-adapted input features

    Access to recorded interviews: A research agenda

    Get PDF
    Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed

    Multimedia and e-Learning integration for supporting training programs in agriculture by MOODLE

    Get PDF
    The NODES project aims at facilitating, for adult training / lifelong training, the use of multimedia knowledge to improve competitiveness employability and mobility of handicapped adults (physical and sensorial) and of adults victims of the digital divide or of some of its components such as distance, initial level of knowledge, language, use of complex technologies. The NODES project is focused, on the wide sense, on the production and diffusion of knowledge created within public and private organizations dedicated to adult training or by individuals, through Europe. Within the project the MOODLE e-Learning system was selected and more multimedia content will be integrated into the knowledge base. The EU-Index metadatabase collects content sources for the project partners. Another target is to integrate video files into the systems. This parts are integrated by the logical and physical architectures of the NODES
    • 

    corecore