1,327 research outputs found

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    Process-Based Design and Integration of Wireless Sensor Network Applications

    Get PDF
    Abstract Wireless Sensor and Actuator Networks (WSNs) are distributed sensor and actuator networks that monitor and control real-world phenomena, enabling the integration of the physical with the virtual world. They are used in domains like building automation, control systems, remote healthcare, etc., which are all highly process-driven. Today, tools and insights of Business Process Modeling (BPM) are not used to model WSN logic, as BPM focuses mostly on the coordination of people and IT systems and neglects the integration of embedded IT. WSN development still requires significant special-purpose, low-level, and manual coding of process logic. By exploiting similarities between WSN applications and business processes, this work aims to create a holistic system enabling the modeling and execution of executable processes that integrate, coordinate, and control WSNs. Concretely, we present a WSNspecific extension for Business Process Modeling Notation (BPMN) and a compiler that transforms the extended BPMN models into WSN-specific code to distribute process execution over both a WSN and a standard business process engine. The developed tool-chain allows modeling of an independent control loop for the WSN.

    Service architecting and dynamic composition in pervasive smart ecosystems for the Internet of things based on sensor network technology

    Get PDF
    Why pervasive awareness and Ambient Intelligence are perceived by a great part of the academia and industry as a massive revolution in the short-term? In our best knowledge, a cornerstone of this thought is based on the fact that the ultimate nature of the smart environment paradigm is not in the technology itself, but on a people-centered approach. Perhaps, is in this apparently simple conception where precisely lies the boldness of this promising vision, which has been consolidated in recent years with the emerging proliferation of mobile, personal, portable, wearable and sensory computing: to reach everyone and everywhere. On the one hand, it touches our daily lives in a close manner, minimizing the required attention from the users, anticipating to their needs with the main intention of redefining our idea of Quality of Experience. On the other hand, this new wave impacts everywhere at both global and personal scales allowing expanded connectivity between devices and smart objects, in a dynamic and ubiquitous manner, as a natural extension of the physical world around us. According to the above, this doctoral dissertation focuses on contributing to the integration of software and networking engineering advances in the field of pervasive smart spaces and environment using sensor networks. This is founded on the convergence of some information technology and computer science paradigms, such as service and agent orientation, semantic technologies and knowledge management in the framework of pervasive computing and the Internet of Things. To this end, the nSOM (nano Service-Oriented Middleware) and nSOL (nano Semantics-Oriented Language) approaches are presented. Firstly, the nSOM proposal defines a service-oriented platform for the implementation, deployment and exposure of agent-based in-network services to the Internet cloud on heterogeneous sensor devices. Secondly, the nSOL solution enables an abstraction for supporting ubiquitous service composition based on semantic knowledge management. The integration of both contributions leads to the formal modelling and practical development of adaptive virtual sensor services for pervasive Ambient Intelligence ecosystems. This work includes also the related performance characterization of the resulting prototype according to several metrics such as code size, volatile memory footprint, CPU overhead, service time delay and battery lifetime. Main foundations and outcomes presented in this essay are contextualized in the following European Research Projects: μSWN (FP6 code: IST-034642), DiYSE (ITEA2 code: 08005) and LifeWear (ITEA2 code: 09026). --------------------¿Por qué la sensibilidad ubicua y la inteligencia ambiental son percibidas por una gran parte de las comunidades académica e industrial como una revolución masiva en el corto plazo? En nuestra opinión, una piedra angular de este pensamiento es el hecho de que la naturaleza última del paradigma de entornos inteligentes no reside en la tecnología en sí misma, sino en una aproximación centrada en las personas. Y es quizá en esta aparente simple concepción donde se halla precisamente el atrevimiento de esta prometedora visión, consolidada en los últimos años con la emergente proliferación de la computación móvil, personal, portable, llevable y sensorial: llegar a todos y a todas partes. Por un lado, esta alcanza nuestras vidas de una manera cercana, minimizando la atención requerida por los usuarios, anticipándose a sus necesidades con el objetivo de redefinir nuestra idea de calidad de experiencia. Por otro lado, esta impacta en todas partes tanto a escala global como personal, con una conectividad expandida entre dispositivos y objetos inteligentes, de un modo ubicuo y dinámico, como una extensión natural del mundo que nos rodea. Conforme a lo anterior, esta tesis doctoral se centra en contribuir en la integración de los avances de ingeniería de redes y software en el ámbito de los espacios y entornos inteligentes ubicuos basados en redes de sensores. Esto se fundamenta en la convergencia de diversos paradigmas de las tecnologías de la información y ciencia de la computación, tales como orientación a servicios y agentes, tecnologías semánticas y de gestión del conocimiento en el contento de la computación ubicua en la Internet de las Cosas. Para este fin, se presentan las aproximaciones nSOM (nano Service-Oriented Middleware) y nSOL (nano Semantics-Oriented Language). En primer lugar, nSOM define una plataforma orientada a servicios para la implementación, despliegue y exposición a la nube de servicios basados en agentes e implementados en red sobre dispositivos heterogéneos de sensores. En segundo lugar, nSOL habilita una abstracción para proporcionar composición ubicua de servicios basada en gestión semántica del conocimiento. La integración de ambas contribuciones conduce a un modelado formal y de implementación práctica de servicios de sensor virtual adaptativos para ecosistemas de inteligencia ambiental. Este trabajo incluye la caracterización del rendimiento del prototipo resultante, basándonos para ello en métricas tales como tamaño de código, tamaño de memoria volátil, sobrecarga de procesamiento, retardo en tiempo de servicio y autonomía de baterías. Los principales fundamentos y resultados discutidos en este ensayo están contextualizados en los siguientes Proyectos de Investigación Europeos: μSWN (FP6 código: IST-034642), DiYSE (ITEA2 código: 08005) y LifeWear (ITEA2 código: 09026).Presidente: Juan Ramón Velasco Pérez; Vocal: Juan Carlos Dueñas; Secretario: Mario Muñoz Organer

    Enterprise Composition Architecture for Micro-Granular Digital Services and Products

    Get PDF
    The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This defines the strategical context for composing resilient enterprise architectures for micro-granular digital services and products. The change from a closed-world modeling perspective to more flexible open-world composition and evolution of system architectures defines the moving context for adaptable systems, which are essential to enable the digital transformation. Enterprises are presently transforming their strategy and culture together with their processes and information systems to become more digital. The digital transformation deeply disrupts existing enterprises and economies. Since years a lot of new business opportunities appeared using the potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. Digitization fosters the development of IT systems with many rather small and distributed structures, like Internet of Things or mobile systems. In this paper, we are focusing on the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like Internet of Things and Microservices, as part of a new digital enterprise architecture. To integrate micro-granular architecture models to living architectural model versions we are extending more traditional enterprise architecture reference models with state of art elements for agile architectural engineering to support the digitalization of services with related products, and their processes

    Reconfigurable middleware architectures for large scale sensor networks

    Get PDF
    Wireless sensor networks, in an effort to be energy efficient, typically lack the high-level abstractions of advanced programming languages. Though strong, the dichotomy between these two paradigms can be overcome. The SENSIX software framework, described in this dissertation, uniquely integrates constraint-dominated wireless sensor networks with the flexibility of object-oriented programming models, without violating the principles of either. Though these two computing paradigms are contradictory in many ways, SENSIX bridges them to yield a dynamic middleware abstraction unifying low-level resource-aware task reconfiguration and high-level object recomposition. Through the layered approach of SENSIX, the software developer creates a domain-specific sensing architecture by defining a customized task specification and utilizing object inheritance. In addition, SENSIX performs better at large scales (on the order of 1000 nodes or more) than other sensor network middleware which do not include such unified facilities for vertical integration

    Assessing system architectures: the Canonical Decomposition Fuzzy Comparative methodology

    Get PDF
    The impacts of decisions made during the selection of the system architecture propagate throughout the entire system lifecycle. The challenge for system architects is to perform a realistic assessment of an inherently ambiguous system concept. Subject matter expert interpretations, intuition, and heuristics are performed quickly and guide system development in the right overall direction, but these methods are subjective and unrepeatable. Traditional analytical assessments dismiss complexity in a system by assuming severability between system components and are intolerant of ambiguity. To be defensible, a suitable methodology must be repeatable, analytically rigorous, and yet tolerant of ambiguity. The hypothesis for this research is that an architecture assessment methodology capable of achieving these objectives is possible by drawing on the strengths of existing approaches while addressing their collective weaknesses. The proposed methodology is the Canonical Decomposition Fuzzy Comparative approach. The theoretical foundations of this methodology are developed and tested through the assessment of three physical architectures for a peer-to-peer wireless network. An extensible modeling framework is established to decompose high-level system attributes into technical performance measures suitable for analysis via computational modeling. Canonical design primitives are used to assess antenna performance in the form of a comparative analysis between the baseline free space gain patterns and the installed gain patterns. Finally, a fuzzy inference system is used to interpret the comparative feature set and offer a numerical assessment. The results of this experiment support the hypothesis that the proposed methodology is well suited for exposing integration sensitivity and assessing coupled performance in physical architecture concepts --Abstract, page iii
    • …
    corecore