215 research outputs found

    Team MIT Urban Challenge Technical Report

    Get PDF
    This technical report describes Team MITs approach to theDARPA Urban Challenge. We have developed a novel strategy forusing many inexpensive sensors, mounted on the vehicle periphery,and calibrated with a new cross-­modal calibrationtechnique. Lidar, camera, and radar data streams are processedusing an innovative, locally smooth state representation thatprovides robust perception for real­ time autonomous control. Aresilient planning and control architecture has been developedfor driving in traffic, comprised of an innovative combination ofwell­proven algorithms for mission planning, situationalplanning, situational interpretation, and trajectory control. These innovations are being incorporated in two new roboticvehicles equipped for autonomous driving in urban environments,with extensive testing on a DARPA site visit course. Experimentalresults demonstrate all basic navigation and some basic trafficbehaviors, including unoccupied autonomous driving, lanefollowing using pure-­pursuit control and our local frameperception strategy, obstacle avoidance using kino-­dynamic RRTpath planning, U-­turns, and precedence evaluation amongst othercars at intersections using our situational interpreter. We areworking to extend these approaches to advanced navigation andtraffic scenarios

    A Hybrid Vision-Map Method for Urban Road Detection

    Get PDF

    Percepção do ambiente urbano e navegação usando visão robótica : concepção e implementação aplicado à veículo autônomo

    Get PDF
    Orientadores: Janito Vaqueiro Ferreira, Alessandro Corrêa VictorinoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia MecânicaResumo: O desenvolvimento de veículos autônomos capazes de se locomover em ruas urbanas pode proporcionar importantes benefícios na redução de acidentes, no aumentando da qualidade de vida e também na redução de custos. Veículos inteligentes, por exemplo, frequentemente baseiam suas decisões em observações obtidas a partir de vários sensores tais como LIDAR, GPS e câmeras. Atualmente, sensores de câmera têm recebido grande atenção pelo motivo de que eles são de baixo custo, fáceis de utilizar e fornecem dados com rica informação. Ambientes urbanos representam um interessante mas também desafiador cenário neste contexto, onde o traçado das ruas podem ser muito complexos, a presença de objetos tais como árvores, bicicletas, veículos podem gerar observações parciais e também estas observações são muitas vezes ruidosas ou ainda perdidas devido a completas oclusões. Portanto, o processo de percepção por natureza precisa ser capaz de lidar com a incerteza no conhecimento do mundo em torno do veículo. Nesta tese, este problema de percepção é analisado para a condução nos ambientes urbanos associado com a capacidade de realizar um deslocamento seguro baseado no processo de tomada de decisão em navegação autônoma. Projeta-se um sistema de percepção que permita veículos robóticos a trafegar autonomamente nas ruas, sem a necessidade de adaptar a infraestrutura, sem o conhecimento prévio do ambiente e considerando a presença de objetos dinâmicos tais como veículos. Propõe-se um novo método baseado em aprendizado de máquina para extrair o contexto semântico usando um par de imagens estéreo, a qual é vinculada a uma grade de ocupação evidencial que modela as incertezas de um ambiente urbano desconhecido, aplicando a teoria de Dempster-Shafer. Para a tomada de decisão no planejamento do caminho, aplica-se a abordagem dos tentáculos virtuais para gerar possíveis caminhos a partir do centro de referencia do veículo e com base nisto, duas novas estratégias são propostas. Em primeiro, uma nova estratégia para escolher o caminho correto para melhor evitar obstáculos e seguir a tarefa local no contexto da navegação hibrida e, em segundo, um novo controle de malha fechada baseado na odometria visual e o tentáculo virtual é modelado para execução do seguimento de caminho. Finalmente, um completo sistema automotivo integrando os modelos de percepção, planejamento e controle são implementados e validados experimentalmente em condições reais usando um veículo autônomo experimental, onde os resultados mostram que a abordagem desenvolvida realiza com sucesso uma segura navegação local com base em sensores de câmeraAbstract: The development of autonomous vehicles capable of getting around on urban roads can provide important benefits in reducing accidents, in increasing life comfort and also in providing cost savings. Intelligent vehicles for example often base their decisions on observations obtained from various sensors such as LIDAR, GPS and Cameras. Actually, camera sensors have been receiving large attention due to they are cheap, easy to employ and provide rich data information. Inner-city environments represent an interesting but also very challenging scenario in this context, where the road layout may be very complex, the presence of objects such as trees, bicycles, cars might generate partial observations and also these observations are often noisy or even missing due to heavy occlusions. Thus, perception process by nature needs to be able to deal with uncertainties in the knowledge of the world around the car. While highway navigation and autonomous driving using a prior knowledge of the environment have been demonstrating successfully, understanding and navigating general inner-city scenarios with little prior knowledge remains an unsolved problem. In this thesis, this perception problem is analyzed for driving in the inner-city environments associated with the capacity to perform a safe displacement based on decision-making process in autonomous navigation. It is designed a perception system that allows robotic-cars to drive autonomously on roads, without the need to adapt the infrastructure, without requiring previous knowledge of the environment and considering the presence of dynamic objects such as cars. It is proposed a novel method based on machine learning to extract the semantic context using a pair of stereo images, which is merged in an evidential grid to model the uncertainties of an unknown urban environment, applying the Dempster-Shafer theory. To make decisions in path-planning, it is applied the virtual tentacle approach to generate possible paths starting from ego-referenced car and based on it, two news strategies are proposed. First one, a new strategy to select the correct path to better avoid obstacles and to follow the local task in the context of hybrid navigation, and second, a new closed loop control based on visual odometry and virtual tentacle is modeled to path-following execution. Finally, a complete automotive system integrating the perception, path-planning and control modules are implemented and experimentally validated in real situations using an experimental autonomous car, where the results show that the developed approach successfully performs a safe local navigation based on camera sensorsDoutoradoMecanica dos Sólidos e Projeto MecanicoDoutor em Engenharia Mecânic

    자율주행을 위한 카메라 기반 거리 측정 및 측위

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 서승우.Automated driving vehicles or advanced driver assistance systems (ADAS) have continued to be an important research topic in transportation area. They can promise to reduce road accidents and eliminate traffic congestions. Automated driving vehicles are composed of two parts. On-board sensors are used to observe the environments and then, the captured sensor data are processed to interpret the environments and to make appropriate driving decisions. Some sensors have already been widely used in existing driver-assistance systems, e.g., camera systems are used in lane-keeping systems to recognize lanes on roadsradars (Radio Detection And Ranging) are used in adaptive cruise systems to measure the distance to a vehicle ahead such that a safe distance can be guaranteedLIDAR (Light Detection And Ranging) sensors are used in the autonomous emergency braking system to detect other vehicles or pedestrians in the vehicle path to avoid collisionaccelerometers are used to measure vehicle speed changes, which are especially useful for air-bagswheel encoder sensors are used to measure wheel rotations in a vehicle anti-lock brake system and GPS sensors are embedded on vehicles to provide the global positions of the vehicle for path navigation. In this dissertation, we cover three important application for automated driving vehicles by using camera sensors in vehicular environments. Firstly, precise and robust distance measurement is one of the most important requirements for driving assistance systems and automated driving systems. We propose a new method for providing accurate distance measurements through a frequency-domain analysis based on a stereo camera by exploiting key information obtained from the analysis of captured images. Secondly, precise and robust localization is another important requirement for safe automated driving. We propose a method for robust localization in diverse driving situations that measures the vehicle positions using a camera with respect to a given map for vision based navigation. The proposed method includes technology for removing dynamic objects and preserving features in vehicular environments using a background model accumulated from previous frames and we improve image quality using illuminant invariance characteristics of the log-chromaticity. We also propose a vehicle localization method using structure tensor and mutual information theory. Finally, we propose a novel algorithm for estimating the drivable collision-free space for autonomous navigation of on-road vehicles. In contrast to previous approaches that use stereo cameras or LIDAR, we solve this problem using a sensor fusion of cameras and LIDAR.1 Introduction 1 1.1 Background and Motivations 1 1.2 Contributions and Outline of the Dissertation 3 1.2.1 Accurate Object Distance Estimation based on Frequency-Domain Analysis with a Stereo Camera 3 1.2.2 Visual Map Matching based on Structural Tensor and Mutual Information using 3D High Resolution Digital Map 3 1.2.3 Free Space Computation using a Sensor Fusion of LIDAR and RGB camera in Vehicular Environment 4 2 Accurate Object Distance Estimation based on Frequency-Domain Analysis with a Stereo Camera 5 2.1 Introduction 5 2.2 Related Works 7 2.3 Algrorithm Description 10 2.3.1 Overall Procedure 10 2.3.2 Preliminaries 12 2.3.3 Pre-processing 12 2.4 Frequency-domain Analysis 15 2.4.1 Procedure 15 2.4.2 Contour-based Cost Computation 20 2.5 Cost Optimization and Distance Estimation 21 2.5.1 Disparity Optimization 21 2.5.2 Post-processing and Distance Estimation 23 2.6 Experimental Results 24 2.6.1 Test Environment 24 2.6.2 Experiment on KITTI Dataset 25 2.6.3 Performance Evaluation and Analysis 28 2.7 Conclusion 32 3 Visual Map Matching Based on Structural Tensor and Mutual Information using 3D High Resolution Digital Map 33 3.1 Introduction 33 3.2 Related Work 35 3.3 Methodology 37 3.3.1 Sensor Calibration 37 3.3.2 Digital Map Generation and Synthetic View Conversion 39 3.3.3 Dynamic Object Removal 41 3.3.4 Illuminant Invariance 43 3.3.5 Visual Map Matching using Structure Tensor and Mutual Information 43 3.4 Experiments and Result 49 3.4.1 Methodology 49 3.4.2 Quantitative Results 53 3.5 Conclusions and Future Works 54 4 Free Space Computation using a Sensor Fusion of LIDAR and RGB Camera in Vehicular Environments 55 4.1 Introduction 55 4.2 Methodology 57 4.2.1 Dense Depth Map Generation 57 4.2.2 Color Distribution Entropy 58 4.2.3 Edge Extraction 60 4.2.4 Temporal Smoothness 61 4.2.5 Spatial Smoothness 62 4.3 Experiment and Evaluation 63 4.3.1 Evaluated Methods 63 4.3.2 Experiment on KITTI Dataset 64 4.4 Conclusion 68 5 Conclusion 70 Abstract (In Korean) 87Docto
    corecore