4,324 research outputs found

    A Service-Oriented Approach for Network-Centric Data Integration and Its Application to Maritime Surveillance

    Get PDF
    Maritime-surveillance operators still demand for an integrated maritime picture better supporting international coordination for their operations, as looked for in the European area. In this area, many data-integration efforts have been interpreted in the past as the problem of designing, building and maintaining huge centralized repositories. Current research activities are instead leveraging service-oriented principles to achieve more flexible and network-centric solutions to systems and data integration. In this direction, this article reports on the design of a SOA platform, the Service and Application Integration (SAI) system, targeting novel approaches for legacy data and systems integration in the maritime surveillance domain. We have developed a proof-of-concept of the main system capabilities to assess feasibility of our approach and to evaluate how the SAI middleware architecture can fit application requirements for dynamic data search, aggregation and delivery in the distributed maritime domain

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Implication of FORCEnet on coalition forces

    Get PDF
    The coalition navies of Australia, Canada, New Zealand, United Kingdom and the United States (AUSCANNZUKUS) are in a period of transformation. They are stepping out of the Industrial Age of warfare and into the Informational Age of warfare. Network Centric Warfare (NCW) is the emerging theory to accomplish this undertaking. NCW describes "the combination of strategies, emerging tactics, techniques, and procedures, and organizations that a fully or even partially networked force can employ to create a decisive war fighting advantage." 1 This theory is turned into a concept through Network Centric Operations (NCO) and implemented through the FORCEnet operational construct and architectural framework. The coalition navies are moving in a direction to develop and leverage information more effectively and efficiently. This will lead to an informational advantage that can be used as a combat multiplier to shape and control the environment, so as to dissuade, deter, and decisively defeat any enemy. This analysis was comprised of defining three TTCP AG-6 provided vignettes into ARENA model that captured Coalition ESG configurations at various FORCEnet levels. The results of the analysis demonstrated that enhanced FORCEnet capabilities such as FORCEnet Levels 2 and 4 would satisfy the capability gap for a needed network-centric ESG force that can effectively counter insurgency operations in Maritime warfare. Furthermore, the participating allied navies in the Coalition ESG should pursue acquisition strategies to upgrade their ship platforms in accordance with our recommendation which indicates that FORCEnet Level 2 is the best value.http://archive.org/details/implicationoffor109456926N

    Globalization and Maritime Security Conference Report

    Get PDF
    Portions of this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-AR-409177.LLNL-AR-409177DE-AC52-07NA2734

    Digital Twin in Naval Environment

    Get PDF
    A naval vessel is usually engaged in demanding operations that take place in a multifaceted environment. This requires a solid design of the ship as a platform and a prompt decision-making response. To support both the design and operation phases, digital tools and techniques have been widely implemented, along with a significant number of sensors and probes installed onboard. All of these features pave the way for the development of a Digital Twin model, which will be beneficial for the naval sector. In this work, relevant applications and a use case have been presented and discussed, with the goal of highlighting the added value and critical issues in the perspective of gathering them in a Digital Twin environment. The steps required to develop a shared reference digital architecture have been identified, as well as the gaps that need to be filled

    Proceedings of the 2004 ONR Decision-Support Workshop Series: Interoperability

    Get PDF
    In August of 1998 the Collaborative Agent Design Research Center (CADRC) of the California Polytechnic State University in San Luis Obispo (Cal Poly), approached Dr. Phillip Abraham of the Office of Naval Research (ONR) with the proposal for an annual workshop focusing on emerging concepts in decision-support systems for military applications. The proposal was considered timely by the ONR Logistics Program Office for at least two reasons. First, rapid advances in information systems technology over the past decade had produced distributed collaborative computer-assistance capabilities with profound potential for providing meaningful support to military decision makers. Indeed, some systems based on these new capabilities such as the Integrated Marine Multi-Agent Command and Control System (IMMACCS) and the Integrated Computerized Deployment System (ICODES) had already reached the field-testing and final product stages, respectively. Second, over the past two decades the US Navy and Marine Corps had been increasingly challenged by missions demanding the rapid deployment of forces into hostile or devastate dterritories with minimum or non-existent indigenous support capabilities. Under these conditions Marine Corps forces had to rely mostly, if not entirely, on sea-based support and sustainment operations. Particularly today, operational strategies such as Operational Maneuver From The Sea (OMFTS) and Sea To Objective Maneuver (STOM) are very much in need of intelligent, near real-time and adaptive decision-support tools to assist military commanders and their staff under conditions of rapid change and overwhelming data loads. In the light of these developments the Logistics Program Office of ONR considered it timely to provide an annual forum for the interchange of ideas, needs and concepts that would address the decision-support requirements and opportunities in combined Navy and Marine Corps sea-based warfare and humanitarian relief operations. The first ONR Workshop was held April 20-22, 1999 at the Embassy Suites Hotel in San Luis Obispo, California. It focused on advances in technology with particular emphasis on an emerging family of powerful computer-based tools, and concluded that the most able members of this family of tools appear to be computer-based agents that are capable of communicating within a virtual environment of the real world. From 2001 onward the venue of the Workshop moved from the West Coast to Washington, and in 2003 the sponsorship was taken over by ONR’s Littoral Combat/Power Projection (FNC) Program Office (Program Manager: Mr. Barry Blumenthal). Themes and keynote speakers of past Workshops have included: 1999: ‘Collaborative Decision Making Tools’ Vadm Jerry Tuttle (USN Ret.); LtGen Paul Van Riper (USMC Ret.);Radm Leland Kollmorgen (USN Ret.); and, Dr. Gary Klein (KleinAssociates) 2000: ‘The Human-Computer Partnership in Decision-Support’ Dr. Ronald DeMarco (Associate Technical Director, ONR); Radm CharlesMunns; Col Robert Schmidle; and, Col Ray Cole (USMC Ret.) 2001: ‘Continuing the Revolution in Military Affairs’ Mr. Andrew Marshall (Director, Office of Net Assessment, OSD); and,Radm Jay M. Cohen (Chief of Naval Research, ONR) 2002: ‘Transformation ... ’ Vadm Jerry Tuttle (USN Ret.); and, Steve Cooper (CIO, Office ofHomeland Security) 2003: ‘Developing the New Infostructure’ Richard P. Lee (Assistant Deputy Under Secretary, OSD); and, MichaelO’Neil (Boeing) 2004: ‘Interoperability’ MajGen Bradley M. Lott (USMC), Deputy Commanding General, Marine Corps Combat Development Command; Donald Diggs, Director, C2 Policy, OASD (NII

    IDT-3D: Identification and tracking in controlled environments using a 3D unified user interface

    Get PDF
    Identification and tracking of objects in specific environments such as harbors or security areas is a matter of great importance nowadays. With this purpose, numerous systems based on different technologies have been developed, resulting in a great amount of gathered data displayed through a variety of interfaces. Such amount of information has to be evaluated by human operators in order to take the correct decisions, sometimes under highly critical situations demanding both speed and accuracy. In order to face this problem we describe IDT-3D, a platform for identification and tracking of vessels in a harbour environment able to represent fused information in real time using a Virtual Reality application. The effectiveness of using IDT-3D as an integrated surveillance system is currently under evaluation. Preliminary results point to a significant decrease in the times of reaction and decision making of operators facing up a critical situation. Although the current application focus of IDT-3D is quite specific, the results of this research could be extended to the identification and tracking of targets in other controlled environments of interest as coastlines, borders or even urban areas

    A meta-architecture analysis for a coevolved system-of-systems

    Get PDF
    Modern engineered systems are becoming increasingly complex. This is driven in part by an increase in the use of systems-of-systems and network-centric concepts to improve system performance. The growth of systems-of-systems allows stakeholders to achieve improved performance, but also presents new challenges due to increased complexity. These challenges include managing the integration of asynchronously developed systems and assessing SoS performance in uncertain environments. Many modern systems-of-systems must adapt to operating environment changes to maintain or improve performance. Coevolution is the result of the system and the environment adapting to changes in each other to obtain a performance advantage. The complexity that engineered systems-of-systems exhibit poses challenges to traditional systems engineering approaches. Systems engineers are presented with the problem of understanding how these systems can be designed or adapted given these challenges. Understanding how the environment influences system-of-systems performance allows systems engineers to target the right set of capabilities when adapting the system for improved performance. This research explores coevolution in a counter-trafficking system-of-systems and develops an approach to demonstrate its impacts. The approach implements a trade study using swing weights to demonstrate the influence of coevolution on stakeholder value, develops a novel future architecture to address degraded capabilities, and demonstrates the impact of the environment on system performance using simulation. The results provide systems engineers with a way to assess the impacts of coevolution on the system-of-systems, identify those capabilities most affected, and explore alternative meta-architectures to improve system-of-systems performance in new environments --Abstract, page iii

    Military Transformation and the Defense Industry after Next

    Get PDF
    Though still adjusting to the end of the Cold War, the defense industry is now confronted with the prospect of military transformation. Since the terrorist attacks on 11 September 2001, many firms have seen business improve in response to the subsequent large increase in the defense budget. But in the longer run, the defense sector\u27s military customers intend to reinvent themselves for a future that may require the acquisition of unfamiliar weapons and support systems.https://digital-commons.usnwc.edu/usnwc-newport-papers/1016/thumbnail.jp
    • …
    corecore