
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Spring 2016 

A meta-architecture analysis for a coevolved system-of-systems A meta-architecture analysis for a coevolved system-of-systems 

George Anthony Muller IV 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Muller, George Anthony IV, "A meta-architecture analysis for a coevolved system-of-systems" (2016). 
Masters Theses. 7514. 
https://scholarsmine.mst.edu/masters_theses/7514 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7514&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7514&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7514?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7514&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


A META-ARCHITECTURE ANALYSIS FOR A COEVOLVED

SYSTEM-OF-SYSTEMS

by

GEORGE ANTHONY MULLER IV

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

SYSTEMS ENGINEERING

2016

Approved by

Dr. Cihan Dagli, Advisor
Dr. Ivan Guardiola
Dr. Steven Corns



Copyright 2016

GEORGE ANTHONY MULLER IV

All Rights Reserved



iii

ABSTRACT

Modern engineered systems are becoming increasingly complex. This is driven

in part by an increase in the use of systems-of-systems and network-centric concepts to

improve system performance. The growth of systems-of-systems allows stakeholders to

achieve improved performance, but also presents new challenges due to increased com-

plexity. These challenges include managing the integration of asynchronously developed

systems and assessing SoS performance in uncertain environments.

Many modern systems-of-systems must adapt to operating environment changes to

maintain or improve performance. Coevolution is the result of the system and the envi-

ronment adapting to changes in each other to obtain a performance advantage. The com-

plexity that engineered systems-of-systems exhibit poses challenges to traditional systems

engineering approaches. Systems engineers are presented with the problem of understand-

ing how these systems can be designed or adapted given these challenges. Understanding

how the environment influences system-of-systems performance allows systems engineers

to target the right set of capabilities when adapting the system for improved performance.

This research explores coevolution in a counter-trafficking system-of-systems and

develops an approach to demonstrate its impacts. The approach implements a trade study

using swing weights to demonstrate the influence of coevolution on stakeholder value,

develops a novel future architecture to address degraded capabilities, and demonstrates

the impact of the environment on system performance using simulation. The results pro-

vide systems engineers with a way to assess the impacts of coevolution on the system-of-

systems, identify those capabilities most affected, and explore alternative meta-architectures

to improve system-of-systems performance in new environments.
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1. INTRODUCTION

1.1. RESEARCH MOTIVATION

Modern systems continue to grow in complexity. This is driven in part by an

increase in the use of systems-of-systems and network-centric concepts to improve sys-

tem performance. This growth allows stakeholders to achieve improved performance at

the cost of increased complexity. This complexity is a result of expanded mission sets,

asynchronous development and integration of new and legacy systems, and changing op-

erational environments. These challenges often result in systems unable to meet future

demands, reducing their effectiveness from anticipated levels. As a result, systems-of-

systems must adapt to these challenges to maintain or improve performance.

The concept of coevolution defines the behavior that results when systems and their

environment each adapt to changes in the other. Coevolution is the behavior exhibited by

a system and its environment adapting to changes in each other to obtain a performance

advantage. While this phenomenon is recognized in many biological and ecological sys-

tems, its relevance and application to complex engineered systems has not been studied in

great detail. The ability to characterize coevolution in engineered systems allows improved

performance by focusing efforts on the right set of performance measures and system at-

tributes early in the system lifecycle and when improving existing systems. The goal for

understanding coevolution in engineered systems is to improve performance in uncertain

future environments.

The aim of this research is to develop an approach for assessing a system-of-

systems (SoS) that experiences coevolution. The counter-trafficking SoS is a system that

reflects this behavior. This system is comprised of surveillance and interdiction systems,

information sources, analytical practices, and decision makers. System components per-

form discrete functions which enable the detection, investigation, apprehension and prose-
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cution of illicit network actors in order to disrupt their activities. Coevolution is specifically

demonstrated between the detection and interdiction elements of the SoS meta-architecture

and the smuggling vessels these sub-systems are designed to detect and interdict.

1.2. RESEARCH APPROACH

The research objectives are to demonstrate the impact of coevolution between a

SoS and its operating environment. The following key research questions are explored in

this work are:

• is coevolution present in current engineered systems-of-systems?

• if so, how can the system-of-systems meta-architecture be assessed to evaluate its

performance?

• how should the system be targeted for improvement?

• what insights can modeling the system meta-architecture under coevolution provide?

The research approach to answer these questions evaluates the counter-trafficking

SoS by extending a current trade study methodology, develops a conceptual meta-architecture

representative of coevolutionary behavior, develops a set of models to assess this concep-

tual meta-architecture performance versus the existing meta-architecture in an adaptive

environment, and evaluates the impact of uncertainty in the operational environment on the

recommended SoS alternatives.

1.3. THESIS ORGANIZATION

This thesis is organized as follows: Chapter 1 has presented the research motiva-

tion and general approach. Chapter 2 provides a background in several relevant research

areas, including systems engineering, complex systems, operations research methods and

a history of drug-trafficking in the Americas. Chapter 3 reviews systems engineering and
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SoS engineering concepts. A description of the counter-trafficking SoS is provided in

Chapter 4. The research approach is described, thoroughly developed and applied to the

counter-trafficking SoS in Chapter 5. Chapter 6 details an agent based model that expands

the assessment to include variability in meta-architecture capabilities and uncertainty in

the operational environment. Chapter 7 presents the results of this method and describes

the insights resulting from this approach. The thesis concludes with a discussion of the

applicability of the method and promising next steps in Chapter 8.



4

2. LITERATURE REVIEW

Existing research has explored the complex nature of systems-of-systems, charac-

terized the relationships between constituent systems, and developed methods to estimate

SoS performance. This body of research includes concepts from complex systems, SoS

modeling and assessment, network centric systems, and multi-objective decision analysis.

Other research has focused on the effectiveness of counter-trafficking systems. This

research includes systems engineering studies and analysis of drug trafficking organiza-

tions. Several operations research approaches have been used to support decision making

in counter-trafficking. These approaches include search theory and the network interdiction

problem.

This chapter reviews these related research areas.

2.1. SYSTEMS CONCEPTS

2.1.1. Systems-of-Systems. Jamshidi [1] defines systems-of-systems (SoS) as “large-

scale integrated systems that are heterogeneous and independently operable on their own,

but are networked together for a common goal.” The engineering of SoS — SoS design,

analysis, and development — is an emerging challenge due to the complex nature of these

systems. These complexities result from defining, building and managing interfaces be-

tween systems that are asynchronously developed. New technologies that rely on rules

governing behavior, such as autonomous systems, rather than fundamental control theory,

such as plant or process control, contribute to this complexity.

The SoS concept is meaningful in that it challenges traditional views of complex

problems. Biological, ecological and engineered systems have been identified as SoS, but

the interest to systems engineers is on designing, assessing and managing engineered SoS.

The Department of Defense (DoD) Systems Engineering Guide for Systems of Systems
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describes four SoS classes that each present unique challenges and opportunities: virtual,

collaborative, acknowledged and directed [2]:

• Virtual systems-of-systems are not centrally managed, lack an acknowledged or

stated purpose and rely on unmanaged interfaces for system operation.

• Collaborative systems-of-systems are primarily driven by volunteer effort, where

standards are developed and maintained by a core set of stakeholders or agents. The

Internet is an example of a Collaborative SoS.

• Acknowledged systems-of-systems rely on multiple systems that contribute to an

overall purpose, but this purpose is not the single objective of any of the system

within the SoS. Often, these systems have several objectives, are accountable to a

wide variety of stakeholders, have different ways of measuring success, and obtain

funding from disparate organizations. These factors combine to influence system

development and sustainment approaches, which influence the overall performance

of the Acknowledged SoS. The maritime counter-trafficking SoS, described in this

thesis, is an example of an Acknowledged SoS.

• Directed systems-of-systems are developed and managed to provide a specific pur-

pose. This SoS is centrally managed during development and operation in order to

fulfill the stated purpose of the SoS. Like other SoS, this purpose may change over

time, but support activities exist to enable the SoS to change in response to changing

user needs and requirements, as well as the operational environment.

Jamshidi [3] discusses theoretical challenges for SoS. These challenges include

developing robust SoS using biologically-inspired approaches, development of SoS stan-

dards, developing methods to design SoS architectures, designing SoS simulations, in-

tegrating constituent systems for the SoS, and characterizing emergence within complex

SoS. Some of these challenges have been overcome for specific SoS efforts. However,
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the systems engineering community lacks general solutions and has not accepted standard

methods or approaches for these SoS challenges.

The complexity of SoS interfaces, stakeholders, users and operating environments

present challenges for traditional systems engineering analysis for SoS architectures. Agar-

wal et al. [4] propose a hierarchical architecture framework for Acknowledged SoS. This

framework provides a means to describe a SoS meta-architecture, acquisition environment

and constituent system interfaces using an agent based model (ABM). The model uses

agent negotiation among the constituent systems to identify the best suited constituent sys-

tems in terms of capabilities and performance measures. The end result is a tool to aid

SoS decision makers in negotiating and soliciting contributions from constituent system

stakeholders.

Pape et al. [5] provide a method to compare SoS meta-architectures using fuzzy

rules. The fuzzy rules are defined based upon SoS attributes such as performance, afford-

ability and flexibility. The meta-architecture is represented as a chromosome in a genetic

algorithm using a binary encoding scheme to define the presence of constituent systems

and interfaces within the SoS. Chromosome fitness is then evaluated based upon SoS at-

tributes, where constituent systems and interfaces present or absent in the SoS contribute

to the overall SoS performance. The meta-architecture is optimized using a genetic algo-

rithm to manipulate the presence of systems and system-level interfaces. Pape et al. [6]

later applied a similar approach to intelligence, surveillance and reconaissance (ISR) and

search-and-rescue problems, where both systems were categorized as acknowledged SoS.

Dagli et al. [7] developed a decision support approach for SoS managers. This ap-

proach uses the wave model of SoS development to model interactions between SoS man-

agers and constituent system managers to negotiate the involvement of these constituent

systems for certain SoS capabilities. This work developed a meta-architecture generation

model, meta-architecture assessment model using key performance attributes, and coop-

erative, non-cooperative, semi-cooperative, and incentive-based negotiation models. The
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resulting integrated environment allows what-if analysis to explore collaboration between

constituent systems and the resulting impact on SoS performance. By constructing a deci-

sion support tool, Dagli et al have addressed key challenges in SoS architecting, including

addressing uncertainties from the variability and availability of constituent systems, ex-

ploring evolving needs of the SoS, accounting for socio-technical aspects of motivations of

constituent system managers, and optimizing the architecture based on multiple objectives

subject to budget and resource constraints.

Dagli et al. [8] describe an ABM that supports the acknowledged SoS manager in

negotiating participation by the constituent systems. This tool uses agent behaviors for

each of three participating agents classes (SoS acquisition environment, SoS agent, and

constituent system agents). SoS meta-architectures are generated from negotiation rules,

agent behaviors and a set of multi-objective optimization models. The result is a recom-

mended SoS meta-architecture for an acquisition wave. This meta-architecture is optimized

for the SoS environment while satisfying the constraints of the acquisition environment and

constituent system preferences and behaviors.

Mour et al. [9] describe agent based modeling for SoS in the context of constituent

system behaviors. Mour et al. [9] apply a discrete agent framework to the analysis of a

littoral combat ship squadron. The purpose of this analysis is to assess the performance of

the combat ship against different threats, since these ships can be reconfigured to perform a

variety of missions. The authors identify unexpected results from the ABM of the combat

ship, which provide insights into potential limitations or vulnerabilities of this SoS.

Garrett et al. [10] develop an assessment framework for the ballistic missile de-

fense SoS. This framework focuses on the interfaces, interoperability and integration of

constituent systems. The authors adopt a federated systems approach to constructing the

SoS from the “bottom-up”. Garrett et al. develop three approaches to assess the SoS. The

first method uses graph theory to develop adjacency matrices that characterize SoS inter-

faces. Different matrices are developed for each mission within the fire control loop. The
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second approach is the development of interface readiness levels. Interface readiness levels

are similar to technology readiness and enterprise readiness levels, but are focused on the

maturity of constituent systems to deliver required information within critical time bounds.

Finally, the authors propose agent-based modeling as a tool well suited for modeling the

interfaces, interoperability and integration of SoS constituent systems.

Chepko and de Weck [11] implement a system architecture design optimization ap-

proach to reduce lock-in that arises from early design decisions. The authors developed

a functional hierarchy for which system alternatives were developed. The optimization

model addresses a hierarchical set of discrete and continuous variables, and compatibility

constraints. The authors implemented the optimization model using a genetic algorithm,

and identify future work opportunities including increasing the number of discrete vari-

ables and testing the genetic algorithm parameter space.

Ricci et al. [12] applies an options-based approach to maritime security SoS. The

authors note that modern systems suffer from complex, highly dynamic environments that

are inherently uncertain and contribute to reduced system performance. The work by Ricci

et al. allows the identification of options early in the system development cycle to mitigate

potential disruptions to system performance once the system is deployed. The authors

apply the approach using a maritime security SoS and demonstrate that options can be

identified early in the SoS architecture design process.

Alfaris [13] developed an approach called the Evolutionary Design Model and ar-

gues that such a framework would enable improved efficiency in the design of complex

systems. Alfaris states that design is a complex, evolutionary process. This reflects design

thinking that occurs over a period of time, as new information or environments alter the

purpose or utility of certain system designs. This work uses logical modeling methods,

including unified modeling language (UML), systems modeling language (SysML) and

object-process methodology (OPM), in combination with mathematical modeling methods

(synthesis, analysis, evaluation and optimization) to construct a framework for the evolu-



9

tionary design model, and demonstrated the approach using an evolutionary design for a

city.

2.1.2. Network Centric Systems. Network centric systems are systems that achieve

a desired capability unachievable without connected communications [14]. These systems

may be geographically separated but are connected by communication links. The concept

of network centric systems has emerged with the growth in information access and sharing

and the technologies that support these capabilities. Key performance concepts in network

centric systems are information reach, quality, and timeliness. In general, maximizing

these objectives results in improved performance for the system. Network centric warfare

is the application of network centric systems to defense. The same concepts of network

centric warfare apply beyond the defense space. Network-enabled capabilities support the

“integration of sensors, decision-makers, weapon systems, and support capabilities to en-

able agility and thus permit commanders to better synchronize effects” [15].

The overarching goal of network centric systems is to enable improved capabil-

ity, or system effectiveness, by improving the flow of information through the system to

achieve information superiority. A successful network centric system takes advantage of

these attributes to generate and use information superiority. This advantage is obtained

through self-synchronization of actors and shared awareness of the operational environ-

ment. In network centric systems, not all actors need to have all information, but each

actor requires the right information to use in their decision making process.

Cares et al. [16] describe fundamental considerations for networked, distributed

systems and their application to network centric warfare. The authors highlight the benefits

and drawbacks of different network architectures. Cares et al. build on network centric

concepts to motivate system design from centralized, linear, non-networked systems to a

decentralized, nonlinear, networked design paradigm. This early work was influential in

motivating research into new ways of engineering SoS.
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2.1.3. Complex Systems. SoS often have some characteristics of complex sys-

tems. According to Boccara [17], complex systems have three key characteristics:

• Independent agents that follow a set of rules which govern behaviors in response to

the environment

• Emergent behavior of the system that results from interactions between individual

agents

• No single control agent that governs the interactions between agents or prescribes

the emergent behavior

Bohorquez et al. [18] and Spagat et al. [19] identify common relationships among

complex conflict systems. Bohorquez et al. identifies trends in insurgent conflicts, which

exhibit power law distributions for both number of casualties and number of attacks per

day. They also find that the number of casualties is converging across insurgent conflicts.

They use a simple model describing organizational dynamics and relate the size of attacks

to group strength.

2.2. MULTI-OBJECTIVE DECISION ANALYSIS METHODS

System architecting problems are, except for the simplest systems, multi-objective

decision problems. These problems involve multiple objectives that are evaluated against

competing criteria or constraints. The objectives are typically the result of several desired

system performance attributes for which no single system meets the desired performance.

The criteria describe the set of feasible alternatives, given logical and functional dependen-

cies across the set of alternatives [20].

2.2.1. Quality Function Deployment. QFD is a structured approach for solving

complex systems problems. QFD provides a qualitative assessment and quantitative com-

parisons for how alternative solutions satisfy customer requirements. The QFD process
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begins with customer needs and captures customer value. Requirements are derived from

the customer and stakeholders; the requirements define what the system must do and are

then prioritized. A typical tool for documenting the QFD is the House of Quality. Using

the requirements generated from elicitation, multidisciplinary teams identify alternative ap-

proaches to satisfying these requirements. The approaches are given a qualitative rating of

how well the requirements are satisfied, and relationships among the solution alternatives

are rated based upon dependence or conflict relationships. The results of the QFD process

enable trade-space exploration by comparing the relative performance of each alternative,

identifying requirements that are weakly or insufficiently satisfied and ranking each solu-

tion alternative. A rigorous QFD assessment further enables requirements traceability and

subsystem design exploration through hierarchical matrices [21].

2.2.2. TOPSIS. The technique for ordered preference by similarity to the ideal so-

lution (TOPSIS) is a quantitative multi-criteria decision making approach. TOPSIS allows

the decision maker to compare alternatives to a positive ideal solution (the best conceiv-

able alternative) and a negative ideal solution (the worst conceivable alternative). Decision

attribute value is normalized and weighted according to decision maker preferences. Each

alternative is evaluated based on its distance to the positive ideal (d+
i ) and negative ideal

(d�
i ) solutions:

d+
i =

s
n

Â
j=1

⇣
vi j � v+j

⌘2
, i = 1, . . . ,m (2.1)

d�
i =

s
n

Â
j=1

⇣
vi j � v�j

⌘2
, i = 1, . . . ,m (2.2)

where the value of each alternative against each attribute is vi j and v+j and v+j cor-

respond to the postive and negative ideal solution values for attribute j.

2.2.3. Fuzzy Inference System. Many complex systems engineering problems

tend to be quite ambiguous, especially those with complex stakeholder environments. Am-
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biguity arises in system performance measures. Fuzzy logic is a method to handle such

ambiguity that uses fuzzy sets. Fuzzy sets, unlike set theory, allow degrees of membership

to membership functions. Singh and Dagli [22] use fuzzy inference systems to assess SoS

performance using fuzzy attributes. Fuzzy rules are used for performance attributes, and

these attributes are evaluated using a genetic algorithm that represents a system architec-

ture.

2.2.4. Swing Weight Matrix. Value-focused thinking has been recognized for its

applicability in multi-objective decision analysis and provides a way to assess multiple sys-

tems providing similar functionality [23, 24]. Parnell and Trainor [25] state that the goal of

architecture development for precedented systems is to improve the system by enabling the

system to better satisfy stakeholder values, ideally expressed as the multiple criteria that

comprise formal MOEs. A comprehensive architecture analysis should consider stake-

holder values, subsystem and component attributes and the operational environment which

influences system performance. Parnell and Trainor [25] and Cilli and Parnell [26] investi-

gated trades associated with ISR payloads, patrol craft range and endurance, and network

centric concepts of information reach and quality by developing a trade study framework

using swing weights to assess system performance. This framework follows the steps:

1. Define system objectives and measures in the fundamental objectives hierarchy

2. Develop value functions to map objectives and measures into a value (or utility)

space

3. Develop the swing weight matrix by defining objective importance and measuring

the range in value (swing) across all alternatives

4. Generate creative alternatives that satisfy system objectives and measures

5. Assess alternatives using deterministic analysis by scoring each alternative according

to the swing weight matrix
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6. Summarize results through graphs of objective measures versus performance (value)

7. Perform sensitivity analysis using probabilistic analysis and stochastic simulation

8. Communicate tradeoffs to stakeholders and decision makers

The swing weight matrix is used for complex decision problems that arise in trade

studies. With large numbers of stakeholders, the complexity of the objectives also grows.

The swing weight matrix allows alternative system architectures to be assessed in this

environment, and also offers a method of communicating the results to decision makers.

Swing weights are used to account for the variation in performance measures as well as the

relative importance of each objective and measure to the decision. Table 2.1 presents the

swing weight matrix. Objectives are given a weight corresponding that corresponds to the

importance of the capability (columns) and measure variability (rows).

The swing weight matrix uses an additive value model to determine the value of

each alternative. Suppose there are m different alternatives to select from, and n different

attributes to compare. Then

v(x j) =
n

Â
i=1

wi vi(xi j) (2.3)

where v(x j) is alternative j’s value in terms of all objectives, i = 1,2, . . . ,n is the index

of the attribute measure, xi is the performance value (or score) for attribute measure i and

Table 2.1. A general swing weight matrix structure. The swing weight matrix captures
differences among both the decision criteria importance and measure variation.

Capability Importance
Enabling Critical Defining

High F C A
Variability (Range) Moderate H E B

Low I G D
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wi is the weight given to attribute i. Note that Ân
i=1 wi = 1 for the additive value model.

The additive value model allows quantitative assessment of the trade-offs among multiple

competing criteria in terms of stakeholder value.

2.3. DRUG TRAFFICKING

Drug trafficking is one of the most prevalent, persistent and widely viewed forms

of illicit trafficking and places a substantial burden on United States’ social, economic and

health institutions. The United States Office of National Drug Control Policy (ONDCP)

estimates monetary costs of $120 billion in lost productivity, $11 billion in healthcare, and

$61 billion in criminal justice costs [27]. The United States (US) has invested significant

resources to develop systems that support counter-drug trafficking efforts and other inter-

ventions to thwart these impacts.

2.3.1. Chronology of Drug Trafficking. The drug trade has evolved over the last

fifty years. Hyland [28] and Chindea [29] provide detailed descriptions of how these

changes emerged in response to domestic and international policy. These changes include

the trafficking routes and methods of moving drugs from South America into the US, and

organizational structure changes in response to law enforcement and legal framework ad-

vances, and as competition among drug trafficking organizations (DTOs) grew.

Current counter-drug trafficking efforts involve a complex system that relies on

muliple US and partner country organizations, intelligence, surveillance and reconaissance

assets, and interdiction resources that span federal, state and local law enforcement agen-

cies [30, 31]. Further, DTOs themselves are a complex system comprised of multiple orga-

nizations, each with unique goals and objectives, different functional roles and performance

capabilities. These groups work together, largely through a network of semi-autonomous

agents, to profit from the sale of illegal drugs in the US and Europe [32, 33, 34]. There

is no uniform consensus regarding a well defined structure for DTO organizational struc-

tures over time. Rather, these groups tend to self-organize in response to the environment.
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Trafficking objectives, competition for the drug trade, and law enforcement activity com-

prise this environment. Key trafficking objectives such as maximizing profit, minimizing

the likelihood of interdiction and preventing the arrest and prosecution of group leadership

serve as indirect measures of effectiveness for the trafficking system as a whole [35]. To

meet these objectives, groups operate in a spectrum ranging from cooperation to competi-

tion with one another, employ tactics that lead to corruption or cooption of law enforcement

and utilize ingenuity to gain an operational advantage in moving drugs from South America

to the US. The tactics, techniques and procedures used to maximize system level measures

of effectiveness (MOEs) are influenced by values held by the organization. The values

differ among DTOs, as demonstrated by the use of violence in Mexico and Colombia [36].

Hyland [28] and Corcoran [37] identify four periods over the last century that typify

the changing organizational structures and operational practices of DTOs. The following

Sections summarize these periods and the changes that occurred [28, 37].

Drug trafficking in the Americas dates to the late 19th century. The origins of nar-

cotics trafficking began with medical and scientific discoveries in the late 19th century. At

the time, some narcotics (e.g. cocaine) were not regulated or criminalized as were mari-

juana and opium. Legitimate trade markets formed for cocaine, bolstering the economies

of supplier countries such as Peru. At the same time, illegal narcotics were trafficked pri-

marily by opportunistic individuals acting in self interest.

The criminalization of cocaine in the latter part of this period negatively impacted

coca suppliers in South America, resulting in poor economic conditions in regions once

booming with opportunity. However, demand for such products remained steady in the

US and some European countries, providing an opportunity for illicit trafficking which

developed throughout Latin America and Mexico. During this time, government officials

in these regions realized the opportunity to profit from colluding with local traffickers,

resulting in a culture of corruption.
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The period after World War II gave rise to better structured organizations that fo-

cused on geographic specialization, which led to an initial surge in drug-trade related vi-

olence. The international community largely criminalized the use and trafficking of coca

at this time, causing trafficking organizations to emerge in unstable regions in South and

Latin America.

These organizations developed areas of specialization, including production, distri-

bution and smuggling, that allowed them to take advantage of their location and indigenous

capabilities. Cuba became one of the distribution centers as a metropolitan city and inter-

mediate destination from South America to the US and Europe.

Toward the end of this period, the Cuban Revolution disrupted the drug trade, caus-

ing traffickers to move distribution operations to Central America and Mexico, which in-

troduced trafficking to Mexican political and social structures. Well funded, the DTOs of

this era capitalized on novel technologies, such as aircraft, to transport drugs into the US.

The demand for marijuana and cocaine surged during the 1960s to 1980s, creating

lucrative opportunities for DTOs. As a result of US and Mexican efforts to curb marijuana

production and distribution, Colombia emerged as a new haven for production and distri-

bution hub for the drug. This was fueled by experience in historical trade of illicit goods

and political instability in the region.

During this period, DTOs became much larger and well organized, typically ex-

hibiting a hierarchical structure through the emergence of cartels. Production, trafficking

and security operations were often bolstered by seasonal workers. At this time, Medellín,

Colombia emerged as a trafficking hub and turned the distribution and smuggling activities

into large logistics operations. The Caribbean emerged as a key transit route for drugs en-

tering Miami and south Florida. Smugglers used cigarette boats (go-fast boats) and small

aircraft to transit this route.

Toward the latter part of this era, cartels sought refuge in other Latin American

countries as a result of Colombian and US pressure. These moves allowed the cartels to
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establish new relationships with other traffickers specializing in other commodities and

drugs. These established DTOs had reliable routes through Central America and Mexico

into the US.

Mexican DTOs emerged as the principle traffickers since the 1980s. The chang-

ing nature of the social and political environment contributed to the dissolution of cartels

and their hierarchical structure. In response to law enforcement operations and judicial

prosecutions, the organizational structures flattened, evolving into a network of specialized

actors. This structure insulates key members from highly visible edge operations where

law enforcement interdictions are likely to occur. In addition, these groups specialize in

trafficking, coordinating production with other Latin American groups, and distribution in

the US with US-based gangs. This structure allows the network to capitalize on localized

control and areas of specialization while minimizing full network exposure to law enforce-

ment detection and interdiction.

Drug related violence has risen sharply throughout Mexico since 2009. This vio-

lence stems from fighting among Mexican DTOs in efforts to control large, strategic ge-

ographic sections along the US–Mexico border. This allows DTOs to control the flow of

illicit goods across the border. As the demand for illicit goods continues abroad, Mexican

DTOs have identified new routes across the Atlantic to satisfy the demand.

Key transit corridors have emerged to allow DTOs to continue to bring drugs into

regional distribution centers within the US. Mexican DTOs have adapted their commodities

beyond drugs, and now move people (human smuggling) and other profitable contraband.

As these illicit goods are brought north into the US, bulk cash and weapons are trafficked

south into Mexico, allowing these organizations to continue their operations. Figure 2.1

depicts the estimated cocaine flows across each sector of the transit zone. The transit zone

is comprised of approximately 6,000,000 square miles of open water. Asset capabilities to

detect activities across this expanse are limited.
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Figure 2.1. Trafficking routes across the Transit Zone. Adapted from United States Gov-
ernment Accountability Office [38].

2.3.2. Trafficking as a Complex System. The evolution of DTOs and counter-

trafficking organizations are integrated throughout their history. Each system architecture

adapted in response to changes implemented by the other. This is evident as counter-

trafficking efforts closed gaps in one area, DTOs identified new opportunities elsewhere as

they sought to profit from the demand of their illicit goods.

This artifact of coevolution is present in many complex systems, and remains a

challenge to fully characterize and understand in even simpler systems [39, 40].

Thomas [41] provides a description of a recent counter-drug trafficking operation.

Table 2.2 summarizes seizures that occurred during operation Panama Express. This is

an example of coevolution between DTOs and the counter-trafficking SoS from the late

1990s to 2010. As a result of early interdiction successes, DTOs increasingly relied on

sophisticated transportation methods to defeat counter-trafficking detection and interdic-
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Table 2.2. Drug seizures and interdictions from Operation Panama Express. These seizures
over ten years of the Organized Crime Drug Enforcement Task Force operation demon-
strate changes in smuggling vessel use. Data are from [41].

Year Fishing Vessels Go-fasts Semi-submersibles Arrests Cocaine (kg)
2000 3 7 0 46 23,960
2001 2 7 0 47 12,955
2002 5 11 0 75 35,446
2003 8 10 0 103 25,748
2004 10 13 0 131 58,997
2005 11 12 1 138 50,994
2006 11 17 1 127 45,907
2007 12 19 6 115 46,114
2008 5 9 6 90 32,834
2009 3 11 11 95 23,018

tion capabilities. The United States Coast Guard, the lead US law enforcement agency

for maritime drug interdiction, focused substantial assets on the US Virgin Islands and

Puerto Rico [38]. This shift in asset allocation occurred in response to perceived spillover

violence in these US territories as DTOs used these locations as transfer points for entry

into the US, but likely limited the maritime domain awareness for larger transit routes.

These characteristics underscore the complexities involved in managing and operating the

complex counter-drug trafficking SoS, as stakeholder values can overtake considerations

of system performance as a whole.

DTO physical architecture also changed during this time period. The limited speed

and large profiles of commercial fishing vessels resulted in a growth in interdictions. Go-

fast boats took the place of commercial fishing vessels since they could travel at much

greater speed and out-maneuvre traditional US interdiction assets. As a result of this

change in DTO physical architecture, the US responded by deploying helicopters with

airborne use of force capable of interedicting go-fast boats.

Beginning around 2005, the DTO physical architecture changed again with the

growing use of semi-submersible vessels. These vessels evade detection by many counter-
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trafficking surveillance assets. Semi-submersible vessels typically operate 80%-90% sub-

merged. The US responded with new detection technologies to provide surveillance of

these craft. Currently, DTOs use a mix of these trafficking vessels, and have recently de-

ployed fully submersible vessels to carry drugs across the Transit Zone.

As a result of interdiction and prosecution successes of Panama Express, the struc-

ture of DTOs changed. Many cartel leaders were captured, and the DTOs changed into

loosely connected logistics chains. These logistics chains, which include buffers to pro-

tect key members [28], emphasize the value that decentralized organizations can bring in

addition to offering skill specialization drug trafficking supply chain.

Kenney [36] identifies different organizational structures observed in Latin Amer-

ican DTOs. These structures are broadly described as hierarchical (or wheel) and chain

networks. Each network type offers unique benefits and limitations in managing trafficking

activities, and insulating key group members from investigation or prosecution from law

enforcement. Figure 2.2 presents the hierarchical network and chain structure observed by

Kenney [36].

Physical architecture and organizational structure coevolution are clearly present

between DTOs and the counter-trafficking SoS architecture over the last several decades.

The ability of both to adapt to new tactics, techniques and technologies enables them to

improve the respective system performance for a period of time. Well financed, DTOs
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Figure 2.2. DTO organizational structures. These structures are typical of Latin Amercian
drug trafficking organizations, and have changed over time (adapted from Kenney [36]).
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readily adapt using improvised methods to evade detection and avoid interdiction by law

enforcement agencies.

2.3.3. Data Analysis. The United Nations Office on Drugs and Crime (UNODC) [42]

hosts a research database which contains information on drug interdictions around the

world provided by member states. The database contains records on the interdiction date,

drug type, quantity seized, transportation method and, if known, source country, destina-

tion country and interdiction country. The data are available at http://data.unodc.org. A

representative subset of this data is provided in Table 2.3.

Initial data analysis was performed by summarizing the number of interdictions and

total cocaine seized across all sub-regions for each month in years 1998-2012. Figure 2.3

provides a sample result of this analysis. A subset of this data was used for the below mod-

eling effort. This subset included total interdictions for the Caribbean subregion between

the years 1998–2006.
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Figure 2.3. Monthly cocaine seizure summaries from the UNODC dataset. Only the
Caribbean and South America subregions are shown. Note the significant difference in
y scales to show the overall trends in each subregion.
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Table 2.3. UNODC drug interdiction data subset. Additional information on date and departing/interdiction country, if known, are
available in the original dataset.

SubRegion Country PlaceOfSeizure DrugType Qty (kg) Installation Transportation Source Destination
South America Bolivia La Paz Cocaine Base 26.00
South America Bolivia Cochabamba Cocaine Base 6429.00
South America Bolivia Cochabamba Cocaine Base 6807.00
South America Bolivia La Paz Cocaine Base 2660.00
South America Bolivia Chuquisaca Cocaine Base 4.00
South America Bolivia Cochabamba Cocaine Base 6051.00
South America Argentina Salta Cocaine 135.66 Vehicle Unknown Unknown
South America Argentina Jujuy Cocaine 50.62 Unknown Unknown
South America Argentina Buenos Aires Cocaine 0.53 Unknown Unknown
South America Bolivia Cochabamba Cocaine Base 0.76 Unknown Unknown
South America Bolivia Santa Cruz Cocaine Base 0.33 Airport Commcl air Unknown Unknown
South America Bolivia Cochabamba Cocaine Base 4538.00
South America Bolivia Santa Cruz Cocaine Base 6051.00
South America Bolivia Cochabamba Cocaine Base 1.27 Unknown Unknown
South America Argentina Buenos Aires Cocaine 3.31 Unknown Unknown
South America Colombia Taraza Cocaine Base 348.22 Unknown Unknown
South America Bolivia Santa Cruz Cocaine Base 1513.00
South America Bolivia Santa Cruz Cocaine Base 3782.00
South America Bolivia Cochabamba Cocaine Base 1.52 Unknown Unknown
South America Bolivia Cochabamba Cocaine Base 5.99 Commcl air Unknown Unknown
South America Colombia MEDELLIN Cocaine Base 0.11 Residence Pvt road Unknown Unknown
South America Bolivia Cochabamba Cocaine Base 9077.00
South America Bolivia Santa Cruz Cocaine HCL 0.51 Unknown Unknown
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2.4. RELATED RESEARCH

Operations research methods and systems engineering studies have supported de-

cision making for the trafficking problem. These include deterministic analysis methods,

trade studies and simulation experiments. This section reviews these related studies.

2.4.1. Deterministic Analysis Methods. Game theory is suited to problems where

one agent employs one of any number of strategies against a competing agent. General-

izations and extensions to games have been developed to include multiple players, cooper-

ation, limited information, and continuous strategies among others. Two-person zero-sum

games are a special class of games where exactly two agents whose payoffs are in direct

opposition. These two players choose one strategy against the other player in order to max-

imize (or minimize) some payoff. These games have been extensively studied for network

interdiction problems, where one player must choose some number of arcs to interdict in

order to minimize the flow available to the adversary [43, 44, 45, 46]. In addition, Shieh

et al. [47], Pita et al. [48] have recently implemented game theoretic models for decision

support tools in airport and harbor security operations.

The network interdiction problem considers the allocation of limited surveillance

assets to detect adversary activity. In this problem, described and formulated by Washburn

[49], different types of detection assets m are deployed to monitor a region separated into

n sectors (assuming the physical conditions across these sectors are equivalent, i.e. the

detection rate for each asset type m is equal across all n sectors). Let di j be the detection

rate for an asset of type i 2 m deployed to sector j 2 n. Assuming that all assets monitor

a sector independently, the total detection rate for sector j is Âm
i=1 di jxi j. The network

interdiction problem can be summarized with the following:

• Index use

i 2 m : a detection asset type

j 2 n : homogeneous (operationally equivalent) sectors for asset deployment
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• Data

bi : the total number of resources of asset type i available to assign

di j : the detection rate of asset i operating in sector j

y j : the probability of detectable actions taking place in sector j

• Decision variables

xi j : the total number of assets of type i to deploy to sector j

v : the total expected detection rate of adversary activity

• Formulation

Washburn provides a linear programming formulation for the surveillance problem

as follows [49]:

maximize v

s.t.
m

Â
i=1

xi j�v � 0, j = 1, . . . ,n,

n

Â
j=1

xi j  li, i = 1, . . . ,m,

xi j � 0 8 i, j.

• Description

To represent a limited number of deployable assets for each type m, a bounding con-

straint on xi j is defined as Â j xi j  li, where li is the maximum number of deployable

assets of type i 2 m. The payoff of this matrix game is the average detection rate

against the activities across all sectors, represented as A(xy) = Âm
i=1 Ân

j=1 di jxi jy j

where y j represents the probability that a detectable activity occurs in sector j.

Pan [50] extended the network interdiction problem to consider adversary paths

known probabilistically.
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Search theory is a set of mathematical constructs that aim to provide estimates of

the amount of effort required to detect a target in some search space [51]. Search theory is

used in search and rescue (SAR), naval analyses, and astronomy [52, 53].

In the most general sense, two conditions must be satisfied for a successful search:

the search must be performed in an area that includes the target, and searchers must be

capable of detecting the search object, or target. There are a few key concepts in search

theory that allow estimates of search effectiveness, probability of detection over time and

other measures. In many cases, these solution methods require certain conditions to be

satisfied, such as a stationary target or the absence of benign targets. Lateral range curves

and sweep width are two key concepts in search theory that underpin its use for search

problems. Lateral range curves correspond to the probability of a specified sensor detecting

a specified target. The lateral range is the distance between the sensor and target at the point

of closest approach. The lateral range curve is a probability distribution of detecting a target

at different lateral ranges. The lateral range curve will vary by sensor-target combinations

and environmental factors such as visibility.

“Cookie-cutter” detectors have a lateral range curve defined as follows:

p(x) =

8
>><

>>:

1.0 if r  R,

0.0 if r > R.
(2.4)

where R is the lateral range of the detector and r is the lateral distance between the

target and the detector. The M-beta search model is a generalization of the “cookie-cutter”

detector, where p(x) is a constant value in the interval [0,1] across the entire lateral range

of the detector [52].

The sweep width is a measure of search effectiveness for a particular sensor. Sweep

width is defined as the area under the lateral range curve:

W =
Z •

�•
p(x) dx. (2.5)
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Search effort is another important concept in search theory. Search effort is the

search area that is capable of being searched by a detector:

Z =WL

=WV T (2.6)

where Z is search effort, W is sweep width and L is the distance traveled by the

sensor within the search zone, V is the speed of the sensor/detector and T is the amount

of time spent in the search area. Coverage is another important factor in search theory.

Coverage is defined as the ratio of search effort to search area:

C =
Z
A

(2.7)

where C is coverage, Z is search effort, and A is the search zone

2.4.2. Systems Engineering Studies. Ruegger [54] explores the role of network

centric systems to the mission of maritime domain awareness (MDA). He describes a net-

work centric SoS for MDA by using a SoS engineering process, highlights alternative SoS

capabilities and uses SysML and a discrete event network flow model to develop and evalu-

ate the MDA SoS architecture. Ruegger uses a few performance measures to assess overall

SoS performance, including the time to develop a common operating picture and the prob-

ability of common operating picture accuracy. The result is an assessment of alternative

architectures focused on data exchange in a networked SoS. One of the key findings of this

research is that in highly distributed networks (a key structure in network centric systems)

communications should occur with reduced delay between any two nodes as long as there

are no bottlenecks due to insufficient bandwidth.

Zorn [55] develops an architecture anlaysis of alternative system architectures for

unmanned maritime systems (UMS). He explores the role of UMS to support United States
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Coast Guard (USCG) missions, including maritime domain awareness, search and rescue,

and counter-trafficking. Zorn develops capability needs for UMS, develops UMS alterna-

tive architectures, including unmanned underwater vessels (UUVs) for USCG acquisition,

and performs a feasibility analysis for the implementation of these UMS architectures. The

result is a recommendation for a path forward to developing and acquiring UMS capabili-

ties for the USCG.

Hayes and Paulo [56] use discrete event simulation to assess a naval command and

control (C2) system architecture. This method develops the functional and physical ar-

chitectures for the system, then assesses different C2 structures in the form of a network,

where functions are allocated to different node types within the network structure. Their

preliminary results demonstrate the trade offs between a decentralized and distributed net-

work structure and highlight the need for additional work in both C2 architecture analysis

and inclusion of other system level performance measures in order to fully assess the dif-

ferences between the system architecture alternatives.

Bong [57] applies a systems engineering approach to analyze interagency coordi-

nation and effectiveness in support of DoD combatant commands. This approach reviews

the functional and physical architectures of successful systems that support interagency

coordination. Bong applies the results to the development of a notional architecture for

an interagency coordination center for the Joint Interagency Counter-Trafficking Center.

Bong demonstrated that the systems engineering process could be successfully applied to

organizations.

Abeto [58] applies the systems engineering process for interagency counter-trafficking

and counter-terrorism efforts in DoD’s European Command (EUCOM). The process in-

cludes operational concept development, stakeholder analysis, system objectives and re-

quirements definition, and functional decomposition. The result is a functional architec-

ture that focuses on information sharing across stakeholders and a method to assess sys-

tem performance as a feedback mechanism to improve system performance. This work
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help policy makers focus on key system interfaces to improve the counter-trafficking and

counter-terrorism efforts by EUCOM.

2.5. SUMMARY

The design and analysis of complex coevolutionary SoS remains an open challenge

in systems engineering. A body of research has explored alternative methods that sup-

port assessing SoS. This includes static models of SoS, deterministic analysis methods for

trade studies, and ABMs to simulate SoS. However, this work has not been integrated to

understand the impact of coevolution in the SoS domain.

The counter-trafficking system is an example of a coevolutionary system. This sys-

tem has adapted to changes in the operational environment over the last several decades.

However, most analyses of this system have focused on deterministic methods to optimize

resource allocation or used traditional systems engineering approaches to evaluate alterna-

tives or improve aspects of the system. Some work has been done to explore the utility of

new capabilities (e.g. UUVs) in the future. Other work has explored evolutionary techno-

logical changes in smuggling vessels. These works have not been integrated to explore the

resulting performance degradation as a result of smuggling vessel changes or explored new

architectures in response to these changes.

Existing research provides the basis for an approach to assess complex coevolution-

ary SoS. This includes trade studies for constituent systems using multi-objective decision

analysis and agent-based modeling to support SoS meta-architecture evaluation.

Coevolution exists in many systems. This thesis demonstrates that it exists in the

counter-trafficking SoS and adapts existing work to measure the impact on the SoS, create

new alternative meta-architectures, and assess performance trades. This is accomplished

by integrating multi-objective decision analysis, deterministic analysis and agent-based

modeling. Multi-objective decision analysis provides an approach to evaluate SoS meta-

architectures by assessing the contribution of constituent systems that provide a specified
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capability through the value of constituent systems to the overall SoS objectives and mea-

sures. This results in a set of constituent systems for an initial SoS meta-architecture. Co-

evolution impacts SoS performance through changes in the operating environment. Agent

based modeling is used to simulate the SoS in representative operational environments that

mimic coevolution between the SoS and its environment. The results of the simulation

allow assessment of the SoS while accounting for evolutionary changes in the SoS archi-

tecture, operating environment, and smuggler behavior.
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3. SYSTEM CONCEPTS

A system is a collection of objects that interact to achieve or perform a capability

that individual components cannot perform alone. The International Council on Systems

Engineering (INCOSE) defines systems engineering as “an interdisciplinary approach and

means to enable the realization of successful systems” [59]. The systems engineering pro-

cess begins with a need for some capability that a collection of components cannot readily

address. Several models have been developed to describe the systems engineering pro-

cess. In general, the systems engineering process includes iterating through the activities

of assessing, designing, building, and validating the system.

• the process of describing what the objects are to do

• defining the allowable ways it can be done

• identifying alternative ways of doing it

• defining the criteria that govern how well an alternative satisfies the objectives

• assessing the performance of the available alternatives according to these criteria

• recommending an approach

• documenting the design and development of the alternative

• testing system components

3.1. THE SYSTEMS ENGINEERING PROCESS

The systems engineering process serves as a risk mitigation against failures in chal-

lenging development efforts. For monolithic systems, the formal systems engineering pro-

cess is a collection of activities that have developed over time, refined by experiences in
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increasingly complex and large-scale systems. Ideally, systems engineering maximizes the

benefit to the customer through analysis of the system problem, evaluation of stakeholder

needs, and the assessment, design, development, testing and implementation of the best

solution. The boundaries between systems engineering activities is often fuzzy, and can

require iterative refinements, especially for requirements development and analysis. Fig-

ure 3.1 is one model of the systems engineering process including formal deliverables.

Systems engineering is, in essence, a risk mitigation against failed development for

complex engineered systems. The systems engineering process described by Blanchard

and Fabrycky [21] is summarized in Sections 3.1.1–3.1.4.

3.1.1. Conceptual Design. The conceptual design phase is a critical step in the

systems engineering process. This phase sets the design and implementation trajectory for

all later steps. Errors or mistakes made early on in the systems engineering process heav-

ily influence downstream activities. The conceptual design phase should strike a balance

between concepts that are too narrow, missing key requirements and design alternatives,

and concepts that are too broad, which can push design refinement to further phases, risk-

ing project schedule and budget. The following activities are performed during system

conceptual design:

• Need Identification and Problem Definition: The systems engineering process begins

with the identification of a needed capability, which can arise for both new capabil-

ities (and hence a need for new systems), and for precedented systems, in which

improved performance is required. It is important to document the need and rea-

sons why the specific capability is necessary. This informs the system requirements,

stakeholder analysis and conceptual design activities which will influence the overall

system design and implementation.

• System Planning and Architecting: System planning activities develop formal docu-

mentation, including a program management plan, systems engineering management

plan, development of technical requirements. Systems architecting activities include
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Figure 3.1. A model of the Systems Engineering process with deliverables. The Conceptual
Design phase is emphasized, and formal deliverables are highlighted by shaded boxes.

development of the functional architecture, the physical architecture (mapped to the

functional architecture), operational requirements definition, development of alter-

native concepts, and performing feasibility studies of these concepts.

• Conceptual Design and Feasability Analysis: The conceptual design phase identifies

alternative system concepts that address the stated system need and evaluates these

concepts against important stakeholder criteria. These criteria typically include sys-

tem performance, effectiveness, sustainment and life-cycle cost considerations. The

result is a recommended system concept that best meets the stated need.

The analysis of system alternatives results in major decisions that are made and heav-

ily influence the resulting work to bring the system into being. The considerations

that go into these analyses are problem dependent. Weather considerations impact al-

ternatives designed to operate in outdoor environments, obsolescence considerations
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impact technology development and deployment systems, and data communication

standards impact network systems. Systems that encounter each of these scenarios

should plan and account for all of them. These decisions can have immense im-

pact on the performance, behavior, and ultimately, the utility of the system that is

developed to address the need.

• Requirements Definition: The requirement definitions, specifically the operational

requirements definition activity, identifies the missions the system is expected to

perform, key performance parameters, deployment and distribution estimates, lifecy-

cle considerations, utilization requirements, effectiveness factors, and environmental

factors. For systems-of-systems, interoperability requirements are also addressed.

• Maintenance and Support Concepts: System operation and support are often the

most costly activities for developed systems. The system maintenance and support

concepts identify how the system will be maintained once it is developed and in

operational use. This includes levels of maintenance, organizational responsibilities

and maintenance support activities.

• Measures of Effectiveness: Qualitative measures that describe how well the system

meets its intended purpose. Measures of effectiveness (MOEs) are provided by the

acquirer or user of the system to describe the operational effectiveness of the solu-

tion [59].

• Measures of Performance: Quantitative measures that describe how well the system

meets the required functionality; measures of performance (MOPs) characterize the

physical and functional attributes relevant to system operation [59]

• Technical Performance Measures: Technical performance measures (TPMs) are quan-

titative measures that specify the standard, or threshold, against which a requirement

should be met. TPMs typically result from operational requirements and describe
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the performance of system components to ensure that they meet system require-

ments [59].

• Functional Analysis: Functional analysis explores what the system is to do. There

are a number of functional decomposition methods and tools, including integrated

definition (IDEF) modeling and functional flow block diagrams.

• Trade-off Analyses: System level trades evaluate alternatives with regard to technical

performance measures and system level objectives. The result is a recommendation

for a set of perferred alternatives given objectives and constraints. At the system

level, these are typically multi-objective decision problems.

• System Specification: The above conceptual design activities contribute overall guid-

ance for how the system is brought to be. The system specification isa formal doc-

ument describing how conceptual design elements are combined and integrated to

specify the system.

• Conceptual Design Review: A formal review to evaluate the system specifiation and

conceptual design. This review allows statkeholders to provide recommendation for

correction before progress to preliminary design.

3.1.2. Preliminary System Design. The focus of this phase is to allocate require-

ments to subsystems and describe the interfaces between subsystems. The goal is to reduce

the abstraction of conceptual design prior to detail system design. Steps of preliminary sys-

tem design include:

• Preliminary Design Requirements: Preliminary requirements describe what the sub-

systems are to do.

• Preliminary Design Specifications: This includes specifications for Development,

Product, Proces and Materials. These are formal documents detailing the technical

requirements and design standards.
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• Subsystem Functional Analysis and Allocation: Subsytem function and interfaces

are assigned to subsystems. Models such as functional flow block diagrams are often

used.

• Preliminary Design Criteria: These criteria describe how the “–ility” design consid-

erates are to be addressed.

• Design Engineering Activities: These activities call for an increased role of design

engineering disciplines within integrated teams.

• Trade-off Studies and Design Definition: This inlucdes evaluation of alternative

subsystem configurations and establishing a system configuration at the component

level.

• Preliminary Design Review: A formal review of the preliminary design with stke-

holders. This allows recommendations or adjustments before moving to detailed

system design.

3.1.3. Detail Design and System Development. This phase includes the detailed

design of system components and interfaces. The following are elements of detailed design

and system development:

• Detail Design Requirements: The lowest level requirements that the system must

satisfy are allocated to components.

• System Integration: Ensures the collection of components operate together as a sys-

tem, and that the system meets performance objectives and satisfies system-level

requirements.

• System Development: This includes prototype development, iterations through de-

sign reviews, and includes evaluation and feedback reviews.
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3.1.4. System Test and Validation. The purpose of system test and validation is

to ensure that the system operates as designed and satisfies operational and performance

requirements. This phase includes test and evaluation planning and reporting to validate

that the system meets these requirements.

3.2. ARCHITECTURE ANALYSIS

Architecture analysis is among the first activities that solidify the abstract notions

described by the system need and system concept. It enables trade-space exploration, ac-

counts for multiple stakeholder objectives, and forms a systematic set of views of the sys-

tem [60]. Systems engineering has a strong influence on the overall design and direction of

the system during the conceptual design stages, where architecture analysis is performed

(Figure 3.2).
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Figure 3.2. The influence of systems engineering and design disciplines in overall system
design. Early systems engineering design phases have tremendous influence in the overall
system design. System architecture development is a key task in developing a successful
system concept. Adapted from Blanchard and Fabrycky [21].
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3.2.1. DoD Architecture Framework. The DoD Architecture Framework (DoDAF)

is an overarching model that supports decision making in DoD organizations [61]. The

DoDAF provides a common definition for system architecture development. A standard-

ized set of models, or views, enable information to be shared across DoD organizations to

communicate effectively. The DoDAF view families include:

• All Viewpoint provides a summary for the scope, constraints, and assumptions used

to develop the system architecture views

• Capability Viewpoint describes the capability taxonomy and visualizations of capa-

bility evolution

• Data and Information Viewpoint defines the business and operational information

rules and requirements

• Operational Viewpoint describes the tasks and activities and resources required to

carry out the operational aspects of the system

• Project Viewpoint provides information on the organizations, programs and projects

involved in developing the required capabilities

• Services Viewpoint describe the resources that support the operational and support

capabilities of the system

• Standards Viewpoint defines the rules for the configuration and relationships be-

tween elements of the architecture description to ensure operational and capability

requirements are met

• Systems Viewpoint describes the systems and interconnections necessary to support

operational activities and information exchange across system components
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3.2.2. Role of Modeling and Simulation. Models support decision making and

are constructed based on the specific decisions they are intended to support. Simulations

execute models over time and space to understand the behaviors that result from interac-

tions between system components.

Modeling and simulation are used throughout the systems decision process [20].

This includes problem definition (conceptual models), solution design (cost analysis), de-

cision making (risk and trade analysis) and solution implementation (system control and

logistics). Simulation is used within the systems decision process, such as discrete event

simulation for assessing operational factors of the system, and physics-based simulations

that model the physics of system comopnents, such as communications in electronics com-

ponents or probability of detection for radar systems.

3.3. ENGINEERING COMPLEX SYSTEMS-OF-SYSTEMS

A system-of-systems is a system composed of multiple subsystems [59], called con-

stituent systems. Systems-of-systems typically involve complex stakeholder environments

as a result of some degree of autonomy of each sub-system owner. As a result, the system

architect or system engineer is constrained not only by the existing performance, maturity

or technological capabilities of constituent systems, but by organizational and policy chal-

lenges as well. In these environments, the SoS missions can become secondary or tertiary

roles for constituent systems. However, the SoS mission requires the constituent systems

to gain some performance advantage.

The traditional systems engineering process is well suited for monolithic systems.

In these cases, the environment does not substantially change and diminish system per-

formance after it is deployed into the operational environment. Systems-of-systems differ

from monolithic systems in a few ways. Parnell et al. [20] identify several trends that create

challenges in applying traditional systems engineering to complex SoS. These challenges

are a result of increasing:
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• Complexity due to engaging increasing numbers of engineering disciplines and growth

in the types and number of interfaces

• Dynamics due to interactions with, and changes in, the environment

• Stakeholders that contribute input and have unique objectives for the system

• Security and Privacy Concerns as a result of the amount of information stored, ac-

cessed and available through interconnected systems

A number of characteristics help distinguish monolithic systems from SoS (Ta-

ble 3.1). Sage and Cuppan [62] identify these as operational and managerial independence

of the constituent systems, geographic distribution (networked systems), emergent behav-

ior and evolutionary development. Sage and Cuppan identify that SoS exhibit aspects of

complex adaptive systems, and may require federated systems engineering principles and

evolutionary acquisition approaches to address the complexity inherent in SoS. However,

systems-of-systems integrate constituent systems to enable new capabilities for a particular

mission or purpose. This has, in many cases, changed the system development perspective

from requirements based to capabilities based [63].

Bar-Yam [65] describes recent challenges in applying the traditional systems en-

gineering process for complex SoS and provides a description of the differences between

traditional SE and SE for modern complex systems. For example, the NASA systems en-

gineering process does not account for drastically changing operating environments — the

requirements do not change. Current SoS have asynchronous development cycles for each

constituent system. A current challenge is integrating these constituents over time to real-

ize the desired set of capabilities for the SoS. Systems developed throughout the Cold War

provide examples of changing architectures. These systems were developed in anticipation

of adversary response. The goal in such systems is to assess how best to respond to un-

certain futures by focusing on the behavior that we are concerned with. Network centric
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Table 3.1. Characteristics of monolithic systems and acknowledged SoS. Characteristics
are adapted from [63] and [64].

Environment Monolithic System Acknowledged SoS
Scope Fixed or known Varies with availability of constituent systems

and operating environment
Stakeholders Clearly defined Differences between SoS and constituent sys-

tems with competing objectives
Organization Hierarchical; centralized Networked; decentralized or autonomous
Management Formal roles; funded scope Independent funding and development of

constituent systems
Operational Fo-
cus

Conceived, designed and de-
veloped to meet operational
objectives

Needed to satisfy operational objectives that
may not align with constituent system objec-
tives

Acquisition Documented requirements
and milestones; SE process

Independent development; coordination be-
tween novel, new and legacy systems

Evaluation Usually performed bottom
up; planned test phases

Challenges due to availability and technolog-
ical maturity (synchronization) of constituent
systems; potential for unintended conse-
quences; continuous testing with changes in
constituent systems

Boundaries Includes system components Includes systems that contribute to the SoS;
changing operational environment

Interfaces Component-component
interfaces

Enable control, information and data flow;
balance constituent system needs

Performance Clear, unambiguous and
measurable performance
measures

Capabilities that rely on contribution of con-
stituent systems

Behavior System behavior is determin-
istic

Uncertainties introduced as a result of con-
stituent system availability; systems working
together for a particular capability

Evolution Planned; version controlled Largely uncoordinated; opportunities by re-
duced capability from changing missions or
operating environment

System Devel-
opment

Systems engineering process An unsolved engineering challenge

systems and modern combat systems are other examples where traditional SE needs to be

extended to address inherent complexity.

One of the challenges in SoS is evolutionary development. Planning for new capa-

bilities is a challenge as a result of future uncertainty regarding the operating environment
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Figure 3.3. A model of asynchronous development in a SoS. The acknowledged SoS de-
velopment concept begins with a needed capability and identified constituent systems. The
constituent systems undergo independent development and evolution which lead to asyn-
chronous SoS development and integration. This represents a key challenge that separates
engineering SoS from traditional systems engineering for monolithic systems.

and availability of capabilities. Figure 3.3 illustrates the changes and adaptions of the

SoS by incremental changes in constituent systems. The SoS is initiated with planned

constituent systems. The constituent systems undergo development and evolution indepen-

dently, which leads to asynchronous SoS development and integration. These challenges

are examples of the difference between SoS analysis and traditional, monolithic systems

engineering analysis. Fang and DeLaurentis [66] use an approximate dynamic planning

approach to optimize the iterative SoS development process based on cost, schedule, per-

formance and risk. This supports SoS architecture decision making by recommending

alternatives at each iteration that SoS managers can consider for implementation.
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Meilich [67] reviews some challenges in applying traditional systems engineering

to the SoS environment. Meilich also identifies that, given current trends toward com-

plex SoS, considerations such as flexibility, adaptability, and interoperability with systems

or capabilities that were not envisioned early in the system development are becoming

increasingly important. This contrasts with monolithic systems, for which optiming the

system for a particular purpose tends to be an objective for the system engineer. Meilich

notes that experimenting with the SoS as it evolves is one way to address the complex

behavior that emerges from the SoS. This requires modeling and simulation tools to as-

sess SoS adaptations in the environment in order to generate insights for planning future

capabilities.

However, simulating complex SoS, including the constituent systems, interrela-

tionships and environment interactions, is an open challenge Kewley et al. [68] develop

federated simulations for a SoS. Federated simulations, including distributed interactive

simulation (DIS) and high level architecture (HLA), allow interoperability between mod-

els that have developed at varying levels of detail using a defined interface. The federated

simulations developed by Kewley et al. use federates for information exchange, environ-

ment representation, entity representation, model development and data collection applied

to a swarm of semi-autonomous unmanned aircraft systems. The goal of this work is to

develop improved rules governing the behavior of the SoS constituents. Baldwin et al. [69]

suggest that agent based modeling is well suited for general SoS simulation. However,

agent based models can be challenging to validate empirically. Baldwin et al. find that

discrete event simulation supports validation of the agent based model for the SoS.

The test and evaluation process also separates traditional systems engineering from

SoS engineering. Due to asynchronous development of the SoS constituent systems and

coupling of the SoS with the environment, the testing process becomes convoluted. Testing

of SoS constituents can take place with operational systems
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There are several open challenges in engineering systems-of-systems. These chal-

lenges include evaluating the SoS alternatives at the SoS level, and generating feasible

alternatives for the SoS:

1. Evaluating SoS alternatives at the SoS level requires that the interfaces between each

SoS constituent system may be well defined in terms of the physical, functional and

communication layers. However, understanding the interdependencies between the

systems that comprise the SoS, especially with respect to changes in performance, is

much less understood. In essence, these interdependencies can exhibit force multi-

plier effects, where systems that serve similar, but distinct, functions, work in tandem

to generate an improved overall performing architecture. This is an example of non-

linearity resulting from SoS capabilities and interfaces.

2. Generating feasible alternatives is an unsolved problem in engineering SoS. This is

a combinatorial problem in the SoS case, where each combination of constituent

systems becomes an SoS alternative.

In the architecture evaluation for a single system, trade studies compare several

alternatives in order to choose a single best alternative in terms of overall system perfor-

mance, expressed through MOEs, MOPs and TPMs (or collectively, a value model). For

the SoS case, we may seek to employ multiple alternatives due to reliance on these systems

for other missions. In the case of drug interdiction, USCG surveillance aircraft are used for

other missions beyond surveillance of drug traffickers. Search and rescue missions are a

greater priority when loss of life or property are at stake. Similarly, US Navy vessels serve

to provide national level defense capabilities that are required in times of conflict. These

platforms are equipped with a variety of other technologies and equipment to support the

national defense mission.

A meta-architecture represents the constituent systems within the SoS. This rep-

resentation defines the relationships between the constituent systems, oriented toward a
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desired SoS capability, and based on individual capabilities of the SoS constituents. The

interfaces between constituent systems typically are in the form of communications inter-

faces. However, other interfaces, including physical interfaces, can also be important in

situations where one system depends on the other. For example, when one system de-

pends on another in order to be delivered to the operating environment, the payload of

the delivery system becomes a consideration given the volume and weight of the delivered

system [70, 71].
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4. THE COUNTER-TRAFFICKING SOS

The counter-trafficking SoS exists to detect trafficking activities and disrupt these

activities through supply reduction, smuggling interdiction and trafficker prosecution. This

requires the coordination of several geographically dispersed systems that operate together.

These systems support resource planning, information sharing, detection and interdiction

operations, and coordination with law enforcement for trafficker prosecution.

The counter-trafficking system is an example of a system-of-systems. Table 4.1

describes the stakeholders involved in this SoS. Each stakeholder has a role in the counter-

trafficking effort, but none exist solely to detect and interdict drug trafficking between

South America and the US. Each stakeholder has slightly different values and performance

measures to assess counter-trafficking performance, and each brings unique capabilities to

the counter-trafficking mission.

The counter-trafficking SoS has many characteristics of an acknowledged SoS:

• several stakeholders with differing objectives at the SoS and constituent levels (Ta-

ble 4.1),

• constituent systems that participate in the SoS and other, unrelated missions,

• constituent systems that contribute required SoS capabilities,

• a decentralized management structure, with organizational efforts combined to sat-

isfy the overall counter-trafficking SoS goals and objectives,

• constituent systems developed asynchronosly under differing management and sys-

tems engineering structures,

• interfaces centered on information sharing across constituent systems and associated

organizations,
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Table 4.1. Stakeholders of the counter-trafficking SoS. Many stakeholders are users or
operators of the system. Some functions are shared, but tailored for specific missions. US
policy and law control the roles, responsibilities and jurisdictions of US organizations.

Agency Role or Function Goals and Objec-
tives

Department of Defense
(USSOUTHCOM)

Performs monitoring and detection of trafficking
activities; provide support to law enforcement in-
terdiction operations

Targeted number of
interdictions [72]

JIATF-South Performs interagency and international coordina-
tion for detection and monitoring; resource allo-
cation; facilitates interdiction of illicit trafficking
and other threats in support of national and part-
ner nation security.

United States Navy Interdiction vessels, ISR asset support [38]
Department of Home-
land Security
United States Coast
Guard

Maritime surveillance and interdiction Reduce the flow of
cocaine [73]

Customs and Border
Protection

Land and maritime border drug interdiction Sustain desired
readiness rate [73]

Immigrations and Cus-
toms Enforcement

Interdiction support

Intelligence Community Drug related intelligence [74]
Department of State Coordination with partner countries [74]
Department of Justice Prosecution [30]
Drug Enforcement
Agency

Drug related intelligence and interdiction [41]

Federal Bureau of Inves-
tigation

Drug related intelligence and interdiction [41]

Partner Countries ISR and interdiction; asset and resource deploy-
ment [38]

State and Local Law En-
forcement

Drug interdiction; intelligence; prosecution [30]

• opportunistic SoS development; architecture is incrementally developed based on the

availability of tools and platforms

Based on these characteristics, the counter-trafficking SoS can be considered an

acknowledged SoS.
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A key counter-trafficking effort is the interdiction of cocaine and other illicit drugs

in the transit zone. Cocaine typically moves from South America, through the western

Pacific Ocean or Caribbean Sea, to Central America and the United States. The ONDCP

estimates that 84% of illicit drugs were moved across the transit zone using noncommercial

maritime means in fiscal year 2013 [38]. Drug trafficking organizations use different types

of vessels to smuggle narcotics across the transit zone. Table 4.2 identifies a few categories

of these vessels and their characteristics.

The United States Coast Guard is the lead US organization for executing maritime

counter-trafficking efforts in the transit zone. The Joint Interagency Task Force - South

(JIATF-South) coordinates the activities of several organizations to support these efforts.

The USCG, Customs and Border Protection (CBP) and USN contribute vessels and air-

craft. JIATF-South also receives resources and support from partner countries, including

the United Kingdom and Canada. The US effort to disrupt the drug supply focuses elements

of the counter-trafficking SoS close to the source of drug supply to maximize interdiction

opportunities of higher-value cargo loads. Due to the Posse Comitatus Act, DoD is prohib-

ited from engaging in civilian law enforcement. As a result, USCG personnel are assigned

to certain USN vessels in order to perform law enforcement functions in drug interdiction

areas [38, 73, 75].

Table 4.2. Maritime smuggling vessel properties. These DTO maritime smuggling vessels
are encountered in the Transit Zone. These vessels have differing speeds, ranges, payloads
and detection and evasion capabilities that are unique to each type of vessel. The values of
these characteristics are estimated for each smuggling vessel type.

Name Domain Range
(nm)

Payload (metric
tons)

Speed
(knots)

Cost

Fishing Vessel Sea 3,000 5–10 12 $100,000
Go-fast Boat Sea 400 0.5–3 70 $300,000
Semi-Submersible Sea 2,000 3–10 10 $500,000
Fully Submersible Sea 2,000 3–10 10 $900,000
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4.1. SOS ARCHITECTURE

The counter-trafficking SoS uses existing DoD and DHS systems to provide the

necessary capabilities to perform the counter-trafficking mission. The engineering chal-

lenge for this SoS is to improve how these systems operate in order to maximize the amount

of smuggled drugs and other contraband being trafficked into the US. In order to do this,

it is important to understand the required capabilities of the counter-trafficking SoS, the

systems that can be used to provide those capabilities, and how those systems can be in-

tegrated and operated to maximize SoS effectiveness. The following sections describe the

set of capabilities and functions of the SoS, the physical architecture in terms of constituent

systems that satisfy teh capabilities, and an operational view of how the system works to-

day. The definition of these systems begins with a functional decomposition of what these

systems do, defining and assessing the relationships that exist between system functions.

4.1.1. Capabilities and Functional Architecture. In systems engineering, a func-

tional architecture describes what the system is to do. For SoS, missions specify what the

SoS is to do, and capabilities are derived from those missions. The mission of the counter-

trafficking SoS is to disrupt the flow of illicit drugs, typically cocaine, into the US. The

capabilities for the counter-trafficking SoS are provided in Figure 4.1 [76]. The remainder

of this research omits the capabilities shaded in grey because they are considered supple-

mentary to the primary focus of the counter-trafficking SoS system studied here.

• Detect Smuggler: Detecting the smuggler consists of the following capabilities:

– Detect Smuggling Vessels: The counter-trafficking SoS must be able to detect

smuggling vessels in order to allocate resources and understand the operating

environment. Without detection, the counter-trafficking mission cannot be per-

formed.

– Identify Smuggling Vessels: Smuggling vessels typically operate in areas where

commercial and some recreational traffic are also located. Smugglers use fish-
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Figure 4.1. Counter-trafficking SoS capabilities. These capabilities include disruption of
drug crop harvesting, smuggling, and drug trafficking organizations. Each of these capa-
bilities is decomposed to identify the systems and platforms that provide those capabilities
in order to perform the counter-trafficking mission. Capabilities shaded grey are not con-
sidered in the remainder of the SoS analysis.

ing vessels to blend in with the environment. Smugglers have also used sail-

boats and yachts to traffick drugs. The ability to identify smuggling vessels

from benign traffick is necessary to reduce the number of false positive identi-

fications, which reduces the availability of valuable assets.

– Track Smuggling Vessels: In order to coordinate smuggler interdiction, targets

must be tracked spatiotemporally. This requires that detection assets have visi-

bility of targets over a period of time.

– Disseminate Information: The coordination of detection and interdiction assets

is an important aspect. Information on targets allows targets to be prioritized

and interdiction resources to be organized. Information dissemination is also
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an important feature in the broader counter-trafficking mission, since different

organizations likely have access to different types of information, as well as the

engagement and coordination of activities with partner countries.

• Interdict Smugglers: The interdiction of smugglers is also necessary to successfully

disrupt drug trafficking. Interdiction capabilities include:

– Deploy Interdiction Systems: Interdiction assets must be able to physically

access the target vessel. This requires some deployment capability or platform

that can place these assets within range of the target.

– Coordinate ISR: Coordination of ISR enables the information disseminated

from the detection systems to be used by the interdiction systems. The timeline-

ness and availability of this information is critical for successful interdictions.

– Identify Target: Smuggling vessels may be in proximity to other types of ves-

sels. The capability to hand-off the target from the detection system to the in-

terdiction system may be accomplished through visual means, or may require

additional identification capabilities. The purpose of this capability to to ensure

that the correct vessel is interdicted.

– Track Target: Once the target is identified, it must be tracked in order for in-

terdiction assets to physically interdict the vessel. This may be accomplished

through coordination with detection systems that have detected, identified and

tracked the vessel, or may require the interdiction system to track the target

independently.

– Execute Interdiction: Interdiction requires personnel to physicall board the tar-

get vessel. In some cases, an additional capability, such as airborne use of

force, may be required. Boarding approaches may depending on the target ves-

sel type.
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– Recover Interdiction Systems: After the interdiction is completed, interdiction

personnel, smugglers and any drugs seized are recovered.

4.1.2. Physical Architecture. Disrupting maritime smuggling is a key focus of

the counter-trafficking effort, and the focus of the remainder of this research. The capabil-

ities of the counter-trafficking SoS require constituent systems for command and control,

and detection and interdiction. For counter-trafficking, platforms are needed to deploy de-

tection and interdiction assets. The constituent systems available to support these capabil-

ities have varying performance in range, speed, cost and target detection and interdiction.

These systems are coordinated to disrupt smuggling activities of the vessels described in

Table 4.2. Table 4.3 summarizes the amount of time different types of counter-trafficking

SoS constituent systems were used for the counter-trafficking mission in 2013 [38].

• Detection: Detection capabilities include surface search radar, synthetic aperture

radar and visual detection. Intelligence can also contribute to detection, although

the intelligence role is not explored for this analysis. These sensors require a plat-

form to deploy into the operational environment. These platforms typically include

aircraft and surface vessels.

• Identification: Target identification can occur using electro-optical/infrared sensors,

or through visual means. Like detection sensors, the ability to identify targets re-

Table 4.3. Surveillance asset availability. Data are for fiscal year 2013, from United States
Government Accountability Office [38].

Agency Support Type Total Units
CBP Maritime Patrol Aircraft 6134 Hours
USN Maritime Patrol Aircraft 2100 Hours
USN Maritime Patrol Vessels 429 Days
USCG Cutter Boats (combined) 1500 Days
USCG HC-130 3750 Hours
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quires aircraft or surface vessel platforms to deploy the sensors in the operating en-

vironment.

• Tracking: Vessel tracks are based on target detection. These detection events are

recorded and coordinate through a command and control center. Campos III [77]

describes a method that develops target tracks to generate probability density maps

of the target location over time. This supports the allocation and movement of inter-

diction assets to the vicinity of the target.

• Surveillance: Surveillance systems are platforms that support detection and tracking

of smuggling vessels. These systems are typically aircraft that can operate for ex-

tended periods of time over large geographic areas. These platforms are also used

for other missions. Representative surveillance systems are presented in Table 4.4.

• Interdiction: Systems to support interdiction must be capable of reaching the target

location and conducting the interdiction operation. For some targets, such as evasive

go-fast boats, interdiction can require an additional capability such as airborne use

of force. In this case, the target is immobilized so that interdiction can occur. Other

targets, such as submersibles, can evade current interdiction capabilities by staying

submerged. Interdiction platforms are also used for other missions, such as search

and rescue. Representative interdiction craft are presented in Table 4.5.
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Table 4.4. Representative surveillance systems. The counter-trafficking SoS includes additional surveillance systems from other agencies
and organizations.

HC-144A C-27J HC-130H HC-130J Scaneagle RQ-4 Global
Hawk

Organization USCG USCG USCG USCG USCG USCG
Class Medium Range

Fixed-Wing Air-
craft

Medium Range
Fixed-Wing Air-
craft

Long Range
Fixed-Wing Air-
craft

Long Range
Fixed-Wing Air-
craft

UAS UAS

Radar Multi-mode sur-
face search

Multi-mode sur-
face search

Multi-mode sur-
face search

Multi-mode sur-
face search

EO/IR Y Y Y Y
Night Vision Y Y Y Y
Encrypted Com-
munications

Y Y Y Y Y Y

Maximum Speed
(knots)

246 317 380 380 80 112

Cruise Speed, est.
(knots)

230 220 374 374 55 70

Range (nm) 2000 2675 2487 5000 809 12300
Endurance
(hours)

11 12 14 14 24 32
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Table 4.5. Representative interdiction systems. The USCG has primary responsibility for smuggling vessel interdiction in the Transit
Zone, since DoD organizations are prohibited from performing law enforcement operations.

MH-60T Jayhawk MH-65D Dolphin LRI-II OTH-IV RB-S II RB-M

Class Medium Range
Recovery Rotary
Wing

Medium Range
Recovery Rotary
Wing

Long Range Inter-
ceptor Boat

Long Range
Boarding Vessel

Short Range Re-
sponse Boat

Medium Range
Response Boat

Interception
Capability

Airborne use of
force;

Airborne use of
force;

Sea Sea Sea Sea

Radar Y Y
EO/IR Y Y

Maximum Speed
(knots)

180 175 38 40 45 43

Cruise Speed, est.
(knots)

150 148 30 30 35 30

Range (nm) 700 290 225 200 175 250
Endurance
(hours)

6.5 3 8 24

Launch Platform NSC NSC NSC NSC NSC Shore
Crew (personnel) 4 3 4
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4.1.3. Operational View. The Operational View (OV) provides a high level con-

text for how the system achieves the intended capability. Figure 4.2 depicts an OV-1 for the

counter-trafficking SoS. Connections between systems represent available communication

interfaces.

C2

Satellite

Target

Airborne
Surveillance

Maritime
Platform

Commercial 
VesselInterdictor

Figure 4.2. OV-1 of the initial SoS meta-architecture.

4.2. COEVOLUTION OF THE COUNTER-TRAFFICKING SOS

Drug trafficking organizations adapt trafficking modes and methods to circumvent

detection and interdiction capabilities of the counter-trafficking SoS. Complexities such as

the varied stakeholder environment, constituent systems integration, and competing mis-

sion priorities make analyzing the counter-trafficking SoS a challenge. A changing operat-

ing environment also leads to the complex nature of the counter-trafficking SoS.

Openly available data reporting specific types of trafficking vessels is limited. Ta-

ble 2.2 provides a small dataset for a single operation that demonstrates one aspect of co-

evolutionary behavior on the part of DTOs. Between 2005 and 2009, the fraction of seized

semi-submersibles increased from 0% to 44%. This significant increase reflects changing

capabilities on the part of DTOs as well as the counter-trafficking SoS.
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Figure 4.3. Submersible seizures between 1993–2013. The number of seized fully- and
semisubmersibles has changed substantially since 1993. Between 2005–2009, the number
of seizures grew significantly, but has declined since. This indicates that DTOs are becom-
ing more proficient in the use of submersibles to evade detection and interdiction by the
counter-trafficking SoS. Data are from Ramirez and Bunker [78].

Ramirez and Bunker [78] describe the evolution of DTO fully- and semi-submersibles

over the last two decades. Figure 4.3 shows the number of seizures reported by Ramirez

and Bunker. The number of submersible seizures has declined in recent years. Ramirez

and Bunker indicate that newer technologies employed by DTOs to evade or outrun cur-

rent detection and interdiction technologies are driving the decline, rather than reduced use

of these types of smuggling vessels. This means that DTOs have evolved to new forms

of trafficking vessels in response to the capabilities employed by the counter-trafficking

SoS. This exemplifies the idea of coevolution between the counter-trafficking SoS and the

environment.

The counter-trafficking mission involves the implementation and operation of surveil-

lance technologies, command and control nodes and interdiction assets. Similarly, drug

trafficking organizations use transportation methods that have varying cargo capacities,

range and speed of travel. The interactions between the counter-trafficking SoS and drug
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traffickers result in dynamics influencing the number of drug interdictions. These dynamics

can be viewed as a population of interdictions that changes over time based on probabili-

ties of detection and interdiction, the frequency of smuggling events, and the effectiveness

of counter-trafficking operations. These dynamics exhibit complex system behavior. The

seizure quantity of trafficked drugs approximates the power law distribution. Figure 4.4

displays the power law distributions for the quantity of cocaine seized for each of the three-

year time periods between 1998–2012 (note the differences in x and y scales). The data for

this figure come from the UNODC dataset. Within each period, x corresponds to the drug

seizure quantity for each reported interdiction. N(x) is the number of seizures that exceed

a given quantity x. The logarithms of these values are plotted to represent the power law re-

lationship between x and N(x). Figure 4.4e corresponds to years 2010–2012, and indicates

that something about the relationship between the counter-trafficking SoS and smuggler

activities changed. This data no longer seem to follow the power law distribution. There

are several more seizures of much greater quantities during this time period. There may be

several factors that influence this relationship, but a change in the environment is likely an

important variable.
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Figure 4.4. Power law distributions observed in cocaine seizures from the UNODC drug
interdiction data. Here, x corresponds to the seizure quantity, and N(x) is the number of
interdictions that exceed x. Data from the most recent time period, 2010–2012, indicate
that the SoS and the environment have changed to influence the frequency and size of
interdictions.
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5. ASSESSING COEVOLUTIONARY SOS META-ARCHITECTURES

Systems-of-systems do not operate in isolation. The complexities that arise re-

sult from interdependencies between the SoS and its environment. Different modeling

approaches are used to answer different kinds of questions about the performance of the

system. One challenge in systems engineering is enabling model interoperability so that

information from one model can be used by another. DIS and HLA are formal modeling

structures that have been used successfully to answer questions using modeling and simula-

tion across multiple scales. These tools assist the exploration of future operating scenarios

and estimation of candidate system performance against varied adversary capabilities.

The concept of coevolution defines the behavior that results when systems and their

environment each adapt to changes in the other. The system and the environment can

influence the architecture of each other. This means that environmental variables, which the

system and its stakeholders may have no direct influence over, can affect the performance

and future architecture of the SoS. This idea of coevolution and its impact on the SoS is

illustrated in Figure 5.1, a conceptual model of the relationships between a system, the

system architecture and the environment.

Two challenges for understanding how coevolution affects modern complex sys-

tems are:

• Understanding the Impact of Changes in the Operating Environment: since SoS do

not operate in isolation, changes in the environment affect the performance of con-

stituent systems, resulting in SoS level performance changes. These changes can

increase or decrease the SoS performance. New constituent system alternatives or

new capabilities must be integrated in the SoS to address performance gaps.

• Evaluating SoS meta-architecture alternatives: the interfaces between each SoS con-

stituent system may be well defined in terms of physical and communication in-
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Figure 5.1. Conceptual model of the coevolutionary counter-trafficking SoS. Interactions
between the SoS and the environment (DTOs) result in adaptations to the capabilities nec-
essary for the SoS to gain a performance advantage. There are several methods that can be
used to model different aspects of these complex interactions.

terfaces. However, understanding the interdependencies between the systems that

comprise the SoS, especially in regards to changes in performance, is much less un-

derstood. In essence, these interdependencies can exhibit force multiplier effects,

where systems that provide similar capabilities work in tandem to generate an im-

proved overall performing architecture.

This research demonstrates a method to assess the the impacts of a changing oper-

ating environment on constituent system performance. The impacts are used to generate

conceptual architectures that use new constituent systems to address capability gaps. Using

this new meta-architecture, an agent based model is developed to explore the relationship

between SoS meta-architecture and SoS performance under three scenarios.
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In the architecture evaluation for a single system, trade studies compare several

alternatives in order to choose a single best alternative in terms of overall system perfor-

mance expressed through the objectives hierarchy. For an acknowledged SoS, multiple

alternatives are required due to other mission priorities of the constituent systems. For the

counter-trafficking SoS, USCG surveillance aircraft also perform search and rescue mis-

sions, which are likley a greater priority when loss of life or property are at stake. Similarly,

USN vessels provide national level defense capabilities which impacts their availability.

Both of these systems are equipped with technologies and equipment necessary for other

missions.

The SoS architecture analysis considers differences among constituent systems to

optimize the SoS meta-architecture. This meta-archtiecture must include constituent sys-

tems that perform well against the full set of smuggling vessels. The SoS must adapt to

smuggling vessel changes, including new vessels and alternative routes, in order to main-

tain a performance advantage. This research demonstrates an approach for assessing a

complex, acknowledged SoS that experiences this behavior. The following sections de-

scribe this approach and apply it to the counter-trafficking SoS.

1. Define SoS objectives and measures in the fundamental objectives hierarchy

2. Apply the trade study framework using swing weights to constituent systems. More

than one constituent system that provides the same capability may be selected in the

SoS meta-architecture.

3. Demonstrate the impact of coevolution by updating the SoS objective values as a

result of changes in the environment. Re-evaluate SoS performance as a result of

these changes.

4. Generate creative alternatives to address capability gaps of the existing SoS meta-

architecture in the new environment
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5. Develop and execute an agent based model to simulate the SoS in the operating

environment

6. Perform experiments to compare performance of the original, impacted and adapted

SoS architecture in varied scenarios

7. Construct statistical models to develop a representative model of the architecture and

performance in uncertain future environments

8. Communicate tradeoffs to stakeholders and decision makers through depictions of

trades associated with alternative SoS meta-architectures to inform research, devel-

opment and acquisition decisions

5.1. OBJECTIVES AND MEASURES

System objectives and measures (values) are typically elicited from decision mak-

ers during formal systems engineering activities: stakeholder analysis, requirements def-

inition and requirements analysis. In general, systems engineering trade studies balance

multiple competing objectives. These objectives often involve affordability, performance,

schedule (for acquisitions) and adaptability considerations.

For this research, the SoS-level objectives are derived from the stakeholder analysis

and capabilities assessment in Chapter 4. The objectives and measures for the counter-

trafficking SoS are presented in the Fundamental Objectives Hierarchy depicted in Fig-

ure 5.2. The description of each objective and measure follows.
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Figure 5.2. SoS fundamental objectives hierarchy. The fundamental objectives are those
attributes most important to stakeholders about how the system performs its essential func-
tions.

• Maximize Detection: This objective maximizes the ability of the alternative to detect

the range of targets present in the environment. The measures for this objective are:

– Maximize Range: the range that a surveillance craft can navigate.

– Maximize Endurance: the amount of time that a surveillance craft can operate

before returning to station.

– Maximize Sweep Width: a measure of search effectiveness.
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– Maximize Search Effort: the amount of search area covered during a single

dedicated search.

– Maximize Availability: availability of the detection asset for use in the counter-

trafficking mission.

• Maximize Interdiction: This objective maximizes the ability of the alternative to

interdict the range of targets present in the environment. The measures for the Max-

imize Interdiction objective are:

– Maximize Availability: the availability of the interdiction asset for the counter-

trafficking mission.

– Maximize Track Speed: the speed at which the interdiction asset can navigate

to the target.

– Maximize Interdiction Capability: the ability of the asset to successfully inter-

dict the target. Some alternatives may not be equipped to physically interdict

certain types of targets.

• Maximize Situational Awareness: This objective maximizes the ability of the infor-

mation sharing alternative to inform connected systems about the environment. The

measures for this objective are:

– Maximize Information Sharing: information dissemination for relevant infor-

mation, provided in a timely manner.

– Maximize Coordination: coordinate resources to respond to available informa-

tion.

• Maximize Flexibility: This objective maximizes the ability of the alternative to oper-

ate in uncertain operating environments, which improves the ability of these systems

to adapt to future changes. The measure for the Maximize Flexibility objective are:
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– Maximize Deployability: deployability corresponds to the ability of the surveil-

lance or interdiction alternative to be deployed within the search area.

– Maximize Payload: the capacity of the alternative to support supplementary or

complementary constituent systems. Larger payloads offer additional capacity

for future systems or capabilities.

– Maximize Growth Potential: ability of the system to continue to support this

mission while improving relevant capabilities. Technologies near the end of

expected useful life generally will not have the growth potential that newer

technologies do.

• Minimize Cost: Minimize the costs associated with the system. Acquisition cost is

typically included in a trade study of competing alternatives. Because the systems

employed in this trade study are used for other missions (e.g. USCG search and

rescue, USN patrols), only operations costs are considered. The systems employed

for the counter-trafficking mission, whether detection or interdiction, also perform

other maritime security missions since they are part of the counter-trafficking ac-

knolwedged SoS. Acquisition cost is not included because the constituent systems

are used for other missions (e.g. USCG search and rescue, USN patrols). The mea-

sures for this objective are:

– Minimize Reconfiguration Cost: the cost required to reconfigure the alternative

with technologies that support new, or improve existing, capabilities.

– Minimize O&M Costs: the cost to operate and maintain the system. These

figures are not widely available, and are estimated for a six month planning

horizon and 500 operating hours.

• Minimize Loss: Losses can result from crashed or abandoned craft, and provide

opportunities for sensitive technologies to fall into the wrong hands. Avoiding these
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losses, and recovering lost capabilities, are important for this SoS. The measures for

the Minimize Loss objective are:

– Maximize Control: direct control of a surveillance or interdiction asset (e.g.

piloted craft) offers more control than indirectly controlled craft (e.g. au-

tonomous systems).

– Maximize Recoverability: the ability to recover the capability if lost. In gen-

eral, smaller assets with readily available technologies are easier to replace than

custom or tailored systems.

• Minimize International Incidents: Disrupting routine traffic or violations of national

maritime or air boundaries can cause incidents which adversely impact the overall

counter-trafficking mission. The measures for this objective include:

– Maximize Positive Identification: disruptions to legitimate commercial and

recreational traffic reduce the tolerance for poorly performing counter-trafficking

alternatives.

– Maximize International Cooperation: in order to support efforts in certain ar-

eas within the Transit Zone, coordination and cooperation with international

partners is required.

5.2. TRADE STUDY

Authoritative data to support precise values for each of the performance attributes

of the counter-trafficking SoS are not all openly available. This research uses estimates for

certain objectives and measures, and are noted in the detailed description of the objectives

and measures above.

Ground truth for the mix of smuggling vessels used by DTOs are also not openly

available. The initial meta-architecture analysis uses the mix of smuggling vessels from
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2004 in Table 2.2. In 2004, 43% of seized smuggling vessels were fishing boats and 57%

were go-fast boats. This is important since the counter-trafficking SoS detection and inter-

diction capabilities depend on the types of smuggling vessels used by DTOs.

5.2.1. Value Functions. The purpose of creating value functions is to transform

measure space to value space, where stakeholder value becomes the decision criteria against

which alternatives are assessed. Each system objective must have a corresonding value

function in order to be used in this analysis. The value functions developed in this research

are approximations since stakeholders were not involved in this research.

Surveillance alternatives satisfy the surveillance capability for the counter-trafficking

SoS. The value functions for surveillance constituent system alternatives are shown in Fig-

ure A.1. These functions use linear or sigmoid functions to transform the rating for each

measure to stakeholder value. All value function ranges are [0,1]. Operating costs are

estimated for the purposes of this analysis. The measure ratings for each surveillance al-

ternative is provided in Table 5.1.

Table 5.1. Measure ratings for surveillance alternatives in initial environment.

Measures C-27J HC-130J P-3 MQ-9 Scaneagle RQ-4
Range (nm) 2675 5000 2380 675 809 12300
Endurance (hours) 12 14 16 24 24 34
Availability (percent) 33 25 15 20 95 65
Deployability (index) 3 3 2 4 10 6
Payload (index) 8 8 9 4 1 3
Growth Potential (in-
dex)

4 4 3 6 6 5

Reconfiguration Cost
(index)

7 8 7 8 6 4

O&M Cost (FY14
$/hr)

10,000 12,000 8,000 4,500 1,000 3,500

Control (index) 10 10 10 4 5 4
Recoverability (index) 3 2 3 5 9 6
Identification (per-
cent)

(See Table A.1)
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Interdiction alternatives satisfy the interdiction capability for the counter-trafficking

SoS. The interdiction alternative value functions are shown in Figure A.2. These functions

use linear or sigmoid functions to transform the rating for each measure to stakeholder

value. All value function ranges are [0,1].

The set of alternatives and corresponding rating for each measure is included in

Table 5.2. The interdiction system alternative performance differs between the types of

smuggling vessels. The interdiction capability, bi j, is a relative score of the ability of the

interdiction system i to interdicte smuggling vessel type j. For all combined smuggling

vessels in the environment,

ci = Â
i, j

p jbi j (5.1)

where p j is the fraction of total trafficking events using smuggling vessel type j, ci j

is the capability of the initial environment, and c0i j is the capability in the new environment.

The Interdiction Parameters calculations table is presented in Appendix A.

5.2.2. Calculating the Alternative Value. Trade studies map performance ratings

from measure space to value space by accounting for the degree of importance that the

measure has on the overall system and the swing, or range of value, across the available

alternatives. The alt-swing IPython Notebook was developed and used to perform the

computations for this trade study. Appendix B describes the alt-swing IPython Notebook

and provides the Python code.

The value of alternative i for measure j is evaluated based on the value functions

described in Section 5.2.1,

vi j = f j(mi j) (5.2)

where f j is the value function for measure j and mi j is the score of alternative i for measure

j.
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Table 5.2. Measure ratings for interdiction alternatives in the initial environment.

Measures MH-60T MH-65D SH-60 LRI-II OTH-IV RB-S
Availability (percent) 50 50 30 75 80 85
Track Speed (knots) 170 160 146 38 40 45
Range (nm) 300 150 450 225 200 175
Interdiction Capability
(percent)

(See Table A.3)

Deployability (index) 2 4 2 6 7 8
Growth Potential (in-
dex)

4 5 3 6 5 6

Reconfiguration Cost
(index)

9 8 9 5 4 3

O&M Cost (FY14 $/hr 3000 2000 2500 1200 1200 1000
Control (index) 9 9 9 10 10 10
Recoverability (index) 2 3 1 7 8 9
Positive Identification
(percent)

95 95 92 90 88 85

Measure swings are calculated as the range in value from the available alternatives.

The minimum and maximum values are determined by the available alternatives in this

trade study. The swing for each measure, s j, is defined as:

s j = max
i
(vi j)�min

i
(vi j) (5.3)

This trade study uses an additive value model to determine the total alternative

value. This model uses both the swing weight (b ) and importance weight (a), such that

a +b = 1, in calculating the total alternative value. Figure 5.3 provides scatterplots for the

surveillance and interdiction importance and swings. The unnormalized weight for each

measure is calculated as

w0
j = ao j +b s j (5.4)
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(a) Surveillance measures.

(b) Interdiction measures.

Figure 5.3. Performance measure importance vs. swing for the initial environment.

where o j is the measure importance. These weights are then normalized for the final mea-

sure weight, w j, where

w j =
w0

j

Â j w0
j
. (5.5)

Then, the total stakeholder value for alternative xi is

V (xi) =
n

Â
j=1

w j vi j. (5.6)

The resulting values for each alternative provide a quantitative comparison among

the alternatives considered.
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Figure 5.4. Surveillance alternatives consequences scorecard (initial environment). The
consequences scorecard, or heatmap, depicts the value score for each alternative against
each measure. For surveillance systems, the RQ-4 tends to outperform other alternatives in
most measures. All systems tend to perform well for the Maximize Positive Identification
and Maximize Sweep Width measures.

5.2.3. Results Comparison. The RQ-4 dominates surveillance alternatives in all

measures except search effort and payload. The C-27J is dominated by most alternatives

except for sweep width. For the interdiction alternatives, the MH-60T Jayhawk outper-

forms the other assets, but the set of alternatives tend to perform well in general. Fig-

ures 5.4 and 5.5 provide heatmaps of each alternative’s score against each measure. This

display allows straightforward comparisons between performance measures and across al-
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Figure 5.5. Interdiction alternatives consequences scorecard (initial environment). All of
the interdiction systems tend to provide about the same value. The contribution for each
alternative differs, and the LRI-II tends to perform the best among the set of alternatives.
Most of the alternatives perform very well for control and positive identification. The
alternatives vary the greatest in range, recoverability and track speed.

ternatives. Table 5.3 summarizes the resulting stakeholder value for each surveillance and

interdiction alternative.

Multiple alternatives can participate as constituent systems within the counter-

trafficking SoS. The resulting values indicate how beneficial each alternative is in terms

of stakeholder value. Those constituents with higher stakeholder value can be targeted for
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Table 5.3. Surveillance and Interdiction alternative values. The results of the trade study
provide a value for each surveillance (left) and interdiction (right) alternative in the initial
environment.

Surveillance Alternative Value Interdiction Alternative Value
C-27J 27.2 LRI-II 82.7
HC-130J 31.1 MH-60T 59.9
MQ-9 32.2 MH-65D 63.9
P-3 32.5 OTH-IV 81.7
RQ-4 51.6 RB-S 78.5
Scaneagle 43.0 SH-60 61.2

more frequent or regular use within the SoS, subject to availability constraints for other

missions.

5.3. SOS EVALUATION IN A NEW ENVIRONMENT

The initial SoS architecture may be used for a period of time. After DTOs under-

stand the capabilities available to the counter-trafficking SoS, they develop new forms of

smuggling vessels to mitigate performance advantages of the counter-trafficking SoS. The

emergence of submersible vessels affects the detection and interdiction performance of the

counter-trafficking SoS. SoS stakeholders need to know how the SoS is affected in order

to make acquisition decisions for new systems or to engage stakeholders that have needed

capabilities that exist for other missions. Understanding how the SoS is affected allows

the right set of capabilities to be targeted for development or inclusion in the SoS. This

behavior exemplifies the idea of coevolution between the SoS and the environment.

5.3.1. Changes in the Operating Environment. Because information on the smug-

gling vessel mix used by DTOs is not openly available, the mix of DTO smuggling vessels

from 2009 in Table 2.2 is used to demonstrate the change in the operating environment. In

2009, 12% of smuggling vessels were fishing boats, 44% were go-fast boats and 44% were

submersibles, an increase from 0% in 2004. For this analysis, submersibles are evenly
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split between semi-submersibles and fully-submersibles. Each type of smuggling vessel

has different ratings for the counter-trafficking detection and interdiction capabilities.

Evaluating SoS performance in terms of stakeholder value enables the comparison

of the new environment with the existing counter-trafficking SoS meta-architecture. Other

considerations such as anticipated time for the DTO to overcome an alternative’s detection

or interdiction capability can also influence the alternative performance. In essence the

coevolutionary behavior exhibited by these dueling architectures allows one architecture to

hold an operational advantage for a limited amount of time.

Understanding how coevolution affects the SoS is important in order to identify

candidate solutions or improvements that address the changes in the environment. By

evaluating the performance changes of each objective and measure within the objectives

hierarchy allows the key capabilities impacted by environmental changes. In this case, the

environmental changes consists of new DTO vessels that are challenging to detect and in-

terdict. Identifying key capabilities that improve the SoS performance focuses the solution

space on those capabilities that directly improve SoS performance.

5.3.2. Impact on SoS Value. The DTO smuggling vessel change reflects a change

in the trafficking meta-architecture. This essentially changes the environment that the

counter-trafficking system is operating in. Figure 5.6 illustrates the change in constituent

system values after the smuggling vessel changes described above. The smuggling vessel

change decreased the stakeholder value of both the surveillance and interdiction alterna-

tives. Only the Maximize Interdiction objective was influenced by the change to the DTO

architecture change.

A comparison of the subset of objectives that were affected by this evolution in

smuggling vessels is depicted in Figure 5.7. Almost all measures are affected for surveil-

lance systems, and the interdiction capability of all interdiction alternatives was reduced.

Since the impact is on specific objectives (Detection and Limit Impacts for surveil-

lance craft, and Interdiction for interdiction systems), comparing the initial SoS with the
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SoS performance in the new environment for only those objectives affected allows deci-

sion makers to target new alternatives to increase the SoS performance and value delivery

to SoS stakeholders.

5.4. COEVOLUTION AND ALTERNATIVE GENERATION

Section 5.3.2 demonstrated that the use of submersible vessels by DTOs signif-

icantly reduces the stakeholder value delivered by the existing counter-trafficking SoS.

These smuggling vessels allow DTOs to evade current detection capabilities and avoid

interdiction. Further, these vessels can stay submerged for over a week, requiring that

counter-trafficking assets maintain contact, through electronic or other means, throughout

Surveillance Alternative Values 
in Different Environments

2004 2009
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P−3
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(a) Surveillance alternatives.
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(b) Interdiction alternatives.

Figure 5.6. Alternative values before and after smuggling vessel evolution. The slope-
graphs show the steep changes in surveillance (a.) and interdiction (b.) alternative values
as a result of the different DTO smuggling environments from 2004 and 2009. In this
instance, most alternatives retain their relative position with respect to the overall set of
alternatives, with the exception of the SH-60 and the HC-130J.
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(a) Initial surveillance alternatives scorecard for
detection and impacted objectives.

(b) New surveillance alternatives scorecard for de-
tection and impacted objectives.

(c) Initial interdiction alternative interdiction and
impacted objectives.

(d) New interdiction alternatives value for interdic-
tion and impacted objectives.

Figure 5.7. Impact of smuggling vessel evolution on surveillance and interdiction con-
stituents. The evolution of smuggling vessels results in degraded performance for all
surveillance and interdiction constituent system alternatives for the counter-trafficking SoS.
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this time. Maintaining contact requires the counter-trafficking system to use limited re-

sources on a single effort for extended periods of time, reducing the availability of these

systems for other missions. The reduced performance of the counter-trafficking SoS forces

stakeholders to seek new capabilities in order to improve SoS performance in this new

environment.

5.4.1. New SoS Capabilities. Section 5.2.3 showed the impact of the evolution-

ary behavior on the part of the DTOs by implementing new smuggling vessels. This

change primarily impacted the Maximize Detection and Maximize Interdiction objectives.

Other changes to the environment, such as new technologies that disrupt the control of

autonomous aircraft, or new policies that change the operations and maintenance costs of

SoS alternatives, would impact other SoS objectives. New alternatives should be developed

that focus on the adversely impacted objectives. Creating a new SoS meta-architecture that

increases SoS performance and stakeholder value requires that new alternatives focus on

Maximizing Detection and Maximizing Interdiction in the new environment.

By design, submersibles have a low detection profile for surface and air sensors.

By traveling underwater, these vessels evade radar and EO/IR sensors. However, they

have unique sonar signatures. This requires the ability to detect the vessels while moving

underwater, and coordinate with interdiction assets to seize the vessel. Current approaches

by DTOs require that submersibles surface for a period of time in order to offload the illicit

cargo for final transportation to land, where the drugs are distributed. Current interdiction

alternatives are able to seize the submersible while it is surfaced. In addition, submersibles

have limited operating ranges and cannot stay submerged indefinitely. Surfacing provides

an opportunity to interdict the submersible, but requires that interdiction assets be aware of

the location of the submersible when it does so.

Existing systems that are not part of the initial SoS meta-architecture could support

improved submersible detection. These systems are currently used for other purposes. The

USN has a submarine fleet that is used for defense missions. Submarines are capable of
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tracking targets underwater for extended periods of time. Submarines have unique capa-

bilities and mission sets, but are cost-prohibitive to use for the counter-trafficking mission.

The USN also uses sonobuoys for detecting underwater threats. Bailey [79] describes a

buoy developed specifically for the counter-trafficking system. This buoy is designed to

detect go-fast boats and operates at depths of 50-600 feet with a 6–12 month operational

life. This buoy uses satellite communications links to report detection events within a 5 nm

radius, but is not designed to track the target. With additional development, this type of

sonobuoy may be designed to detect submersibles using either active or passive sonar and

provide target tracks for a detected vessel.

Another alternative is the use of autonomous systems. Autonomous system use for

land, sea and air missions is growing rapidly. Although these technologies are in the early

stages of development, many are being matured to meet operational requirements and envi-

ronmental challenges. Such systems could improve SoS performance for the counter-drug

mission. Unmanned underwater vessels (UUVs) operate submerged and can be operate

autonomously or semi-autonomously. The Massachusetts Institute of Technology has de-

veloped an UUV that is intended for use in port security operations [80]. This small vessel

navigates autonomously to maritime targets, attaches to the target’s hull, and uses an ultra-

sound sensor to scan the target’s hull to detect hollow compartments storing contraband.

While currently in development and prototype testing stages, a similar type of UUV with

improved range and navigation could be used in the counter-trafficking mission. Zorn

[55] also identifies a cutter-based UUV for use in maritime security and maritime domain

awareness missions. These vessels have a range of around 80 nm, and could be delivered

by cutter or interdiction assets. In the future, these types of vessels may be delivered by

other systems such as surveillance aircraft. The UUVs described by Hardesty and Zorn are

considered for the future notional counter-trafficking architecture.

5.4.2. Future SoS Alternatives. The following scenarios are considered for evolv-

ing the SoS meta-architecture. These scenarios, as a response to DTO adaptations in smug-
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gling vessels, completes the coevolution example between the counter-trafficking SoS and

the environment. This notional future concept is a multi-stage delivery, tracking and in-

terdiction concept using UAVs, sonobuoys and UUVs in the counter-trafficking SoS meta-

architecture.

• Cutter-based UUV Future Alternative: The first stage delivery system (e.g. NSC)

carries a secondary stage delivery system (e.g. UAV) and the UUV autonomous sys-

tem (e.g. an enhanced version of the one developed by MIT). Upon a target detection

by an array of deployed sonobuoys, the secondary stage delivery system (e.g. MH-

65D) navigates to the proximal detection location, and deploys the UUV. The UUV

navigates to the target using on-board navigation systems and communications with

the sonobuoy array. The UUV attaches to the target vessel once it is intercepted. The

target is scanned to classify the vessel as threat or benign, and results are commu-

nicated to the C2 system. If the target is classified as a threat, the UUV tracks the

target, and reports the target state while maintaining contact with the target. When

the target surfaces, interdiction assets are coordinated to interdict the DTO vessel

once it is no longer submerged. This notional operational concept omits the need for

high-value counter-trafficking assets to maintain single-target detection and tracking

for extended periods of time, and supports coordination of interdiction assets so that

they are available at the right time and right place.

• UAV-based UUV Future Alternative: In this concept, a UAV, equipped with the same

UUV detector, performs multiple missions simultaneously. The primary mission,

ISR, is conducted as a surveillance platform. The secondary mission is to serve as

the first stage delivery vehicle of the UUV. Suppose, as before, that a sonobuoy array

target detection occurs. In this concept, the UAV navigates to within close proximity

to the detection, and delivers the UUV to that location. The advantage in this concept

is that the UAV can navigate to very close proximity to the target location, whereas in

the first concept, delivery is limited to the range of the MH-60T. Once submerged, the
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UUV navigates to the location of the target, which reduces the required range of the

UUV (assuming it attaches to the target and uses the target propulsion for maneuvre).

The rest of the scenario is as above, where communication to the counter-trafficking

C2 system is maintained, and interdiction assets are coordinated once the target is

no longer submerged. This concept is depicted graphically in Figure 5.8. Figure 5.9

depicts the OV-1 of this SoS meta-architecture alternative.

5.4.3. Assessing New SoS Meta-Architectures. The new SoS meta-architectures

share interdependencies between constituent systems. In the new environment, interdiction

assets rely on the detection and tracking of submersibles in order to function. Without

interdiction systems capable of interdicting submersibles, the UUV has no significant role.

Agent based modeling allows these interdependencies to be modeled and the SoS to be

simulated in various environments. Chapter 6 describes the agent based model used for

this analysis.

a) b) c)

Figure 5.8. Future SoS meta-architecture evolution concept. An example operation with
a new SoS architecture: a) Sonobuoys are deployed to detect, track and monitor DTO
submersible movements. These systems communicate detection events and target tracks
to the ISR system. b) Upon target detection and identification, an unmanned underwater
vessel (UUV) is deployed in the vicinity of the target by a UAV. The UUV navigates to
target using target tracks and an on-board tracking system. c) The UUV attaches to the
target’s hull, communicating location and target state to the ISR system. The target’s track
is monitored and interdiction assets are deployed when the submsersible surfaces.



81

C2

Interdictor

Satellite

Surface Target
Maritime
Platform

UUV

UAV
w/ payload

Sub-surface Target

Sonobuoy Array

Surveillance
UAV

Interdictor

Figure 5.9. OV-1 for a future UAV-based UUV meta-architecture alternative. This al-
ternative uses new technologies to address degraded SoS performance resulting from the
new environment. Existing surveillance and interdiction alternatives are modified to en-
able communications and payload delivery (UUV) against new smuggling vessels (sub-
mersibles).
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6. AGENT BASED MODEL FOR THE SOS META-ARCHITECTURE

Agent based modeling allows the exploration of sytem behavior by defining how

agents interact with other agents and the environment. The ABM paradigm aids SoS meta-

architecture performance assessment, particularly when system interactions are known

generally, strict formulations describing system dynamics are unavailable, and individ-

ual behavior of constituent systems affects SoS performance as a whole. The counter-

trafficking SoS can be modeled using ABM by describing agent rules and behaviors and

assessing performance by varying the types of constituent systems that participate in the

SoS.

6.1. STUDY QUESTIONS

The counter-trafficking SoS meta-architectures described in Chapter 5 are evaluated

using ABM. Agents represent constituent systems, smuggling vessel targets and commer-

cial vessels (benign traffic). Each agent has properties and rules that govern its behavior.

ABM enables exploration of candidate SoS meta-architectures by varying the types of

constituent systems operating in different environments. Environments are constructed by

varying the frequency of DTO smuggling vessel use and amount of commercial boat traf-

fic. Meta-architecture performance is based on the percent of each smuggling vessel type

detected, the percent of each type interdicted, the percent of trafficked drugs interdicted,

and the operating cost of the meta-architecture. The goal of this simulation is to provide

insight into the SoS meta-architectures that perform best in varied operating environments.

The agent based model for this research was built using AnyLogic 7.2 Educational

Version software. The agents, properties and behavior rules are described in Section 6.2.

Figure 6.1 provides an animation snapshot of agent interactions during simulation runtime.
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Figure 6.1. Agent based model runtime animation. Each agent in the ABM is identified,
along with a few corresponding attributes, such as interdictor range and surveillance lateral
range.

6.2. AGENTS, PROPERTIES AND BEHAVIOR RULES

The following sections describe the agent properties and statecharts for the ABM.

Some agents are subclassed to define other agents, such as smuggling vessels that extend

the Boats agent and helicopters that extend the Interdictor agent. Agent subclasses inherit

the properties, states and behavior logic of the parent agent, but are assigned properties

specific to the agent type that are assigned when the agent is created at runtime.

In this model, simple rules govern agent behavior. The logic for each agent is con-

trolled by statecharts. Figure 6.2 depicts the statecharts for each of the primary agents in

the ABM. Commercial and smuggling vessels are randomly assigned a starting location

along a boundary. Each vessel chooses a random waypoint that is closer to the final des-

tination at the opposite boundary. Each successive move is in the general direction of the

vessel’s final destination.
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Surveillance aircraft are assigned a random starting location opposite the start of

vessels. These agents fly a random search path across the simulation space. Waypoints are

uniformly distributed across the simulation environment. If a smuggling vessel is within

radar range, a detection occurs based on the lateral range curve. Upon detection, the craft

flies to the target and maintains target visibility for a specified period of time. If a Maritime

Platform vessel with an interdiction asset are available, an interdiction occurs, else the

target is released. The simulation environment consists of a 1,000 nm x 1,000 nm boundary

and runs for a continuous 4,000 hour simulated time period (approximately six months).

6.2.1. Maritime Platform Agent. The Platform agent models systems that can

deliver interdictors and small surveillance systems. These include the National Security

Cutter operated by the USCG, and the Oliver Hazard Perry Class Frigate operated by the

USN. The Maritime Platform agent properties are described in Table 6.1. Figure 6.2a

presents the Maritime Platform statechart, and agent behavior rules are described in Algo-

rithm 1.

Table 6.1. Maritime platform agent properties.

Name Description Units
cruiseSpeed agent speed during normal operation knots
maxSpeed agent speed when reacting to an event knots
range distance the agent can travel nm
endurance time the agent is able to be continuously de-

ployed
hours

lateralRange radar detection range nm
qtyInterdictors array of the number of interdiction agents the

platform can carry
count

qtySurveillors array of the number of surveillance craft the
agent can carry

count

location current location of agent lat/lon
nextWaypoint the waypoint the agent transits to unless re-

acting to an event
lat/lon
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(a) The Platform statechart defines the conditional
logic controlling agent states.

(b) The Surveillance statechart defines the con-
ditional logic controlling Surveillance and sub-
classed agent states.

(c) The Interdictor agent
statechart defines the con-
ditional logic controlling
Interdictor and subclassed
agent states.

(d) The Boat statechart defines the conditional
logic controlling Boat and subclassed smuggling
vessel agent states.

Figure 6.2. Agent statecharts for the agent based model. Logic within each state controls
agent behavior. The SoS tends to rely on the Maritime Platform agent to resolve detection
and interdiction requests.

6.2.2. Surveillance Agent. The Surveillance agent models both manned and un-

manned aerial surveillance systems. The Surveillance agent properties are described in

Table 6.2. Figure 6.2b presents the Surveillance agent statechart, and agent logic is de-

scribed in Algorithm 2.
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Algorithm 1 Platform agent behavior.
initalize agent and set properties
goto surveilling
while Surveilling do

navigate to random waypoint
search for targets
if ( target within range ) then

goto Tracking
end if
if ( receive interdiction request ) then

goto EvaluateInterdiction
end if
if ( reached endurance ) then

return to port; goto initialize
end if

end while
while Tracking do

if ( interdiction asset available before timeout ) then
launch available interdictor agent
goto Interdict

else release target; goto Surveilling
end if

end while
while EvaluateInterdiction do

if ( interdiction asset available and within range ) then
goto Interdict

else goto Surveilling
end if

end while
while Interdict do

navigate to target
if ( recovered interdiction asset ) then

goto Surveilling
end if

end while

6.2.3. Interdictor Agent. The Interdictor agent represents interdiction systems

that seize smuggling vessels. Interdictors include helicopters and interceptor boats. These

are implemented as a subclass of the Interdictor agent. The Interdictor agent properties
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Table 6.2. Surveillance agent properties.

Name Description Units
cruiseSpeed agent speed during normal operation knots
maxSpeed agent speed when reacting to an event knots
range distance the agent can travel nm
endurance time the agent is able to be continuously de-

ployed
hours

lateralRange detection range of radar sensors nm
payload carrying capacity for surveillance agents index
path sequence of waypoints the agent navigates lat/lon array
currentLocation current location of agent lat/lon
nextWaypoint the waypoint the agent transits to unless re-

acting to an event
lat/lon

described in Table 6.3 are derived from Table 4.5. Figure 6.2c presents the Interdictor

statechart and agent behavior is described in Algorithm 3.

6.2.4. Boat Agent. Boat agents represent commercial boats (benign targets), and

smuggling boats. Each smuggling vessel type is a subclass of the Boat agent. This allows

properties specific to fishing boats, go-fast boats and submersibles to be assigned at agent

creation. Differences between these vessels, including speed, radar visibility and sonar

visibility, affect Surveillance and Interdiction agent performance. Smuggling vessel prop-

erties are based on Table 4.2. Smuggler agent properties for the ABM are described in

Table 6.4. Figure 6.2d presents the Boat agent statechart, and agent behavior is described

in Algorithm 4. Boats move randomly in the same general lateral direction across the sim-

ulation environment and, unless interdicted, exit the simulation upon arrival to the final

waypoint.

6.2.5. UUV Agent. The UUV agent models unmanned underwater vessels that are

delivered by Mfaritime Platforms or Surveillance systems and detect and track submersible

vessels. Once attached to the submersible, the UUV relays location information to the
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Algorithm 2 Surveillance agent behavior.
initalize agent and set properties
goto Surveilling
while Surveilling do

navigate to random waypoint
search for targets
if ( target detected ) then

goto Tracking
end if
if ( reached endurance ) then

return to port; goto initialize
end if

end while
while Tracking do

follow target
if ( target resolved and interdiction asset available before timeout ) then

request Interdictor from Platform agent
goto Interdict

else release target; goto Surveilling
end if

end while
while Interdict do

follow target
if ( Interdictor agent releases Surveillance agent ) then

goto Surveilling
end if

end while

Maritime Platoform which launches the interdiction asset. The UUV agent has simple

properties of speed and range. The agent behavior rules are described in Algorithm 5.

6.2.6. Sonobuoy Agent. The Sonobuoy agent models sonobuoys that detect sub-

mersibles and go-fast boats. Upon detection, the sonobuoy reports the target location to

a Surveillance or Maritime Platform agent, depending on the architecture being modeled.

The UUV agent has a single property of sonarRange which models the radius and the

M-beta lateral range curve for the buoy. Sonobuoys are randomly deployed at stationary

locations between 200–300 nm from the edge of simulation area nearest boat arrival lo-
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Table 6.3. Interdictor agent properties.

Name Description Units
cruiseSpeed agent speed during normal operation knots
maxSpeed agent speed when reacting to an event knots
range distance the agent can travel nm
endurance time the agent is able to be continuously de-

ployed
hours

lateralRange detection range of radar sensors nm
availability percent of time the asset is available to per-

form the interdiction mission
percent

seizeRange range that a target agent must be within to be
interdicted

nm

isSeizable binary array of smuggler agents ability to be
seized by the agent

array

payload carrying capacity for sensor agents index
currentLocation current location of agent lat/lon
targetLocation location of the target agent (smuggler) lat/lon

cations (x) and uniformly across the width of the simulation area (y). The agent behavior

rules are described in Algorithm 6.

6.2.7. Main Agent. The Main agent is an artifact of the AnyLogic modeling en-

vironment. This agent defines simulation level properties, including the parameters varied

across simulation trials, output files for simulation results, and the ABM presentation layer.
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Algorithm 3 Interdictor agent behavior.
initalize agent and set properties
goto Surveilling
while Surveilling do

navigate to random waypoint
search for targets
if ( target detected ) then

goto Tracking
end if
if ( reached endurance ) then

return to port; goto initialize
end if

end while
while Tracking do

follow target
if ( target resolved and interdiction asset available before timeout ) then

request Interdictor from Platform agent
goto Interdict

else release target; goto Surveilling
end if

end while
while Interdict do

follow target
if (Interdictor agent releases Surveillance agent ) then

goto Surveilling
end if

end while

Algorithm 4 Boat agent behavior.
initalize agent and set properties
goto Moving
while Moving do

navigate to random waypoint
if ( interdicted by interdiction agent ) then

goto Interdicted
end if
if ( reached final waypoint ) then

goto Exited
end if

end while
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Table 6.4. Boat agent properties.

Name Description Units
cruiseSpeed agent speed during normal operation knots
maxSpeed agent speed when reacting to an event knots
capacity carrying capacity for illicit drugs index
detectability ability of the agent to be detected; this value

is p(d) for the M-Beta detection model
percent

type type of smuggling vessel: fishing ves-
sel, go-fast boat, semisubersible, or fully-
submersible

index

path sequence of waypoints the agent navigates lat/lon array
currentLocation the current location of the agent lat/lon
targetLocation the target location of the agent lat/lon
startingLocation initial location of the agent lat/lon
nextWaypoint the waypoint the agent transits to unless re-

acting to an event
lat/lon

arrivalRate rate that the agent enters the simulation qty/hour

Algorithm 5 UUV agent behavior.
initalize agent and set properties
goto Moving
while Moving do

navigate to target
if ( reached target ) then

stay with target
message Maritime Platform of current location

end if
if (target interdicted) then

goto Exited
end if

end while

Algorithm 6 Sonobuoy agent behavior.
initalize agent and set properties
goto Surveilling
while Surveilling do

if ( target detected ) then
report location to nearest agent with UUV capability

end if
end while
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7. RESULTS

Chapter 5 demonstrated the impact of coevolution on the counter-trafficking con-

stituent systems and described new systems to address the impacts of smuggling vessel

use. Chapter 6 described the agent based model developed to assess multiple SoS meta-

architectures using these new systems. The results of the agent based model allow explo-

ration of these meta-architectures and their performance characteristics in different operat-

ing environments.

7.1. SIMULATION EXPERIMENTS

Table 7.1 describes the factors and levels of the simulation experiment for the

counter-trafficking system. The performance characteristics used for this study include

operating cost, percent of trafficking vessels detected, and percent of trafficking vessels

interdicted. Each experiment sets the factors at a defined level and uses these parameters

for the model settings. The performance characteristics are outputs from these settings.

The environment is represented by other variables outside of the control of the

counter-trafficking SoS. For the simulation study, these variables are the percent of smug-

gling traffick of each vessel type: fishing vessels, go-fast boats, and submersibles.

Table 7.1. Agent based model parameter settings. The experiment parameter settings de-
fine the architecture simulated in each trial.

Variable Minimum Maximum Step Size
Number of Platforms 1 2 1
Number of Sonobuoys 0 150 30
Number of Surveillance Systems 0 3 1
UUV Range 50 100 25
Interdictor Range 150 300 75
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7.2. EXPLORATORY DATA ANALYSIS

Exploratory data analysis allows the behavior of the model to be better understood.

Insights drawn from this analysis lead to decisions about how the model can be improved,

new studies to undertake, and support decisions that affect overall SoS performance.

Cost affects most decisions, and operating cost is a driving component of total cost.

Understanding the performance of the SoS based on different architectures is important.

Figure 7.1 displays drug seizure performance versus operating cost for each of the sim-

ulated architectures. These architectures represent the cutter-based UUV concept from

Chapter 5. Points are colored based on the fraction of smuggling vessel traffic that is con-

ducted by submersibles. Submersibles have a strong influence on the overall performance

of the SoS, where other smuggling vessels allow the SoS a greater ability to seize illicit

cargo.

Another performance measure for the SoS is the percent of smuggling vessels inter-

dicted. Figure 7.2a indicates that the number of surveillance craft (NumUAVs) and percent

of smugglers using go-fast boats (PctGF) do not signifantly influence this performance

measure. However, interdictor range tends to become more important as the percent of

go-fast boats increases, and SoS architectures with larger range interdictors (helicopters)

tend to outperform those with shorter range craft (such as interdictor boats).

The range of UUVs is another architecture characteristic simulated in the agent

based model. These ranges are a result of uncertainty in the future operating capability

of UUVs. Figure 7.2b shows the influence that this characteristic has on the overall drug

seizure performance of the SoS. The frequency of DTO submersible use corresponds to

different environments. UUV range becomes marginally more important as the frequency

of submersible use grows. However, this property is far exceeded by submersible use, as

seen in the negative trend across facets.

The agent based model simulated 3,888 different meta-architecture - environment

scenarios. These architectures are composed by differing the numbers and features of con-
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stituent systems that comprise the SoS. The star plot, or kiviat chart, helps visualize the

differences among these architectures. Figure 7.3 depicts a random sample of these archi-

tectures, ordered by increasing operating cost. Each star represents architecture features

of number of maritime platforms, number of surveillance craft, and number of sonobuoys.

Performance measures of percent of smugglers interdicted, percent of drugs seized and

SoS operating cost over the six-month simulated time period are also included. In general,

SoS meta-architectures with a greater number of constituent systems tend to perform well.

However, some architectures outperform their more costly alternatives in terms of percent

of smugglers and percent of drugs interdicted. These insights help support decision makers

when considering trades among alternative SoS architectures.
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Figure 7.1. Seizure performance versus operating cost. LOESS curves have been fitted for
different environments, defined by the fraction of smuggling vessels that are submersibles.
Increased use of DTO submersibles significantly reduce SoS performance.
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(a) Interdiction performance versus operating cost. Each facet corresponds to the number
of surveillance craft (columns) and percent of DTO vessels that are go-fast boats (rows).
As expected, additional surveillance assets increase to the SoS operating cost, but ar-
chitectures with fewer surveillance craft have similar overall DTO smuggler interdiction
performance.
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(b) Seizure performance versus UUV range. Different environments are repre-
sented by submersible frequency. UUV range becomes marginally more important
as the volume of submersibles grows. This effect is dwarfed by the trend in reduced
drug seizure performance from increased volumes of submersible vessels.

Figure 7.2. Meta-architecture performance results.
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Figure 7.3. SoS meta-architectures and performance. A random subset of modeled
SoS meta-architectures, ordered by increasing cost. These plots depict the number of
sonobuoys, surveillance craft, and maritime platforms along the three upper-right axes. The
other three (lower-left) axes depict meta-architecture performance in operating cost, per-
cent of drugs seized, and percent of smuggling vessels interdicted. The meta-architecture
encoding is included below each plot. Some meta-architectures with fewer platforms and
surveillance craft still perform well. In general, increased drug seizure and vessel interdic-
tion performance comes at increased operating cost.
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7.3. REGRESSION METHOD

The challenge of understanding simulated SoS meta-architecture performance be-

comes a mulivariate nonlinear regression problem. Support vector machines and random

forests are two methods that support multivariate nonlinear regression problems. Random

forests are used for this problem because they have recently demonstrated considerable

robustness in a range of classification and regression problems. These models use many

subsets of the data to construct decision models, and then averages these models together to

improve the overall estimate. Figure 7.4 depicts the error rate as a function of the number

of trees in the random forest.

As demonstrated in Section 7.2, the volume of submersible vessels has a large

influence on SoS performance. Table 7.2 displays the relative importance of each inde-

pendent variable for the cutter-based UUV concept. The response variable for the ran-

dom forest is percent of smuggling vessels seized. Surveillor quantity and maritime plat-

form quantity tend to not impact the overall performance, suggesting that the number of

sonobuoys and interdictor range are more important considerations when developing the

counter-trafficking SoS architecture. DTO smuggling vessel use also strongly influences

the SoS performance.

Table 7.2. Random forest variable importance.

Variable Importance
Percent Submersible 0.0354
Percent Go-fast Boats 0.0046
Sonobuoy Quantity 0.0247
Interdictor Range 0.0014
UUV Range 0.0012
Surveillor Quantity -0.0001
Platform Quantity -0.0003
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Figure 7.4. Random forest error rate by number of trees. The error rate is associated with
the forecast percent of smuggling vessels seized, the response variable modeled in this
random forest.
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8. CONCLUSIONS AND FUTURE WORK

8.1. CONCLUSION

Modern systems continue to grow in complexity. Engineered systems-of-systems

pose challenges for traditional systems engineering approaches due to complex stakeholder

environments, asynchronous development of constituent systems, and changing operating

environments. Many modern systems-of-systems must adapt to changes in the operating

environment in order to maintain or improve performance. Mutual adaptation between

the system and the environment lead to coevolution as both seek performance advantages.

This behavior compounds the complexity of engineered systems-of-systems and further

challenges traditional systems engineering approaches.

This work demonstrated an approach to assess a coevolutionary system-of-systems.

A trade study of SoS constituent systems demonstrated the impact of an adaptive environ-

ment on stakeholder value. New SoS architecture concepts were created to address capa-

bility gaps and reduced stakeholder value. These concepts were explored in detail using

agent based modeling, and the results demonstrated the usefulness of these architectures

in the new environment. The results of this modeling demonstrated the substantial impact

that the environment can have on SoS performance, regardless of SoS meta-architecture,

if required capabilities are unavailable. The results also demonstrated that some meta-

architectures with a smaller number of constituent systems had similar seizure and inter-

diction performance but reduced operating costs.

8.2. FUTURE WORK

Future work is needed to improve the analysis of coevolutionary systems. Op-

portunities to improve this type of analysis include modeling coevolution, extensions to
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traditional trade studies, improvements to the agent based model, and expanding the SoS

analysis to include additional constituent systems or stakeholders.

8.2.1. Improved Modeling of SoS Coevolution. Accurate value models (or cost

functions) of the environment or competing system could support improved system design.

The value model provides a way to estimate likely adaptations in the environment or by the

competing system. These changes can be modeled to understand the impacts on system

performance. The result is testable architecture performance prior to development, and

targeting the right set of system attributes for candidate architecture selection in this future

environment.

For example, in the counter-trafficking SoS, the future implications of deploying

increasing number of UAVs, UUVs or sonobuoys is unknown. However, DTOs have pre-

viously demonstrated adaptative behaviors through avoiding interdiction using faster boats

and avoiding detection using submersible vessels. A successful change in the counter-

trafficking architecture is likely to intiate future changes by DTOs. However, the specific

changes they are likely to make are unknown at present. These changes could include new

travel modes (UAVs), changes to smuggling routes, or including offensive measures to de-

feat unmanned counter-trafficking systems (such as detecting and destroying sonobuoys).

The availability of technologies to support these adaptions is an important consideration

for future adaptations.

This work likely requires abstract models to explore the complex intra-relationships

between constituent systems, and inter-relationships between the SoS and the environment.

Kauffman’s NKCS model is one such model that requires the system to be encoded as a

chromosome or bit string [40, 81]. The work done by Dagli et al. [82] and Giammarco [83]

provide ways to encode such systems. Work by Ilachinski on complex systems, focused

on defense applications, could also be used to explore emergent behavior between the SoS

and the environment [84].
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8.2.2. Modifications to Traditional Trade Studies. The approach demonstrated

in this research considers a single objectives hierarchy for the SoS. Acknolwledged SoS

consist of many differeent stakeholders and constituent systems necessary for other, un-

related missions. Constituent system stakeholders likely have objectives and values be-

yond those of an individual SoS. Additional work is needed to incorporate a hierarchy of

stakeholder objectives or value functions. Doing so allows SoS objectives and constituent

system stakeholder objectives to be considered in the SoS analysis. This disaggregatoin of

value functions would help identify constitient systems most adept to participating in the

SoS. Such a method could also expose gaps in needed capabilities.

8.2.3. Agent Based Modeling. The agent based model developed in this research

is an abstraction of the SoS. Several assumptions could be relaxed to provide a more ac-

curate SoS representation. Future work could include additional performance measures,

availability of constituent system to support the counter-trafficking mission, and additional

environmental variables that influence detection probability and interdiction capability.

Operational considerations, such as traditional search patterns including parallel sweep or

inward spriral patterns, could also be included. These search pattersn yield better detection

performance for stationary targets than random searches.

Additional work is needed to validate and verify the agent based model. Operators

and subject matter experts inform the logic behind the model and constituent system per-

formance attributes to support validation. Empirical drug seizure data with greater fidelity

than the UNODC data could be used to support model verification.

8.2.4. SoS Assessment. The counter-trafficking SoS includes other capabilities

not studied in this work. This includes law enforcement efforts to curb cultivation and share

information to increase smuggling interdiction. Inclusion of these other aspects of the SoS

in the analysis allows other alternatives to be explored and prioritized. The role of infor-

mation sharing, and network centric concepts of information reach, timeliness and quality

are important consideration for coordination interdiction efforts. For example, modeling
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law enforcement resources could affect the volume and specificity of information available

to the counter-trafficking SoS. Future models could include these aspects of the SoS to

understand the affects of information sharing.

Finally, the results of the agent based model provide a mapping between input (SoS

architecture and behavior rules) and output (performance measures). For complex systems,

these relationships are likely nonlinear. Statistical methods such as multivariate nonlinear

regression provide a way to construct a meta-model. Such methods define the mapping

between dependent and independent variables. A meta-model provides a way to assess

new architectures not explicity simulated. These models support decision making for the

SoS architecture.
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The surveillance and interdiction capability tables are included below. These capa-

bilities are influenced by the types of smuggling vessels in the environment.

INITIAL AND ADAPTED ENVIRONMENT CAPABILITIES

The surveillance and interdiction capabilities differ across smuggling vessel types.

Since the type and frequency of smuggling vessels changes between the initial and adapted

environments, the SoS performance is impacted.

Surveillance capability depends on the alternative sweep width W and search effort

Z. This analysis uses the “cookie-cutter”, or M-beta, detector model. For alternative i and

smuggling vessel j, sweep width is

Wi j = pi jRi (A.1)

where Ri is the lateral range and pi j is the detection probability. Search effort is

Zi j =Wi jLi (A.2)

where Li is the range of alternative i. Coverage is

Ci j = Zi j/A (A.3)

where A is the search area being covered; A = 1,000 for this analysis. To ac-

count for search performance against multiple types of smuggling vessels, the sweep width,

search effort and coverage are estimated using the fraction of each type of smuggling vessel

l j:

W ⇤
i = Â

j
l jWi j (A.4)
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Z⇤
i = Â

j
l jZi j (A.5)

C⇤
i = Â

j
l jCi j (A.6)

The interdiction capability differs between the types of smuggling vessels. The

interdiction capability, bi j, is a relative score of the ability of the interdiction system i to

interdicte smuggling vessel type j. For all combined smuggling vessels in the environment,

ci = Â
i, j

p jbi j (A.7)

where p j is the fraction of total trafficking events using smuggling vessel type j.

For the trade study, ci j is the capability of the initial environment, and c0i j is the capability

in the new environment.
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Table A.1. Search parameters for the initial environment.

C-27J HC-130J P-3 Orion MQ-9 Scaneagle RQ-4
Cruise Speed, est. (knots) 220 374 328 80 55 130
Range (nm) 2675 5000 2380 675 809 12300
Endurance (hours) 12 14 16 24 24 34
Detection Range (km) 200 200 200 200 150 200
Lateral Range (nm) 108 108 108 108 81 108
P(d) - Fishing Boat 0.90 0.90 0.90 0.90 0.90 0.90
Sweep Width - Fishing Boat 97 97 97 97 73 97
Search Rate - Fishing Boat 21382 36350 31879 7775 4009 12635
Search Effort - Fishing Boat 259989 485961 231317 65605 58971 1195464
Coverage - Fishing Boat 260 486 231 66 59 1195
Positiive ID - Fishing Boat 0.70 0.90 0.70 0.85 0.95 0.95
P(d) - Go-fast Boat 0.90 0.90 0.90 0.90 0.90 0.90
Sweep Width - Go-fast Boat 97 97 97 97 73 97
Search Rate - Go-fast Boat 21382 36350 31879 7775 4009 12635
Search Effort - Go-fast Boat 259989 485961 231317 65605 58971 1195464
Coverage - Go-fast Boat 260 486 231 66 59 1195
Positive ID - Go-fast Boat 0.80 0.80 0.90 0.99 0.99 0.95
Fishing Boat Fraction 0.43 0.43 0.43 0.43 0.43 0.43
Go-fast Boat Fraction 0.57 0.57 0.57 0.57 0.57 0.57
W* 97.19 97.19 97.19 97.19 72.89 97.19
R* 21382 36349 31879 7775 4009 12634
Z* 259989 485961 231317 65604 58971 1195464
C* 259 485 231 65 58 1195
Positive Identification* 0.76 0.84 0.81 0.93 0.97 0.95
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Table A.2. Search parameters for the adapted environment. The new capability uses the same search parameters for fishing boats and
go-fast boats from the initial environment (Table B. 1).

C-27J HC-130J P-3 Orion MQ-9 Scaneagle RQ-4
Cruise Speed, est. (knots) 220 374 328 80 55 130
Range (nm) 2675 5000 2380 675 809 12300
Endurance (hours) 12 14 16 24 24 34
Detection Range (km) 200 200 200 200 150 200
Lateral Range (nm) 108 108 108 108 81 108
P(d) LPV - Semi-submersible 0.20 0.20 0.20 0.20 0.20 0.20
Sweep Width - Semi-submersible 22 22 22 22 16 22
Search Rate - Semi-submersible 4752 8078 7084 1728 891 2808
Search Effort - Semi-submersible 57775 107991 51404 14579 13105 265659
Coverage - Semi-submersible 58 108 51 15 13 266
Positive ID - Semi-submersible 0.15 0.05 0.00 0.40 0.40 0.30
P(d) - Fully-submersible 0.00 0.00 0.00 0.00 0.00 0.00
Sweep Width - Fully-submersible 0 0 0 0 0 0
Search Rate - Fully-submersible 0 0 0 0 0 0
Search Effort - Fully-submersible 0 0 0 0 0 0
Coverage - Fully-submersible 0 0 0 0 0 0
Positive ID - Fully-submersible 0 0 0 0 0 0
Fishing Boat Fraction 0.12 0.12 0.12 0.12 0.12 0.12
Go-fast Boat Fraction 0.4 0.4 0.4 0.4 0.4 0.4
Semi-submersible Fraction 0.22 0.22 0.22 0.22 0.22 0.22
Fully-submersible Fraction 0.22 0.22 0.22 0.22 0.22 0.22
W* 55 55 55 55 41 55
R* 12164 20679 18136 4423 2281 7188
Z* 147905 276458 131594 37322 33548 680086
C* 147.9 276.5 131.6 37.3 33.5 680.1
Positive Identification* 0.44 0.44 0.44 0.59 0.60 0.56
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Table A.3. The set of interdiction capability parameters for the initial and adapted environments.

MH-60T MH-65D SH-60 LRI-II OTH-IV RB-S
Fishing Boat Interdiction Capability 0.99 0.99 0.99 0.99 0.9 0.8
Go-fast Boat Interdiction Capability 0.99 0.99 0.4 0.7 0.6 0.5
Fishing Boat Fraction 0.43 0.43 0.43 0.43 0.43 0.43
Go-fast Boat Fraction 0.57 0.57 0.57 0.57 0.57 0.57
Interdiction Capability — Initial Environment (ci j) 0.99 0.99 0.65 0.82 0.73 0.63
Fishing Boat Interdiction Capability 0.99 0.99 0.99 0.99 0.9 0.8
Go-fast Boat Interdiction Capability 0.99 0.99 0.4 0.7 0.6 0.5
Semi-submersible Interdiction Capability 0.4 0.3 0.15 0.4 0.2 0.1
Fully-submersible Interdiction Capability 0 0 0.0 0.0 0.0 0.0
Fishing Boat Fraction 0.12 0.12 0.12 0.12 0.12 0.12
Go-fast Boat Fraction 0.4 0.4 0.4 0.4 0.4 0.4
Semi-submersible Fraction 0.22 0.22 0.22 0.22 0.22 0.22
Fully-submersible Fraction 0.22 0.22 0.22 0.22 0.22 0.22
Interdiction Capability — Adapted Environment (c0i j) 0.6028 0.5808 0.3118 0.4868 0.392 0.318
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VALUE FUNCTIONS

The value functions for the trade study use linear and sigmoid functions to translate

measure space to stakeholder value space. The value functions for the surveillance and

interdiction measures are included in Figures A.1 and A.2, respectively. Table A.4 and

A.5 provide some parameters for these value functions. The full parameter set for these

functions is provided in Section B.2.

Figure A.1. Surveillance alternative value functions. The trend of each function corre-
sponds to a minimization (decreasing) or maximization (increasing) objective.
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Figure A.2. Interdiction alternative value functions. The trend of each function corresponds
to a minimization (decreasing) or maximization (increasing) objective.
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Table A.4. Objectives for surveillance alternatives.

Objective Measure Importance Minimum Maximum Ideal Units
Detection Maximize Range 55 500 15000 15000 nm
Detection Maximize Endurance 90 10 36 36 hours
Detection Maximize Sweep Width 85 25 125 125 nm
Detection Maximize Coverage 95 0 2000 2000 unitless
Detection Maximize Search Effort 80 30000 1200000 1200000 sq. nm
Detection Maximize Availability 50 25 100 100 percent
Flexibility Maximize Deployability 75 0 10 10 index
Flexibility Maximize Payload 60 0 10 10 index
Flexibility Maximize Growth Potential 50 0 10 10 index
Cost Minimize Reconfiguration Cost 35 0 10 0 index
Cost Minimize O&M Cost 65 0 15000 0 USD/hour
Limit Losses Maximize Control 15 0 10 10 index
Limit Losses Maximize Recoverability 30 0 10 10 index
Limit Impacts Maximize Positive Identification 55 50 100 100 percent
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Table A.5. Objectives for interdiction alternatives.

Objective Measure Importance Minimum Maximum Ideal Units
Interdiction Maximize Speed 75 50 200 200 knots
Interdiction Maximize Range 80 100 500 500 nm
Interdiction Maximize Interdiction Capability 85 1 10 10 index
Interdiction Maximize Availability 60 25 100 100 percent
Situational Awareness Maximize Information Sharing 55 1 10 10 index
Situational Awareness Maximize Coordination 80 1 10 10 index
Flexibility Maximize Deployability 75 1 10 10 index
Flexibility Maximize Payload 45 1 10 10 index
Flexibility Maximize Upgradability 65 1 10 10 index
Cost Minimize Acquisition Cost 20 100 1200 100 $K
Cost Minimize Reconfiguration Cost 40 3 150 3 $K
Cost Minimize O&M Cost 35 2.5 15 2.5 $K
Limit Losses Maximize Control 50 1 10 10 index
Limit Losses Maximize Recoverability 45 1 10 10 index
Limit Impacts Maximize Positive Identification 90 50 100 100 percent
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RESULTS

The overall results of the trade study are presented in Section 5.2.3. The contribu-

tion of each alternative against each measure, in terms of stakeholder value, are useful to

compare the relative performance across alternatives for each measure. Alternative values

for each performance measure are normalized for the parallel coordinates plot in Figure

A.3. These results are for the SoS architecture in the initial (non-submersible) environ-

ment.
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(a) Surveillance alternatives

(b) Interdiction alternatives

Figure A.3. Parallel coordinates plots for surveillance and interdiction alternative values
for each performance measure. Measure values are normalized to show comparisons by
value contribution of each alternative. Performance values for each measure are normalized
independently.
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The alt-swing software tool was developed as part of this research. The code is

provided in Appendix B. The goal of this tool is to enable more rapid trade space explo-

ration when performing a trade study of a set of alternatives. The software is developed

as an IPython Notebook, and is made available on GitHub as open source software under

the MIT license. The tool generates an HTML report based on user input from text and

CSV files to generate a formatted HTML report. An example HTML report is included in

Section B.4.

DESCRIPTION

The following code, developed as part of this research, is an implementation of

the Systems Engineering tradeoff study framework [23, 25]. The code is made available

at https://github.com/gm4/alt-swing. A User Guide is available at http://gm4.github.io/alt-

swing/.

The alt-swing Python code has the following requirements:

• Python 2.7
• IPython notebook
• scipy (0.15.1)
• numpy
• pandas (0.16.1)
• matplotlib
• seaborn (0.5.1)
• markdown
• jinja2

PYTHON CODE

# coding: utf-8

# # Alternative Analysis Using the Swing Weight Matrix

# An IPython Notebook implementation of the Systems Engineering trade study method

# described at http://sebokwiki.org/wiki/Decision_Management.
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# get_ipython().magic(u’matplotlib inline’)

from __future__ import division

import numpy as np

import scipy as sp

from scipy.special import expit

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

sns.set(style = ’whitegrid’) # plot aesthetics

import markdown

from jinja2 import Environment, FileSystemLoader

# --------

# distribution short names

sigString = ’sigmoid’

linString = ’linear’

powString = ’power’

triString = ’triangular’

# Value function range [0, vfRange]

vfRange = 100.0

# Weights for Importance and Swing for Swing Weight calculation

impWt = 0.65

swWt = 1.0 - impWt

# For large figures with subplots

numPlotCols = 3 # number of columns

# HTML output

htmlReport = True

# #### Define the Allowable Value Functions

# the linear, or scaled, function

def scale(x, xMin, xMax):

""" Returns x between [0.0, 1.0] from original domain of [xMin, xMax]. """

return (x - xMin) / (xMax - xMin)

# the triangular function



118

def triangular(x, l, c, r):

""" Returns the [0,100] scaled triangular value function evaluated

at x for (l)eft, (c)enter, (r)ight triangular parameters."""

return vfRange * max(min(((x - l)/(c - l)), ((r - x)/(r - c))), 0.0)

# the bell function

def bell(x, a, b, c):

""" Returns the [0,100] scaled generalized bell curve

evaluated at x for (c)enter and shape parameters a and b."""

return vfRange * 1.0 / (1.0 + pow(np.abs((x - c)/a), (2.0*b)))

# the sigmoid function

def sigmoid(x, a, c):

"""Returns the [0,100] scaled sigmoid function evaluated

at x for (a)lpha and (c)enter."""

return vfRange * (1.0 / (1.0 + np.exp(-1.0 * a * (x - c))))

# --------

# ## Read Input Files

# ### Objectives and Measures

# Read directly into a ‘pandas‘ DataFrame

# Define the set of value function families to use:

# Family | Value Function Form

# ------- | -------------------------------------------

# Linear | $$ f(x) = mx + b $$

# Power | $$ f(x) = mx^a $$

# Sigmoid | $$ f(x) = \frac{a}{b + e^{-ax/2}} $$

objDF = pd.read_csv(’./input/surveillance-objectives.csv’,

index_col = [’Objective’, ’Measure’])

# objDF = pd.read_csv(’./input/surveillance-objectives-subset.csv’,

index_col = [’Objective’, ’Measure’])

# objDF = pd.read_csv(’./input/interdiction-objectives.csv’,

index_col = [’Objective’, ’Measure’])

# objDF = pd.read_csv(’./input/interdiction-objectives-subset.csv’,

index_col = [’Objective’, ’Measure’])
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# objDF # Uncomment to view the DataFrame inline

# #### Build the Value Functions for Each Objective and Measure

# This section creates plots of the value functions defined for each measure.

# The result

# is a series of figure with subplots of each value function.

# ----------

# **Note:** *If you defined additional value functions above,

# you will need to add these to

# the below loop to make sure they are evaluated.*

# ---------

tmpDF = pd.DataFrame(columns=[’Measure’, ’Score’, ’Value’])

# Get the number of unique Measures to plot

numPlotRows = int(round(

np.ceil(len(objDF.index.levels[1].unique()) / numPlotCols), 0))

fig, axs = plt.subplots(numPlotRows, numPlotCols, figsize = (13, 15))

# Loop through the subplots and objDF indices

for ax, idx in zip(axs.flat, objDF.index):

vals = objDF.loc[idx] # get the dataframe columns for this index

axMin = float(vals.Minimum)

axMax = float(vals.Maximum)

domain = np.linspace(axMin, axMax)

# Build the corresponding value function

if vals.Family == ’sigmoid’:

valFunc = [sigmoid(i, float(vals.Param1), vals.Param2) for i in domain]

if float(vals.Slope) == -1.0:

valFunc[:] = [vfRange - i for i in valFunc]

elif vals.Family == ’linear’:

valFunc = [vfRange * scale(i, axMin, axMax) for i in domain]

if float(vals.Slope) == -1.0:

valFunc[:] = [vfRange - i for i in valFunc]

elif vals.Family == ’power’:

valFunc = [vfRange * np.power(scale(i, axMin, axMax),

vals.Param1) for i in domain]
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if float(vals.Slope) == -1.0:

valFunc[:] = [max(valFunc) - i for i in valFunc]

elif vals.Family == ’triangular’:

valFunc = [triangular(i, axMin, vals.Param1, axMax) for i in domain]

if float(vals.Slope) == -1.0:

valFunc[:] = [max(valFunc) - i for i in valFunc]

else:

valsFunc = [0]*len(domain)

print ’This value function family is not yet implemented.’

tmpDF.Measure = str(idx[1]) # Assign the Measure

tmpDF.Score = domain

tmpDF.Value = valFunc

plotTitle = str(idx[1])

tmpDF.plot(ax=ax, x = ’Score’, y = ’Value’, title = plotTitle, legend = False)

plt.subplots_adjust(hspace = 0.7)

for ax in axs.flat[axs.size - 1:len(objDF.index) - 1:-1]:

ax.set_visible(False)

plt.suptitle(’Value Functions’, fontsize = 16)

plt.savefig(’./html_report/images/value-functions.png’, bbox_inches=’tight’)

plt.savefig(’./html_report/images/value-functions.pdf’, bbox_inches=’tight’)

plt.show()

# ### Alternatives

# Read directly into a ‘pandas‘ DataFrame

altDF = pd.read_csv(’./input/surveillance-alternatives-0.csv’,

index_col=[’Objective’, ’Measure’, ’Alternative’])

# altDF = pd.read_csv(’./input/surveillance-alternatives-1.csv’,

index_col=[’Objective’, ’Measure’, ’Alternative’])

# altDF = pd.read_csv(’./input/surveillance-alternatives-0-subset.csv’,

index_col=[’Objective’, ’Measure’, ’Alternative’])

# altDF = pd.read_csv(’./input/surveillance-alternatives-1-subset.csv’,

index_col=[’Objective’, ’Measure’, ’Alternative’])

# altDF = pd.read_csv(’./input/interdiction-alternatives-0.csv’,
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index_col=[’Objective’, ’Measure’, ’Alternative’])

# altDF = pd.read_csv(’./input/interdiction-alternatives-1.csv’,

index_col=[’Objective’, ’Measure’, ’Alternative’])

# altDF = pd.read_csv(’./input/interdiction-alternatives-0-subset.csv’,

index_col=[’Objective’, ’Measure’, ’Alternative’])

# altDF = pd.read_csv(’./input/interdiction-alternatives-1-subset.csv’,

index_col=[’Objective’, ’Measure’, ’Alternative’])

altDF[’Consequence’] = np.NaN

# altDF # Uncomment to view inline

# --------

# ## Score each Alternative against each Objective and Measure

for item, val in altDF.iterrows():

idxString = list(item) # convert this alternative’s index to a list

print ’\n\nidxString is: ’, idxString

print ’val is: \n -----\n’, val, ’\n-----’

# drop the ’Alternative’ from the index used for the objective DataFrame

objIdx = idxString[0:2]

print ’objective index is: \n’, objIdx

# get the corresponding objective for this index

obj = objDF.ix[objIdx[0],objIdx[1],]

print ’objDF row is: \n’, obj

score = np.NaN

funcFamily = str(obj[’Family’]) # get the corresponding value function family

# the measured value for this alternative

paramX = altDF.ix[idxString[0], idxString[1], idxString[2]][’Score’]

paramSlope = objDF.ix[objIdx[0],objIdx[1]][’Slope’] # the slope

paramXMin = objDF.ix[objIdx[0],objIdx[1]][’Minimum’] # minimum acceptable

paramXMax = objDF.ix[objIdx[0],objIdx[1]][’Maximum’] # maximum desirable

paramX1 = objDF.ix[objIdx[0],objIdx[1]][’Param1’] # 1st function parameter

paramX2 = objDF.ix[objIdx[0],objIdx[1]][’Param2’] # 2nd function parameter

paramX3 = objDF.ix[objIdx[0],objIdx[1]][’Param3’] # 3rd function parameter

if funcFamily == sigString:
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print str(idxString[0:2]) + ’ is ’ + sigString

score = sigmoid(paramX, paramX1, paramX2)

if float(paramSlope) == -1.0:

score = vfRange - score

elif funcFamily == linString:

print str(idxString[0:2]) + ’ is ’ + linString

score = vfRange * scale(paramX, paramXMin, paramXMax)

if float(paramSlope) == -1.0:

score = vfRange - score

elif funcFamily == powString:

print str(idxString[0:2]) + ’ is ’ + powString

score = np.power(scale(paramX, paramXMin, paramXMax), paramX1)

if float(paramSlope) == -1.0:

score = vfRange - score

elif funcFamily == triString:

print str(idxString[0:2]) + ’ is ’ + triString

score = triangular(paramX, paramXMin, paramX1, paramXMax)

if float(paramSlope) == -1.0:

score = vfRange - score

else:

print ’The "’,funcFamily, ’" value function family is not yet implemented.’

if score > 100.0:

score = 100.0

elif score < 0.0:

score = 0.0

print ’Value against this measure is ’, score

altDF.loc[(idxString[0], idxString[1], idxString[2]),’Consequence’] = np.round(

float(score), 3)

print altDF[’Score’].dropna(’index’) # Uncomment to view the DataFrame inline

# -----------

# ## Calculate the Swing Weight for each Objective and Measure

objDF.loc[:,’Swing’] = np.NaN
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for idx, val in objDF.iterrows():

try:

objMin = min(altDF.loc[(idx[0], idx[1]),’Consequence’])

objMax = max(altDF.loc[(idx[0], idx[1]),’Consequence’])

except:

print "\nNo Score found for ", idx

objMin = np.NaN

objMax = np.NaN

swing = objMax - objMin

objDF.loc[(idx[0], idx[1]),’Swing’] = swing

print idx, ’ min: ’, objMin, ’ max: ’, objMax, ’ swing: ’, swing

objResults = objDF.copy()

objResults.reset_index(inplace=True)

print objResults

sns.lmplot(x="Swing", y="Importance", data=objResults, fit_reg=False,

hue = "Measure", aspect=1.3, scatter_kws={"s": 100},

palette=sns.color_palette("Paired", n_colors=16, desat=.5))

plt.xlim(-0.1,101)

plt.ylim(-0.1,101)

plt.title("Measure Swing vs. Importance")

plt.savefig(’./html_report/images/swing-importance.png’, bbox_inches=’tight’)

plt.savefig(’./html_report/images/swing-importance.pdf’, bbox_inches=’tight’)

# ### Calculate the Unnormalized Weight

objDF.loc[:,’Weight’] = impWt * objDF.Importance + swWt * objDF.Swing

# ### Calculate the Normalized Weight

objDF.loc[:,’NormdWt’] = objDF.loc[:,’Weight’] / objDF.loc[:,’Weight’].sum()

# objDF # Uncomment to view the DataFrame inline

# -------------

# ## Evaluating the Alternative’s Value

# ### Calculate Total Value for Each Alternative

# $$
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# V(x) = \sum_{i = 1}^{n}w_{i} v_{i}(x_{i})

# $$

# where $V(x)$ is the total value, $i$ is the index of the objective/measure,

# $w_i$

# is the normalized weight for objective/measure $i$, $x_i$ is the

# alternative’s score

# for objective measure $i$, and $v_i(x_i)$ is the corresponding value of $x_i$.

for idx, vals in altDF.iterrows():

altDF.loc[:,’WtdConsequence’] =

objDF.loc[(idx[0],idx[1]),’NormdWt’] * altDF.Consequence

# altDF # Uncomment to view the DataFrame inline

print(altDF[’WtdConsequence’].dropna(’index’))

# ------------

# ## Visualizing Output

# #### Heatmap (Consequences Scorecard)

# Display the relative performance of each Alternative against each Measure.

heatDF = altDF.drop([’Score’, ’Units’, ’WtdConsequence’], axis = 1)

heatDF.reset_index(inplace=True)

summaryDF = altDF.drop([’Score’, ’Consequence’], axis=1).groupby(

level = ’Alternative’).agg(sum)

summaryDF.columns = [’Value’]

# summaryDF # Uncomment to view the DataFrame inline

tmpDF = altDF.drop([’Units’, ’Consequence’], axis = 1)

# tmpDF # Uncomment to view the DataFrame inline

for idx, cols in tmpDF.iterrows():

val = summaryDF.loc[(idx[2]), ’Value’]

tmpDF.loc[idx,’Value’] = val

heat_rect = heatDF.pivot(’Alternative’, ’Measure’, ’Consequence’)

# heat_rect.dropna("columns") # Uncomment to view the DataFrame inline

print(heat_rect)

sns.heatmap(np.round(heat_rect.dropna(’columns’), 0),

annot=True, fmt=’g’, cbar=False)
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plt.title("Heatmap of Alternative Measure Values")

plt.savefig(’./html_report/images/value-scorecard.png’, bbox_inches=’tight’)

plt.savefig(’./html_report/images/value-scorecard.pdf’, bbox_inches=’tight’)

# #### Trellis Plot of Alternative Value vs Measure Score

# Allows a quick comparison of the total value and original score of

# Alternatives against all Measures.

summaryDF.reset_index(inplace=True)

sns.barplot(’Alternative’, ’Value’, data=summaryDF, palette=’muted’)

plt.ylabel("Value")

plt.ylim(0,60)

plt.title(’Total Alternative Value’)

plt.savefig(’./html_report/images/value-barplot.png’, bbox_inches=’tight’)

plt.savefig(’./html_report/images/value-barplot.pdf’, bbox_inches=’tight’)

print(summaryDF)

tmpDF.reset_index(inplace=True)

grid = sns.FacetGrid(tmpDF, col="Measure", hue="Alternative", col_wrap=3, size=4,

legend_out = True, sharex=False, sharey=True)

grid.map(plt.plot, "Score", "Value", marker="o", ms=14, alpha=0.6)

grid.fig.tight_layout(w_pad=1)

sns.set_context("paper", font_scale=1.6)

grid.add_legend()

grid.savefig(’./html_report/images/measure-trellis.png’, bbox_inches=’tight’)

grid.savefig(’./html_report/images/measure-trellis.pdf’, bbox_inches=’tight’)

# Format the DataFrame to produce the parallel coordinates plot.

fooDF = heat_rect.copy()

# normalize the measure values for the parallel coordinates plot

for col in fooDF.columns:

fooDF[col] = (

fooDF[col] - np.min(fooDF[col])) / (np.max(fooDF[col]

) - np.min(fooDF[col]))

print(fooDF)

# reset the index, but keep ’Alternative’ as a column
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fooDF = fooDF.reset_index(level=0,drop = False)

fooDF.index.name = None

plt.figure(figsize = (15,6))

pd.tools.plotting.parallel_coordinates(fooDF, ’Alternative’, colormap = ’Set2’)

plt.xticks(rotation=60)

plt.ylabel("Normalized Performance")

plt.title(’Alternative Performance vs Measure’)

plt.legend(loc=’center left’, bbox_to_anchor=(1, 0.5))

plt.savefig(’./html_report/images/parallel-coordinates.png’, bbox_inches=’tight’)

plt.savefig(’./html_report/images/parallel-coordinates.pdf’, bbox_inches=’tight’)

# -----------------

# ## The creation of the HTML Report is availabe from the online version.

# It requires additional input files that the user can modify to tailor the

# report.

# -----------

INPUT DATA

The input data can be generated in spreadsheet software. However, the Python code

requires this data in comma separated values (CSV) files.

1. Surveillance Alternatives. The initial set of surveillance alternatives include

the following data stored as a comma separated values (CSV) file.

2. Interdiction Alternatives. The following objectives and measures correspond

to the interdiction capability of the counter trafficking SoS:

Objective,Measure,Importance,Minimum,Maximum,Ideal,Units,Family,Slope,Param1,Param2,Param3

Interdiction,Maximize Speed,75,50,200,200,knots,linear,1,1,,

Interdiction,Maximize Range,80,100,500,500,nm,sigmoid,1,0.04,300,

Interdiction,Maximize Interdiction Capability,85,10,100,10,percent,sigmoid,1,0.1,55,

Interdiction,Maximize Availability,60,25,100,100,percent,sigmoid,1,0.25,67.5,

Situational Awareness,Maximize Information Sharing,55,1,10,10,index,linear,1,,,

Situational Awareness,Maximize Coordination,80,1,10,10,index,linear,1,,,
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Flexibility,Maximize Deployability,75,1,10,10,index,linear,1,,,

Flexibility,Maximize Payload,45,1,10,10,index,sigmoid,1,1.15,6,

Flexibility,Maximize Upgradability,65,1,10,10,index,linear,1,,,

Cost,Minimize Acquisition Cost,20,100,1200,100,$K,sigmoid,-1,0.01,550,

Cost,Minimize Reconfiguration Cost,40,3,150,3,$K,linear,-1,,,

Cost,Minimize O&M Cost,35,2.5,15,2.5,$K,sigmoid,-1,0.3,9,

Cost,Minimize Retirement Cost,25,5,120,5,$K,linear,-1,,,

Limit Losses,Maximize Control,50,1,10,10,index,sigmoid,1,1.3,5,

Limit Losses,Maximize Recoverability,45,1,10,10,index,sigmoid,1,1,5,

Limit Impacts,Maximize Positive Identification,90,50,100,100,percent,sigmoid,1,0.3,75,

The following input corresponds to the initial interdiction alternatives

Alternative,Objective,Measure,Score,Units

MH-60T Jayhawk,Interdiction,Maximize Speed,170,knots

MH-60T Jayhawk,Interdiction,Maximize Range,300,nm

MH-60T Jayhawk,Interdiction,Maximize Interdiction Capability,7,index

MH-60T Jayhawk,Interdiction,Maximize Availability,70,percent

MH-60T Jayhawk,Situational Awareness,Maximize Information Sharing,6,index

MH-60T Jayhawk,Situational Awareness,Maximize Coordination,6,index

MH-60T Jayhawk,Flexibility,Maximize Deployability,1,index

MH-60T Jayhawk,Flexibility,Maximize Payload,7,index

MH-60T Jayhawk,Flexibility,Maximize Upgradability,7,index

MH-60T Jayhawk,Cost,Minimize Acquisition Cost,,$K

MH-60T Jayhawk,Cost,Minimize Reconfiguration Cost,,$K

MH-60T Jayhawk,Cost,Minimize O&M Cost,,$K

MH-60T Jayhawk,Cost,Minimize Retirement Cost,,$K

MH-60T Jayhawk,Limit Losses,Maximize Control,9,index

MH-60T Jayhawk,Limit Losses,Maximize Recoverability,5,index

MH-60T Jayhawk,Limit Impacts,Maximize Positive Identification,80,percent

MH-65D Dolphin,Interdiction,Maximize Speed,160,knots

MH-65D Dolphin,Interdiction,Maximize Range,150,nm

MH-65D Dolphin,Interdiction,Maximize Interdiction Capability,7,index
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MH-65D Dolphin,Interdiction,Maximize Availability,90,percent

MH-65D Dolphin,Situational Awareness,Maximize Information Sharing,6,index

MH-65D Dolphin,Situational Awareness,Maximize Coordination,6,index

MH-65D Dolphin,Flexibility,Maximize Deployability,6,index

MH-65D Dolphin,Flexibility,Maximize Payload,5,index

MH-65D Dolphin,Flexibility,Maximize Upgradability,5,index

MH-65D Dolphin,Cost,Minimize Acquisition Cost,,$K

MH-65D Dolphin,Cost,Minimize Reconfiguration Cost,,$K

MH-65D Dolphin,Cost,Minimize O&M Cost,,$K

MH-65D Dolphin,Cost,Minimize Retirement Cost,,$K

MH-65D Dolphin,Limit Losses,Maximize Control,9,index

MH-65D Dolphin,Limit Losses,Maximize Recoverability,5,index

MH-65D Dolphin,Limit Impacts,Maximize Positive Identification,60,percent

LRI-II,Interdiction,Maximize Speed,38,knots

LRI-II,Interdiction,Maximize Range,225,nm

LRI-II,Interdiction,Maximize Interdiction Capability,3,index

LRI-II,Interdiction,Maximize Availability,95,percent

LRI-II,Situational Awareness,Maximize Information Sharing,4,index

LRI-II,Situational Awareness,Maximize Coordination,4,index

LRI-II,Flexibility,Maximize Deployability,10,index

LRI-II,Flexibility,Maximize Payload,3,index

LRI-II,Flexibility,Maximize Upgradability,6,index

LRI-II,Cost,Minimize Acquisition Cost,,$K

LRI-II,Cost,Minimize Reconfiguration Cost,,$K

LRI-II,Cost,Minimize O&M Cost,,$K

LRI-II,Cost,Minimize Retirement Cost,,$K

LRI-II,Limit Losses,Maximize Control,9,index

LRI-II,Limit Losses,Maximize Recoverability,8,index

LRI-II,Limit Impacts,Maximize Positive Identification,99,percent

OTH-IV,Interdiction,Maximize Speed,40,knots

OTH-IV,Interdiction,Maximize Range,200,nm

OTH-IV,Interdiction,Maximize Interdiction Capability,3,index

OTH-IV,Interdiction,Maximize Availability,95,percent
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OTH-IV,Situational Awareness,Maximize Information Sharing,4,index

OTH-IV,Situational Awareness,Maximize Coordination,4,index

OTH-IV,Flexibility,Maximize Deployability,10,index

OTH-IV,Flexibility,Maximize Payload,5,index

OTH-IV,Flexibility,Maximize Upgradability,7,index

OTH-IV,Cost,Minimize Acquisition Cost,,$K

OTH-IV,Cost,Minimize Reconfiguration Cost,,$K

OTH-IV,Cost,Minimize O&M Cost,,$K

OTH-IV,Cost,Minimize Retirement Cost,,$K

OTH-IV,Limit Losses,Maximize Control,9,index

OTH-IV,Limit Losses,Maximize Recoverability,8,index

OTH-IV,Limit Impacts,Maximize Positive Identification,99,percent

RB-S,Interdiction,Maximize Speed,45,knots

RB-S,Interdiction,Maximize Range,175,nm

RB-S,Interdiction,Maximize Interdiction Capability,4,index

RB-S,Interdiction,Maximize Availability,95,percent

RB-S,Situational Awareness,Maximize Information Sharing,4,index

RB-S,Situational Awareness,Maximize Coordination,4,index

RB-S,Flexibility,Maximize Deployability,10,index

RB-S,Flexibility,Maximize Payload,4,index

RB-S,Flexibility,Maximize Upgradability,6,index

RB-S,Cost,Minimize Acquisition Cost,,$K

RB-S,Cost,Minimize Reconfiguration Cost,,$K

RB-S,Cost,Minimize O&M Cost,,$K

RB-S,Cost,Minimize Retirement Cost,,$K

RB-S,Limit Losses,Maximize Control,9,index

RB-S,Limit Losses,Maximize Recoverability,8,index

RB-S,Limit Impacts,Maximize Positive Identification,99,percent
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EXAMPLE HTML OUTPUT

The below figures present the HTML output from the alt-swing code. The goal

of this tool is to enable more rapid trade space exploration when performing a trade study

for a set of alternatives. The formatted HTML report is optionally generated based on

user input from text and CSV files. Narrative descriptions under each section of the report

use markdown syntax text which should be modified by the user. The Python packages

markdown and jinja2 are used in the background to transform the text, tables and figures

into the HTML report automatically. The following figures are examples of this output.
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Default alt-swing Report
Author Name

Introduction

This section introduces the trade study problem.

Bottom Line Results

To get straight to the point.

Value

Alternative

C-27J 24.113833

HC-130J 28.802832

MQ-9 31.720632

P-3 26.935759

RQ-4 56.085392

Scaneagle 42.754911

Objectives and Measures

This is boilerplate text to put in your HTML report. Describe the
objectives and measures that you use, why you selected them,
etc. You may want to include a subsection on stakeholders as
well.

The following table provides the Objectives and Measures used in
this analysis.

Importance Minimum Maximum Ideal Units Swing NormdWt

Objective Measure

Detection Maximize
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Range 55 500 15000 15000 nm 80.172 0.069426

Maximize
Endurance

90 10 36 36 hours 76.923 0.092941

Maximize Sweep
Width

85 25 125 125 nm 42.356 0.076242

Maximize
Coverage

95 0 2000 2000 unitless 82.581 0.098631

Maximize Search
Effort

80 30000 1200000 1200000 sq. nm 99.976 0.094647

Maximize
Availability

50 25 100 100 percent 99.969 0.073429

Flexibility Maximize
Deployability

75 0 10 10 index 94.588 0.089060

Maximize Payload 60 0 10 10 index 80.000 0.072896

Maximize Growth
Potential

50 0 10 10 index 61.186 0.058660

Cost Minimize
Reconfiguration
Cost

35 0 10 0 index 40.000 0.039984

Minimize O&M
Cost

65 0 15000 0 USD/hour 98.751 0.083573

Limit
Losses

Maximize
Control

15 0 10 10 index 72.437 0.038192

Maximize
Recoverability

30 0 10 10 index 93.458 0.056805

Limit
Impacts

Maximize
Positive
Identification

55 50 100 100 percent 43.641 0.055515
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Nunc vel
gravida
dui, ac
aliquam
augue.
Vivamus
eu ultrices
mauris, sit
amet
dictum
diam.

Alternatives

This is boilerplate text to put in your report.

You may want to describe the alternatives that you use and any
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assumptions that you made.

Alternative A provides ...

Alternative B uses ...

These alternatives, and the corresponding scores for each
Objective and Measure are included in the table below:

Score

Objective Detection Flexibility Cost

Measure
Maximize
Range

Maximize
Endurance

Maximize
Sweep
Width

Maximize
Coverage

Maximize
Search
Effort

Maximize
Availability

Maximize
Deployability

Maximize
Payload

Maximize
Growth
Potential

Minimize
Reconfiguration
Cost

Minimize
O&M
Cost

Units nm hours nm unitless sq nm percent index index index index USD

Alternative

C-27J 2675 12 97 260 259989 33 3 8 4 7 10000

HC-130J 5000 14 97 486 485961 25 3 8 4 8 12000

MQ-9 675 24 97 68 65604 20 4 4 6 8 4500

P-3 2380 16 97 231 231317 15 2 9 3 7 8000

RQ-4 12300 32 97 1195 1195464 65 6 3 5 4 3500

Scaneagle 809 24 73 59 58971 95 10 1 6 6 1000

Nunc vel
gravida
dui, ac
aliquam
augue.
Vivamus
eu ultrices
mauris, sit
amet
dictum
diam.
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Vivamus eu ultrices dui, ac aliquam
augue.

Built from alt-swing using Skeleton.
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