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Abstract

Automated driving vehicles or advanced driver assistance systems (ADAS) have con-

tinued to be an important research topic in transportation area. They can promise to

reduce road accidents and eliminate traffic congestions. Automated driving vehicles

are composed of two parts. On-board sensors are used to observe the environments

and then, the captured sensor data are processed to interpret the environments and to

make appropriate driving decisions. Some sensors have already been widely used in

existing driver-assistance systems, e.g., camera systems are used in lane-keeping sys-

tems to recognize lanes on roads; radars (Radio Detection And Ranging) are used in

adaptive cruise systems to measure the distance to a vehicle ahead such that a safe

distance can be guaranteed; LIDAR (Light Detection And Ranging) sensors are used

in the autonomous emergency braking system to detect other vehicles or pedestrians in

the vehicle path to avoid collision; accelerometers are used to measure vehicle speed

changes, which are especially useful for air-bags; wheel encoder sensors are used to

measure wheel rotations in a vehicle anti-lock brake system and GPS sensors are em-

bedded on vehicles to provide the global positions of the vehicle for path navigation.

In this dissertation, we cover three important application for automated driving ve-

hicles by using camera sensors in vehicular environments. Firstly, precise and robust

distance measurement is one of the most important requirements for driving assistance

systems and automated driving systems. We propose a new method for providing ac-

curate distance measurements through a frequency-domain analysis based on a stereo

camera by exploiting key information obtained from the analysis of captured images.

Secondly, precise and robust localization is another important requirement for safe
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automated driving. We propose a method for robust localization in diverse driving

situations that measures the vehicle positions using a camera with respect to a given

map for vision based navigation. The proposed method includes technology for re-

moving dynamic objects and preserving features in vehicular environments using a

background model accumulated from previous frames and we improve image quality

using illuminant invariance characteristics of the log-chromaticity. We also propose

a vehicle localization method using structure tensor and mutual information theory.

Finally, we propose a novel algorithm for estimating the drivable collision-free space

for autonomous navigation of on-road vehicles. In contrast to previous approaches that

use stereo cameras or LIDAR, we solve this problem using a sensor fusion of cameras

and LIDAR.

keywords: Automated driving, distance measurement, Free space detection, image

processing, vehicle localization.

student number: 2011-20885
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Chapter 1

Introduction

1.1 Background and Motivations

The research of automated driving vehicles is to be able to perform navigation without

any user interaction. Although this problem has been of interest for several decades,

the recent successes of automated driving vehicles have demonstrated that this dream

might actually happen in the near future [1]. Especially, a camera sensor can provide

plenty of information around vehicular environment. In computer vision, research has

focused on a wide variety of problems such as stereo [2][3], scene understanding [4],

image-based localization [5][6], and pedestrian detection [7].

A common assumption has been that if we are able to develop robust and accu-

rate solutions to these problems, we should be able to solve autonomous navigation

relying mainly on visual information. In this dissertation, three important problems

for automated driving vehicles are proposed by using the camera sensor in vehicular

environment.

In driving situations, determining the distance to objects in real time is important

for various active safety applications, and many of them, such as emergency brak-
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ing and smart cruise-control systems, rely on object detection and accurate distance

measurement to objects. However, it is important to select suitable algorithms with

illumination-invariant characteristics and which can be applied in real time with high

accuracy levels.

A common approach to automated driving vehicles is to use detailed prior maps

that are annotated with precise lane locations, traffic signs, and other metadata that

govern the rules of the road. These maps are generated offline, which allows the use

of complex algorithms that are not necessarily real-time to be used by the operating

automated driving vehicle. The use of prior maps allows researchers to turn some of

the difficult perception tasks into a localization problem. Localization in the robotics

community is a mature research area that yields a bounded problem given the well

structured environment an automobile operates in. localization robustness is critical as

it is a subsystem that cannot fail or the online autonomous platform would no longer

be able to operate.

Drivable free space detection is challenging due to the drastic change of road

scenes, illumination, weather condition and the clutter of background. Since each

modal of sensor has its weakness, multi-modal sensor fusion can be a straightforward

solution to fill the gap.

This thesis focuses on extending the state-of-the-art to increase robustness of im-

age processing techniques for automated driving vehicles. We propose a fast and effi-

cient computer vision algorithm that can calculate the distance about object and esti-

mate the vehicle’s position. Additionally, we propose a sensor fusion algorithm that is

able to detect the drivable free space.
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1.2 Contributions and Outline of the Dissertation

1.2.1 Accurate Object Distance Estimation based on Frequency-Domain

Analysis with a Stereo Camera

Precise and robust distance measurement is one of the most important requirements for

driving assistance systems and automated driving systems. In this study, we propose a

new method for providing accurate distance measurements through frequency-domain

analysis based on a stereo camera by exploiting key information obtained from the

analysis of captured images. Moreover, the proposed method was extensively tested

and evaluated on a real urban road, highway and tunnel. Based on these results, we

show that the proposed method provides more precise distance information in real

time compared with conventional algorithms. By applying the methodology to mea-

sure the distances of various objects, it can be demonstrated that the algorithm offers

an improvement of up to 10 percent.

1.2.2 Visual Map Matching based on Structural Tensor and Mutual In-

formation using 3D High Resolution Digital Map

Precise and robust localization is one of the most important requirements for safe au-

tomated driving. We propose a method for robust localization in diverse driving sit-

uations that measures the vehicles position using a camera with respect to a given

map for vision based navigation. The proposed method includes technology for re-

moving dynamic objects and preserving features in vehicular environments using a

background model accumulated from previous frames and we improve image quality

using illuminant invariance characteristics of the log chromaticity. We also propose

a vehicle localization method using structure tensor and mutual information theory.
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The proposed system achieves decimeter order accuracy for visual localization with-

out requiring high precision GPS. The technology is sufficiently robust to be used

in diverse weather and road conditions. We evaluated the proposed method using a

campus dataset and challenging scenarios, and showed outstanding results for vehicle

localization.

1.2.3 Free Space Computation using a Sensor Fusion of LIDAR and RGB

camera in Vehicular Environment

In this paper we propose a novel algorithm for determining the drivable free space for

automated driving vehicles. In contrast to previous approaches that use cameras or LI-

DAR, we show a method to solve this problem using a sensor fusion method of LIDAR

and a monocular camera. We focus on distance information which we can get from 3D

LIDAR point cloud and generate dense depth map. Specifically, given a pair of RGB

image and sparse depth map projected from LIDAR point cloud, we generate dense

depth map. Furthermore, we compute the drivable free space using visual features

from dense depth map. Our algorithm exploits several image and geometric features

based on edges, color, temporal and spatial information to estimate the drivable free

space. We show promising results on the challenging KITTI dataset.

4



Chapter 2

Accurate Object Distance Estimation based on Frequency-

Domain Analysis with a Stereo Camera

2.1 Introduction

In recent years, a driver assistance system (DAS) technology has been actively de-

veloped to maximize both the safety and convenience of driving, and is eventually

expected to facilitate autonomous driving. It utilizes various sensor technologies, such

as cameras, radar, laser scanners and global positioning system (GPS), and it is antic-

ipated that efficient technologies to retrieve valuable information from these sensors

will be crucial in future autonomous driving systems [10].

In driving situations, determining the distance to objects in real time is important

for various active safety applications, and many of them, such as emergency braking

and smart cruise-control systems, rely on object detection and accurate distance mea-

surements to objects. Thus far, distance measurements to objects are typically carried

out using light detection and ranging (LIDAR) [11] and radar sensors but, because

these sensors are expensive compared with camera sensors, many suppliers are inves-
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tigating the development of camera-based distance measurement systems.

There is a method using the structure from motion (SFM) to calculate distances us-

ing a monocular camera [12]. In SFM, three-dimensional (3D) measurements can be

achieved by acquiring images of objects while camera moves from one viewpoint to

another. However, it has a problem that the absolute scale of objects must be computed

in other ways, including by measuring the motion baseline or the size of an element in

a scene, or by using other sensors like inertial measurement unit and GPS [13]. Never-

theless, a stereo camera is the only image-based sensor able to provide comprehensive

2D/3D information and many researchers and automotive companies have developed

solutions for complete 3D environmental and object information using it [14]. A stereo

camera can calculate distances to objects using parameters such as the baseline, focal

length and disparity values (the difference between two images in pixel units) between

the corresponding pixels in the left and right images. After determining all of the hori-

zontal differences between corresponding pixels, a disparity map of the images can be

obtained.

Stereo vision technology has initially been assessed in indoor situations [15][16]

and extended to outdoor [17][18] for DAS in vehicles to obtain distance information,

with a focus on providing the imagery necessary to compute fully dense depth maps.

Many stereo-matching algorithms have been proposed in the stereo vision community

and evaluated using online stereo camera datasets from Middlebury stereo evaluations

[2] and the KITTI [19] vision benchmark. Although the quality of a disparity map

determines the accuracy of the distance to objects, the procedure used to generate an

accurate disparity map is quite time consuming. For accurate results on high-resolution

images, computation can be prohibitively expensive with many of the top-ranked meth-

ods on the KITTI stereo benchmark, requiring multiple seconds or minutes of compu-
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tation time per video frame [20][21]. In the vehicular environment, the position or

colour of the light source usually changes. Moreover, matching between two images

with a different intensity distribution is a more challenging problem due to lighting

condition. Thus, to apply stereo-matching algorithms to these conditions, it is impor-

tant to select suitable algorithms with illumination-invariant characteristics and which

can be applied in real time with high accuracy levels.

In this chapter, we propose an accurate distance measurement algorithm for objects

using a stereo camera. The features of the proposed algorithm can be summarised as

follows:

1. Providing an accurate distance measurement: it provides more accurate dis-

tance measurement results than conventional algorithms while maintaining compu-

tation speed.

2. Providing a robust distance measurement in various situations: it performs well

in diverse vehicular environments such as highways, urban and tunnel areas under

various illuminations conditions.

The rest of this chapter is organised as follows. Related research studies are pre-

sented in Section 2.2. In Section 2.3, we describe the proposed algorithm and the

frequency-domain analysis in Section 2.4. In Section 2.5, we present the cost opti-

mization and distance estimation. The experimental results are presented in Section

2.6, and Section 2.7 contains conclusions concerning this study.

2.2 Related Works

Over the past few decades, researchers have developed algorithms for object distance

estimations based on stereo-matching methods which compute 3D information instan-
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taneously. The work in [2] presents a complete taxonomy of the approaches used for

stereo disparity estimation. Stereo-matching methods can be divided into either local

or global methods.

Local methods compute disparity values based on the local information around

certain pixel positions. However, the computations used for the local method are sim-

ple but less accurate than those for the global method. The sum of absolute differences

(SAD) and the sum of squared differences (SSD) are the most commonly used local

parametric methods. In contrast to these, non-parametric approaches rely on the rel-

ative ordering of pixel values. An example of the latter is the census transform [23],

which produces a bit string for the support window based on intensity comparisons.

An improved version of the transform was used to determine stereo correspondence

under varying illumination conditions [24].

Global methods consider an image in terms of cost values and use an optimisa-

tion process to determine disparities. These methods typically provide with highly

accurate distance information, but, due to high computational complexity, they are

not widely adopted in real-time vehicular applications. In [25], the authors addressed

the pixel matching problem by trying to reduce the effect of varying colour between

pixel pairs using histogram specification, and Ogale and Aloimonos [26] proposed a

contrast invariant stereo-matching method on multiple spatial frequency channels. Ef-

ficient global optimisation techniques include graph cuts [27], belief propagation [28]

and cooperative optimisation [29].

The semi-global matching (SGM) stereo algorithm, which contains features of

both the local and global methods, is fast and efficient, minimising the disadvantages

of global matching and ensures good accuracy at the same time. Furthermore, it shows

excellent performance by employing a global optimisation process combined with var-
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ious local optimisation results and is particularly useful for matching regions in two

images which have high texture components. Disparities are determined by minimis-

ing a cost function which computes the absolute difference between the grey levels at

a pixel position in two separate images. Cost aggregation based on a 1D path traver-

sal simplifies the optimisation and ensures the constraints with respect to the explicit

direction of the path. The final cost of each pixel and the resulting disparity are ob-

tained by summing up the costs of the paths in all directions, and the final step finds

the disparity that minimises the cost of each pixel [3].

In one study, Hermann and Klette [30] introduced iterative SGM (iSGM) as a new

cost integration concept of SGM. In iSGM, the accumulated cost is evaluated itera-

tively to support a rapid analysis of the spatial disparity information cost. Spangenberg

et al. [31] proposed an extended version of SGM based on the census transform, which

is advantageous for outdoor scenes because it strengthens the smoothness constraints

of SGM but must handle a large computational load; unfortunately, this hinders its

application to vehicular environments. The researchers also proposed methods which

improve the efficiency of SGM without special and additional hardware [32].

Several techniques, implemented in GPU and field programmable gate arrays (FP-

GAs), are able to generate disparity information from stereo videos in real time. For

automotive and mobile applications, GPUs offer far higher computational throughput

with the same power consumption than an equivalent CPU [33]. The method is able

to generate disparity information from low-resolution video at a rate of 10 frames per

second (fps) [34], and the approach which describes the FPGA implementation archi-

tecture of a SGM method is able to generate disparity maps from VGA images at a rate

of 30 fps [35]. The paper presents a hardware-oriented disparity estimation algorithm

that uses iterative refinement [36].
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Despite good performance in a general situation, SGM-based methods have one

crucial drawback of temporary memory requirement that depends on the number of

pixels and the disparity range. Moreover, these methods are sensitive to the illumina-

tion condition in that they cannot handle local illumination differences due to lighting

condition changes.

2.3 Algrorithm Description

2.3.1 Overall Procedure

In this section, the proposed distance-estimation algorithm for use in vehicular en-

vironments is described (Figure 2.1 illustrates the overall procedure of the proposed

method). We initially detect the vanishing point and reduce the region of interest in

the preprocessing stage, then process the given images in the frequency domain, and

check the degree to which each frequency component value is related in the disparity

maps, and finally, we calculate the distance of the target object. For reliable distance

estimations in a vehicular environment, it is necessary to minimise the dependency on

good illumination condition and the occlusion effect. The proposed algorithm uses a

normalized cross-correlation (NCC) method to compensate for the difference in illu-

mination between two images, and it reduces the occlusion/discontinuity effect using

a high-pass filter to emphasise the object area. In the following section, each of these

processes is explained in detail. Before we explain the details of our algorithm, we

start by describing the basic concepts of stereo matching.
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Figure 2.1: Processing flow of the proposed algorithm.
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2.3.2 Preliminaries

In a stereo camera, distance information for objects is calculated using the baseline

(the distance between the two monocular cameras), the focal length and the disparity

between the pixels. If all distortion types are fixed through calibration and rectification,

the two image planes of the camera are perfectly coplanar and the two optical axes are

located in parallel, where the focal length and the principal point of the two cameras

are identical. In addition, a specific row of an image corresponds to the same row of

the other image via epipolar constraints. Under these assumptions, the disparity of the

pixels can be determined using the horizontal difference between the corresponding

points, as expressed in (2.1)–(2.3).

xl = f
X

Z
, (2.1)

xr = f
X − Tx
Z

. (2.2)

With equations, disparity d is determined by

d = xl − xr = f
Tx
Z
, (2.3)

where f represents the focal length, Tx is the baseline and d denotes the disparity.

Figure 2.2 illustrates the relationship of the disparity and depth with image coordinates

of point using stereo camera.

2.3.3 Pre-processing

In the pre-processing stage, we reduce the search space by detecting the vanishing

point and diminishing the region of interest. The vehicle travels towards the vanishing

point in a driving situation. In other words, there is a close relationship between the
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Figure 2.2: Stereo disparity and image coordinates of point.
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vanishing point of the image and the distance to the object from the standpoint of the

camera equipped in the ego-vehicle.

If the scene is simply modelled with a planar road and vertical obstacles, it has

been shown that the v-disparity image is powerful for finding the relationship [30].

The vanishing point can be estimated using the orientation of the lane markers and

curbs, and, for its calculation, we use the Canny edge detection algorithm [31] to find

the edge line of the lane and to find the intersection point of the left and right lanes of

the ego-vehicle.

In addition, we reduce the search space to enhance the computation speed when

calculating the disparity of the pixels in a high-resolution image; for example, the

upper section of the image may consist of a sky area, which is not meaningful for

calculating distances in a vehicle environment and so can be discounted. To reduce the

search space, we utilise the illuminant invariance characteristics of the log chromaticity

colour space to detect the sky area and, once the chromaticity is known, its illumination

effect can be successfully eliminated. The log chromaticity space can be converted

from the RGB colour space as follows:

Ck = Rk/
3

√√√√ 3∏
i=1

Ri, (2.4)

where Ck is the chromaticity, Rk is the RGB color value and k is one of the colour

channels.

If we randomly choose a few seed pixels in the upper part of the image, we can

find similar neighbour pixels belonging to the sky area using

I(xs, ys)− ldr,g,b < I(x, y) < I(xs, ys) + udr,g,b,, (2.5)

where I(x, y) is the colour value of the pixel point (x, y), xs and ys are seed pixels

and ld/udr,g,b refers to the lower/upper differences in the colour value. Figure 2.3 and
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2.4 illustrate the results of the pre-processing stage. After we apply the illumination-

invariant characteristic of the chromaticity, the region of interest is reduced to nearly

half of the original image size [39].

2.4 Frequency-domain Analysis

2.4.1 Procedure

In this section, we outline the frequency-domain analysis procedure, which is the core

of the proposed algorithm. In the frequency domain, the image is represented by a

combination of basis functions via a Fourier transform where the frequency component

indicates the degree of change in brightness in the image (a high-frequency component

means that brightness changes frequently occur). For example, when we analyse the

image in the frequency domain in the vehicle environment, the road area is composed

of low-frequency components, and the area including the foreground has multiple areas

of high frequency.

Fn =

N−1∑
k=0

fke
−j2πnk/N , (2.6)

fk =
1

N

N−1∑
n=0

Fne
−j2πnk/N . (2.7)

In these equations, n represents the frequency, k denotes the pixel index, fk repre-

sents the intensity of the pixels and N represents the number of pixels used when cal-

culating the Fourier transform. The equations show the discrete Fourier transform and

the inverse discrete Fourier transform in a 1D signal. The Fourier transform F (u, v)

has a complex number value, including the real part R(u, v) and the imaginary part

I(u, v). If we express this in the form of an exponential term, F (u, v) is the Fourier

spectrum and φ(u, v) is the phase angle using Euler’s equation. Equation (2.8) is used
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Figure 2.3: Comparison of an original and the same image with the sky removed

(shown in black). Based on the image with the sky removed, the region of interest

is reduce when generating the disparity map.
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Figure 2.4: Comparison of an original and the same image with the sky removed

(shown in black). Based on the image with the sky removed, the region of interest

is reduce when generating the disparity map.
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to convert the form of the exponential term from the discrete Fourier transform

f(n− d)←→Fn(u, v)exp(−jφd(u, v))

= |Fn(u, v)|exp(jφn(u, v))exp(−jφd(u, v)), (2.8)

where Fn(u, v) represents the 2D Fourier transform including the magnitude and the

phase component. The translation and shift properties of the Fourier transform are

expressed as

Fn(u, v) =

N−1∑
k=0

fke
−j2πnk/N

=|Fn(u, v)|exp(jφn(u, v)),

(2.9)

where d represents the disparity. The disparity value can be obtained directly from the

frequency domain using the phase value of the Fourier transform. By utilizing the char-

acteristics of the Fourier transform as described above, the process of calculating the

disparity information proceeds as follows. As there is a horizontal disparity between

the left and right images in the calibrated camera set, we can apply the translation and

shift properties of the Fourier transform to the stereo-matching algorithm

IL(n) = IR(n− d), (2.10)

|IL(K)|exp(jφL(K))

=|IR(K)|exp(jφR(K))exp(−jφd(K)).

(2.11)

In this equation, IL and IR , respectively, represent the intensity values of the left

and right images. Furthermore, (2.10) is the Fourier transform of (2.11). In fact, the

intensity values of two images are unlikely to match at a high probability in an outdoor

environment. Therefore, we consider the magnitude cost to compensate for the error

of the magnitude spectra as

M(K) =
|IR(K)|
|IL(K)|

, (2.12)
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exp(jφd(K)) = M(k)exp(j(φR(K)− φL(K))), (2.13)

where M(K) denotes the ratio between the left and right spectra. M(K) does not

affect the calculation of the imaginary part of (2.13), and so we consider M(K) as the

weighted factor with which to calculate the disparity value

θL(k) = arg max
φL(k)

|IL(K)|, (2.14)

θR(k) = arg max
φR(k)

|IR(K)|. (2.15)

Equations (2.14) and (2.15) compute the phase value which has the spectrum with

the maximum magnitude. The original intensity values of the two images are not iden-

tical, but the intensity distribution is the same if the surrounding pixels are similar.

In order to measure the correspondence more precisely, several maximum magnitude

spectra are needed

φd(K) = M(k)(φR(K)− φL(K))

+(1−M(k))(θR(k)− θL(k)),

(2.16)

d(K) = φd(K)× N

2πk
, k = 0, 1, ..., N − 1. (2.17)

If the magnitude spectra IL(K) and IR(K) are nearly identical, the phase term

has a strong influence. Equation (2.17) shows that the disparity can be calculated by

means of a frequency-domain analysis. Moreover, the advantage of this method is that

the disparity can be calculated directly from the phase value.

The discrete Fourier transform takes O(N2) times to calculate N frequencies, and

a complex number of multiplications should be performed N times in order to calculate

each frequency in an N -point 1D discrete Fourier transform. We implement the fast

Fourier transform method to accelerate the calculation of the discrete Fourier trans-

form of the high-resolution image (the fast Fourier transform rapidly computes such
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transformations by factorising the matrix into a product of sparse factors); if we use

this method, the computation time can be reduced to O(NlogN) [41].

2.4.2 Contour-based Cost Computation

In general, the method of stereo matching defines the cost to compute the disparity

of the corresponding points in the two images. The SAD and SSD are representative

methods which can be used to measure the degree of similarity between two images.

If the cost value of the SAD or SSD with regard to two patches is low, they can be

viewed as similar by considering a threshold value. Therefore, the similarity threshold

value and the size of the patch are important factors in determining the performance

of a patch-based stereo-matching algorithm. However, when using the stereo-matching

algorithm in an outdoor environment with a stereo camera, it is difficult to discriminate

the same part of the patch between the left and right images resulting from computation

with SSD or SAD when there is a difference in brightness between the two cameras.

To compensate for this problem, we use the NCC method whereby a normalisa-

tion process is performed to make the average brightness level zero and the standard

deviation level one by calculating the brightness for each of the patches. This places

more emphasis on the brightness difference in a pixel as compared with the overall

patch or image. Aligning the average brightness at zero has a significant effect when

there is a large difference between the average brightness of two patches. Furthermore,

giving the standard deviation of the brightness a value of one compensates for the ef-

fect of a difference in contrast between two patches even if they have the same average

brightness value [42].
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The cost of the NCC method is expressed as

CostNCC =
1

N

∑
x,y

(I1(x, y)−m1)(I2(x, y)−m2)

σ1σ2
, (2.18)

whereN denotes the number of the pixels, m represents the average brightness, σ is the

standard deviation and I represents the intensity of the pixel. In a vehicle environment

with high-resolution images, a considerable amount of computation time is required

to apply the NCC method to all of the image pixels. In this paper, we apply the NCC

method to areas where the brightness changes frequently, such as corner points or the

outlines of objects, using a high-pass filter in the frequency-domain area. If we restore

signals having a high frequency in the image, the boundaries of the objects will be

emphasised. Next, we apply the NCC method to the emphasised area using a high-

pass filter and, in our case, a high-pass Gaussian filter was used (Figure 2.5 and 2.6

illustrate the resulting image after using this technique). The area filtered through the

high-pass Gaussian filter is calculated by

H(u, v) = 1− exp(−D(u, v)2/2D2
0), (2.19)

where D0 represents the radius and D(u, v) denotes the frequency area. If we apply a

large value of D0, the area is increased relative to the edge region.

2.5 Cost Optimization and Distance Estimation

2.5.1 Disparity Optimization

The disparity map is generated based on the content described above. We enhance

the calculation speed using the fast Fourier transform and the high-pass filter in the

frequency domain to reduce the region of interest and for optimisation, we use the

simple winner-takes-all disparity selection strategy. We improve the accuracy using
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Figure 2.5: Original image and the result image through the high-pass Gaussian filter.

The pixel value gets brighter around the boundary of the object.

Figure 2.6: Original image and the result image through the high-pass Gaussian filter.

The pixel value gets brighter around the boundary of the object.
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the NCC method, which reduces the effects of the difference in illumination between

the left and right cameras

mindDpixel(u, v, d) = αDNCC(u, v) + (1− α)Dphase(u, v). (2.20)

In this equation α is a weight factor determining whether the pixel is located on

the boundary of the object or not. If the pixel is located on the boundary of the object,

the value of α is close to one

2.5.2 Post-processing and Distance Estimation

In this paper, we apply a bilateral filter [43] using the standard deviation of a Gaussian

function, with the weighted average of the pixel values and distances from the kernel

centre to remove erroneous pixels. In addition, the filter does not weaken the sharpness

of the edges, which is an advantage of a Gaussian filter.

The bilateral filter is given by

BF [I]p =
1

Wp

∑
q

Gσs(||p− q||)Gσr(|Ip − Iq|)Iq, (2.21)

where Wp represent the normalisation factor, Gσs is the space weight and Gσr repre-

sents the range weight.

Finally, we estimate the distance to the target object using the baseline, the focal

length and the disparity value pertaining to the pixels, as explained in the previous

section.
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2.6 Experimental Results

2.6.1 Test Environment

In this section, we present experimental results from a vehicular environment as de-

scribed in Section 2.3 to 2.5. Our C++ implementation requires 10 fps to estimate the

target object distance on a standard PC and so, in order to evaluate the performance

of the proposed algorithms, it was tested on a PC with an Intel Core i7-4770 CPU at

3.40 GHz with 8.00 GB of RAM. We tested video clips taken with a stereo camera

at a resolution of 640 by 480 at 48 fps and collected datasets on a highway during

the daytime (each dataset consisted of 10,000 frames). In order to evaluate the perfor-

mance of the proposed algorithm, we obtained data from LIDAR as the ground truth

(LIDAR is a type of active sensor that detects the location of objects by emitting light

at a known frequency and measuring the return-trip time of flight). We used an outdoor

LIDAR model which measures distances up to 65 m and has a field of view of 190 de-

grees. For LIDAR, the error is 2.5 cm for a range of 1–10 m, 3.5 cm for a range of

10–20 m and 5 cm for a range of 20–30 m. We adopted the theoretical distance mea-

surement error from the datasheets provided by the manufacturer. Fig. 2.7 shows the

SNU autonomous vehicle equipped with LIDAR and a stereo camera. Next, all of the

recorded data from both sources were synchronised. To merge all datasets including

LIDAR and camera, we used the CAN bus as the master software synchronisation bus

for exchanging timestamps [44].

We also evaluate our algorithm on KITTI visual benchmark suite (particularly the

object subset) and public Middlebury dataset. The KITTI dataset is an open-source

dataset created by Dr. Andreas Geiger et al. for outdoor autonomous driving applica-

tion. The object sub-dataset in KITTI is captured by Velodyne HDL-64E laser scanner
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and two highly-calibrated binocular cameras. Each image captured by camera is reg-

istered to a set of 3D laser point cloud, which means that ,for each image, we can

get one corresponding depth map by projecting the 3D laser point cloud to the image

plane. The KITTI object dataset is preliminarily created for outdoor objects detection,

like cars, trucks, cyclist. Therefore, we concentrate on this dataset for its capability

to estimate the distance of these objects in the depth map. Due to the lack of ground

truth dataset, we only provide visual experiment result. For quantitative evaluation, we

further test our algorithm on Middlebury dataset. The Middlebury dataset is captured

in indoor environment, it contains six different types of scenes of daily life: moebius,

dolls, laundry, books, art and reindeer.

The proposed method was compared with the SGM-based method [3], which is a

conventional algorithm used in outdoor environments. To investigate the performance

over the distance range, we experimented with various scenarios, including a highway,

an urban area and a tunnel, as shown in Figure 2.8.

2.6.2 Experiment on KITTI Dataset

KITTI object dataset is a great dataset to test our algorithm because it encompasses

all kinds of street view in automated driving vehicle. The objects in this datasets span

to various categories, locations, orientations. We show some results in Fig. 2.9. The

ground truth disparities for the test set are withheld and an online leaderboard is pro-

vided where researchers can evaluate their method on the test set. Submissions are

allowed once every three days. Error is measured as the percentage of pixels where

the true disparity and the predicted disparity differ by more than three pixels. Trans-

lated into distance, this means that, for example, the error tolerance is 3 centimeters

for objects 2 meters from the camera and 80 centimeters for objects 10 meters from
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Figure 2.7: SNU autonomous vehicle. The vehicle is equipped with a stereo sensor

(indoor), LIDAR (outdoor).
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Figure 2.8: Experimental situations. We tested the algorithm in various environments

(tunnel, urban area, highway).
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the camera.

Two KITTI stereo data sets exist: KITTI 2012 and, the newer, KITTI 2015. For the

task of computing stereo they are nearly identical, with the newer data set improving

some aspects of the optical flow task. The 2012 data set contains 194 training and 195

testing images, while the 2015 data set contains 200 training and 200 testing images.

There is a subtle but important difference introduced in the newer data set: vehicles in

motion are densely labeled and car glass is included in the evaluation. This emphasizes

the method’s performance on reflective surfaces.

Method Author Setting Error

SGM+C+NL Hirschmuller(2008); Sun et al.(2014) F 5.79

SGM+LDOF Hirschmuller;Brox and Malikk(2011) F 6.24

SGM+SF Hirschmuller(2008);Hornacek et al.(2014) F 6.84

OCV-SGBM Hirschmuller 10.86

PROPOSED Yoo 5.31

Table 2.1: Experimental results on the KITTI 2015. The setting column provides in-

sight into how the disparity map is computed: F indicates the use of optical flow. The

error column reports the percentage of misclassifed pixels and the runtime column

measures the time, in seconds, required to process one pair of images.

2.6.3 Performance Evaluation and Analysis

In the following paragraphs, we present the results of several experiments. For estimat-

ing a distance to target, we considered a vehicle in the view of the stereo camera. Fig.

2.8 shows the various situations: a tunnel, an urban area and a highway. The highway
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scenario had a good illuminative environment under constant brightness conditions,

the tunnel scenario included a tunnel entrance and the exit had mid-bright conditions

with illumination variance, and the urban area has illumination variance because the

target vehicle was often shaded by buildings or trees. The distance accuracy of each

method is listed in Table 2.2.

When used for measuring the distance to a target object, neither algorithm produce

errors within 20 m compared with the LIDAR system. However, the proposed algo-

rithm provided more accurate distance measurements than the SGM-based algorithm

when the distance exceeded 20 m; errors occurred when using the latter algorithm

because the colour information was insufficient for objects in the image over this dis-

tance. The SGM-based algorithm performs scanline optimisation (cost aggregation) in

different aggregation directions, thus each pixel is influenced only by pixels located on

eight horizontal, vertical or diagonal lines. Since the distance is inversely proportional

to the disparity and the number of pixel is limited, it is hard to compute the distance

of objects when they are more than 20 m away. The SGM-based algorithm requires

only two parameters which are the matching penalties used for every path whereas the

proposed algorithm compensates for the error by using phase-based cost computation.

Figure 2.9(a) show the target vehicle with green and red box. The vehicle detection

algorithm is not applied in this paper but we draw the rectangular in the image for

focusing on measuring the distance using the disparity map shown as Figure 2.9(b).

Figure 2.9(c) shows the 2D Local map which shows the front environment of the ego-

vehicle using laser scanner.

The performance of the proposed algorithm was well maintained with small errors

in various scenarios when the distance exceeded 20 m because it uses contour informa-

tion and NCC-based cost computation and so provides robust distance measurements
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in various situations. However, the SGM-based algorithm showed a larger distance

error in the tunnel and urban scenarios than the highway scenario. The SGM-based

algorithm uses hierarchical mutual information to find the correspondence by utilis-

ing the joint histogram of intensities between two input images, but local illumination

variations due to brightness changes cannot be handled by mutual information based

cost computation. The computational complexity of the proposed algorithm takes on

average 25 fps at a resolution of 640 x 480.

The proposed algorithm calculated distance nicely in most cases. However, we

did observe that errors appeared at the tunnel entrance probably because the lighting

conditions momentarily became a dark-bright pattern when entering the tunnel. In ad-

dition, due to reflection and irradiation coming from the tunnel lamps, we observed a

performance degradation of 9.7 percent. When we compared our and LIDAR results,

the error occurred when the intensity distribution was different between the left and

right images. In the urban case, there was a lot of street furniture such as streetlights

and tree trunks, and these items generated shadow areas and a different intensity dis-

tribution. Colour consistency can enhance the performance of stereo matching, while

accurate disparity maps can improve the colour consistency or constancy. Our method

performed well with illumination changes to a large extent, although some limitations

exist when applied in severe shadow regions. In future work, this limitation could be

further resolved by incorporating techniques like intrinsic image decomposition meth-

ods [45].
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(a) The original image (b) The disparity map (c) LIDAR data(Ground truth)

Figure 2.9: The experimental results. The original image(a) with target vehicle pre-

sented by green and red box. Distance measurement results are written in upper side

of the image. the Disparity map(b) and the LIDAR data(c) is generated in each frame.

All data was synchronized.

Distance Built-in camera SGM SGM+C+NL SGM+LDOF SGM+SF Yoo

5-10 m 0.9 0.8 0.7. 0.5 0.4 0.7

10-15 m 1.1 1.0 0.8 0.7 0.5 0.9

15-20 m 1.5 1.4 0.9 1.5 1.0 1.1

20-25 m 1.9 1.8 1.3 1.5 1.5 1.4

25-30 m 2.5 2.2 1.9 2.1 1.8 1.7

30-35 m 4.1 3.5 2.5 2.6 2.3 1.9

35-40 m 7.0 5.9 3.4 3.2 3.3 2.1

Table 2.2: Distance accuracy comparison according to images.
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2.7 Conclusion

In this paper, we proposed a new method for measuring distances based on frequency-

domain analysis using a stereo camera. By analysing the frequency-domain informa-

tion, the depth value of an object can be obtained accurately in less time than the exist-

ing comparable methods. Experimental results show that the proposed method signifi-

cantly improves the accuracy of distance measurement. The advantage of the proposed

method is that the disparity value can be calculated directly through the phase of the

frequency domain. When conducting our experiments in various scenarios, the pro-

posed algorithm performed 10 percent better on average than the conventional method.

Our method was also shown to be suitable for use in real-time applications such as au-

tonomous vehicles. In future work, we hope to improve the operation speed while

maintaining the accuracy. We intend to develop object detection and tracking algo-

rithms, such as a Kalman filter [46] and a particle filter [47], to integrate the system.
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Chapter 3

Visual Map Matching Based on Structural Tensor and

Mutual Information using 3D High Resolution Digital

Map

3.1 Introduction

In recent years, there has been huge interest in automated vehicles with driver assis-

tance systems. Many vehicle companies and research groups have been actively in-

volved in maximizing safety and convenience of automated vehicles. Vehicle localiza-

tion is the fundamental application that determines a vehicle’s position and is essential

for vehicle control. Global Positioning System (GPS) based navigation devices have

gained popularity, with many vehicles now factory equipped with GPS systems and a

variety of portable devices also commercially available. However, such devices have

difficulty localizing in situations where the GPS signal is unavailable or insufficiently

accurate. Using digital maps with accuracy in the range of a few cm, it is possible to

develop sensor based localization without relying on GPS.

Fusing visual information with a digital map to improve vehicle global localization
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accuracy and overcome GPS problems has attracted much research and development

attention in recent years. Sensors for vehicle localization without GPS are categorized

into cameras and light detection and ranging (LIDAR) systems. Three dimensional

(3D) LIDAR is the most technically appropriate method to acquire centimeter level

road geometry, since it can provide accurate 3D information about roads. However,

3D LIDAR is expensive to set up in a vehicle. On the other hand, camera sensors

provide highly reliable color information about the ambient environment, and are price

competitive and light enough to be set up in a typical passenger vehicle.

The goal of this paper is to estimate the vehicle position in a previously scanned

environment using in-vehicle camera images. This problem has been recently reported

by researchers in perspective vision, exploiting normalized mutual information (NMI)

[9] or point features [48]. Vision based approaches depending on visual features are of-

ten sensitive to illumination changes and environmental modifications, and the vision

processing technique(s) employed to provide accurate position information are crucial.

This paper separates foreground and background objects, preserving local features and

removing dynamic objects. We represent the vehicle localization system using struc-

ture tensor and mutual information methods based on a high-precision 3D digital map.

The objective is to optimize a similarity function between the camera image and an im-

age from the reference map. The proposed method achieves decimeter level accuracy

for vehicle localization.

Related research works are presented in Section 3.2. Section 3.3 describes the

proposed algorithm for digital map generation, calibration, dynamic object removal,

improving illumination, and visual localization using structural tensors and mutual

information. Experimental results are presented in Section 3.4, and our conclusions

and closing remarks are in Section 3.5.
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3.2 Related Work

The problem of map localization has been traditionally approached using Monte Carlo

methods [49]. Given a map of the environment, the algorithm estimates vehicle po-

sition and orientation as it moves and senses the environment. In the DARPA Grand

Challenge (2005) and Urban Challenge (2007), vehicle localization using Monte Carlo

methods was used in the GPS denial areas. Pose estimation comprises a 2D position

(x,y) and yaw angle for 2D map localization.

In computer vision, place recognition methods attempt to localize [50] an image,

given a large database of georeferenced images. If the initial position is known, vi-

sual odometry [51] provides relative motion estimates that determine the position and

orientation of a vehicle by analyzing associated camera images. However, error is com-

pounded when the vehicle operates on non-smooth surfaces and location becomes in-

creasingly unreliable as these errors accumulate and compound over time.

Simultaneous localization and mapping (SLAM) has been intensively studied in

the robotics community. SLAM provides localization with map building using reflec-

tivity information obtained with vision sensors, LIDAR, and an estimator, e.g. ex-

tended Kalman (EKF) or Rao-Blackwellized particle (RBPF) filters.

Localization in road network maps has also been approached using map matching

techniques [52], which can efficiently localize a query map within a larger map region.

A standard scheme to visual SLAM consists of first extracting a sufficiently large

set of features and robustly matching them between successive images. These features

are then input to the joint process of estimating the camera pose and scene structure

[53]. The majority of visual SLAM methods fall into this class independent of the

applied filtering technique, e.g. EKF-SLAM [54] and FastSLAM 2.0 [55]. However,
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these features frequently vary with time of day and weather conditions, and cannot be

used without an intricate observability model.

Many studies have considered map assisted visual localization, largely focused

on matching photometric characteristics of the environment either by comparing im-

age feature descriptors, e.g. SIFT [56] or SURF [57], or directly operating on image

intensity values. However, one of the main issues in visual localization is that the envi-

ronmental photometric appearance changes substantially over time, particularly across

seasons [6].

Mapping with different sensor modalities can be a useful addition. In contrast to

methods based on matching photometry, approaches for camera localization in geo-

metric maps built from LIDAR data are less present in the literature. Wolcott et al. [9]

and Foster et al. [59] have been leaders in this approach. Wolcott et al. [9] proposed

a method to localize an autonomous vehicle in urban environments. Using LIDAR in-

tensity values, they render a synthetic view of the mapped ground plane and match it

against the camera image by maximizing normalized mutual information. While this

approach provides the 3 degrees of freedom (DoF) pose, Pascoe et al. [60] proposed

a system that estimates the full 6 DoF camera pose. Their appearance prior map com-

bines geometric and photometric data to render a view that is then matched against

the live image by minimizing the normalized information distance. Both approaches

perform matching in 2D space, which require expensive image rendering supported

by GPU hardware. Furthermore, they did not consider illumination effects or dynamic

objects, which degrade practical localization performance.
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Figure 3.1: Proposed system architecture.

3.3 Methodology

In this section, the proposed methodology is described.(Figure 3.1 illustrates the over-

all procedure of the proposed method). We initially generate a high precision 3D digital

map, then perform an extrinsic calibration between LIDAR and monocular cameras.

We remove dynamic objects and apply an illuminant invariance algorithm to improve

accuracy, then apply the proposed visual localization using a structure tensor and mu-

tual information algorithm. Each of these processes is explained in detail in the fol-

lowing sections.

3.3.1 Sensor Calibration

Given the use of the LIDAR map data and a monocular camera, it is crucial to perform

extrinsic calibration between these to perform a localization. Pinhole model is the

mostly used model to represent a camera projection process. Three coordinate systems

37



are considerd(world system, camera frame, image frame). A camera has intrinsic and

extrinsic parameters. The intrinsic parameters are related to its intrinsic characteristics,

including focal length, position of the principle point on image plane, image pixel

size, scaling factors of row and column pixels, skew factor, and lens distortion. The

extrinsic parameters are related to its position and orientation with respect to a fixed

world system.

For a pinhole camera, the relationship between a 3D point, Xi, and its homoge-

neous image projection, x̃i, is

x̃i = K[R|t]X̃i, (3.1)

where the extrinsic parameters,R and t, are the orthonormal rotation matrix and trans-

lation vector, respectively, relating the laser and camera coordinate systems; and K

is the camera intrinsic matrix. Generally, R is parametrized by the Euler angles. The

rotation matrix is an orientation matrix of a camera in the world system is related to

its rotation from the world frame to the camera frame. The rotation matrix R in 3-

dimensional space can be decomposed into three rotation matrices : RX with angle α

around XC axis, RY with angle β around YC axis, and RZ with angle γ around ZC

axis. They are respectively written as :

RX =


1 0 0

0 cosα − sinα

0 sinα cosα

 , (3.2)

RY =


cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

 , (3.3)

38



RZ =


cos γ −sin γ 0

sin γ cos γ 0

0 0 1

 . (3.4)

Then, the full rotation matrix R is given by the product of these three matrices.

We maximize the mutual information by registering reflectance values obtained

from a Velodyne 64 beam LIDAR to camera pixel intensities. We also consider the

laser reflectivity of a 3D point and the corresponding grayscale of the image pixel, us-

ing the marginal and joint probability distribution for LIDAR reflectivity and grayscale

intensity, respectively, calculating the rotation and translation matrix between the LI-

DAR and camera, as shown in Fig 3.2.

The synthetic view includes the 3D information and laser reflectivity values. The

views were generated by varying longitudinal and lateral translation around the image.

3.3.2 Digital Map Generation and Synthetic View Conversion

For accurate control and localization of an automated vehicle, a high precision 3D

map is fundamental. We acquire 3D point cloud data utilizing a 3D mobile laser scan-

ning sensor. During the data acquisition, we collect the 6D vehicle pose data and 3D

point cloud data. The vehicle pose data includes the accurate 3D global position and

3D attitude with respect to the trajectory of the vehicle. For a high-precision vehicle

positioning system, we use a RTK-GPS and a high-precision INS. For making a high-

precision map, we apply a ground extraction to each frame to remove unnecessary

points. The ground points for every frame are accumulated on a global coordinate sys-

tem using 6D vehicle pose data synchronized with LIDAR. The 3D point cloud data is

represented on a vehicle coordinate system, and a rigid body transformation is defined

by a transformation matrix. The 3D point cloud is accumualted on the global coordi-
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(a) The original image

(b) The perspective view of input image

Figure 3.2: Original image and extrinsic calibration showing a perspective view with

camera sensor data projected into the 3D LIDAR points.
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Figure 3.3: The example of the map data.

nate system by the rigid body transformation and dense point cloud data representing

the ground region is obtained[61]. Figure 3.3 shows the example of the map data.

After generating the digital map, we create a synthetic view, as shown in Figure 3.4

for calculating the matching cost comparing with the camera image. We generate the

candidate images by varying longitudinal and lateral translation around the optimally

aligned image.

3.3.3 Dynamic Object Removal

When we use the high-precision 3D digital map for localization, it is essential to re-

move dynamic objects, because the base map does not include these, such as vehicles,

pedestrians, etc. As more obstacles overtake the image, the algorithm can be distracted

and lead to erroneous registrations. To remove the object, we first generate the back-

ground model to compare with input image data. We consider the accumulation factor

to separate background and foreground objects.
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Figure 3.4: Example of synthetic view.

µti =
αt−1i

αt−1i + 1
µ̃+

1

α̃t−1i + 1
M t
i , (3.5)

σti =
α̃t−1i

α̃t−1i + 1
σ̃t−1i +

1

α̃t−1i + 1
V t
i , (3.6)

αti = α̃t−1i + 1, (3.7)

where |Gi| is the number of pixels, Itj is pixel intensity, αti is an accumulator factor, µti

is the mean pixel intensity, σti is the pixel variance,

M t
i =

1

|Gi|
∑
j∈Gi

Itj , (3.8)

and

V t
i = max

j∈Gi

(µti − Itj)2. (3.9)

After obtaining the background model for time t, we remove dynamic objects that

have a large difference from the input image, then apply the saliency map model [64]
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to extract the features. The saliency map considers intensity, orientation, and color to

compute a unique quality for each pixel. Applying this algorithm, we can preserve

lane, road markers, tree trunks, poles, etc., which are key information for comparing

with a prior map. Figure 3.5 shows an example result removing dynamic objects.

3.3.4 Illuminant Invariance

The camera is sensitive to illumination conditions, and provides relatively inaccurate

localization. We used a chromaticity based algorithm to reduce the effect of illumi-

nation. Illuminant invariance is based on the observation that log chromaticity of the

color space is largely unaffected by illuminant variations. Therefore, once the chro-

maticity of an object is known, illumination effects, such as shadowing, can be elim-

inated successfully in[65, 78]. Log chromaticity can be calculated from RGB color

space,

ck = Rk/
3

√∏3

i=1
Ri, (3.10)

where ck is chromaticity, Rk is RGB color value, and k is one of the color channels.

3.3.5 Visual Map Matching using Structure Tensor and Mutual Infor-

mation

Structure tensors are the matrix representation of partial derivative information. They

are typically used to represent gradient or edge information. They also provide a pow-

erful description of local patterns, in contract to directional derivative, through coher-

ence,

Spq(x) =

∫ ∞
−∞

w(x− x′)(∂g(x)

∂xp′
∂g(x′)

∂x′q
)d2x′ (3.11)

, where w is a window function; and S is the structure tensor, a symmetric 2x2 matrix,
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Figure 3.5: Example of removing dynamic objects. Vehicles are removed while pre-

serving road markers, such as lane markers and speed bumps.

44



S =

S11 S21

S12 S22

 . (3.12)

Several useful quantities can be calculated from the structure tensor,

I =
S11 + S22

(S11 + S22) + σimg
, (3.13)

φ =
1

2
arctan(

2S12
S11 + S22

), (3.14)

and

Cc(S) =

√
(S22 − S11)2 + 4S2

12

S11 + S22
, (3.15)

where I is the intensity, a measure of the magnitude of the gradients; (S11 + S22) is

the mean square magnitude of the gradient; σimg is the standard deviation of the gray

value in the input image; φ denotes the angle of orientation of the structure tensor; and

Cc is the coherency, which reduces the local structure to a local orientation. Figure

4.8 shows pseudo color images, where φ codes the color, Cc the saturation, and the

intensity of each pixel of the image in HSV representation. Using gradient informa-

tion of local neighbourhoods has the disadvantage that one cannot distinguish between

homogeneous areas (i.e. constant gray values) and uncorrelated noise (i.e. isotropic ori-

entation of the gradients in the respected neighbourhood). The coherency value varies

between zero and one. It reduces the local structure to a local orientation. In case of an

ideal orientation the value is one, in case of an isotropic gray value structure it is zero.

Suppose we have two images, a reference image,X , converted from the 3D digital

map, and an input image, Y . Both images are represented by grayscale intensity values.

Mutual information of the two images X and Y is

M(X,Y) = H(X) + H(Y)−H(X,Y), (3.16)
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Figure 3.6: Original and structure tensor images in pseudo color.
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where H(X) is the entropy of the reference image, H(Y ) is the entropy of the input

image and H(X,Y ) is the joint entropy of the two images. The marginal and joint

entropies are defined as

H(X) =
∑
x

−Px(x) logPx(x), (3.17)

H(Y) =
∑
y

−Py(y) logPy(y), (3.18)

H(X,Y) =
∑
x,y

−Px,y(x, y) logPX,Y (x, y), (3.19)

PX(x) =
∑
y

PX,Y (x, y), (3.20)

PY (y) =
∑
x

PX,Y (x, y). (3.21)

Mutual information measures the distance between joint distribution P(X;Y )(x, y)

and the completely independent distributions, PX(x), PY (y). The two images are con-

sidered registered when M(X,Y ) is maximal. However, mutual information is sensi-

tive to the amount of overlap between the images and, to overcome this, the more

robust normalized mutual information (NMI) measure was proposed [9],

M(X,Y ) =
H(X) +H(Y )

H(X,Y )
. (3.22)

The joint and marginal distributions can be estimated using joint and marginal his-

tograms, H(X,Y ), H(X), and H(Y ), where the joint histogram, H(X,Y ), for im-

ages X and Y over their region of overlap can be estimated by counting the number of

times the intensity pair (x, y) occurs in corresponding pixel pairs. Mutual information

yields values from 0 to∞. The higher the mutual information is, the more information

is shared between X and Y. However, high values of mutual information might be unin-

tuitive and hard to interpret due to its unbounded range of values. Normalized Mutual
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Information measures try to bring the possible values to bounded range. Specifically,

case of a maximum value is useful due to ease of comparison with commonly used

correlation coefficients. Normalizing the joint histogram provides an estimate of the

joint probability distribution,

PX,Y (x, y) =
H(x, y)∑
x,yH(x, y)

. (3.23)

Thus, estimation of MI and NMI similarity measures only requires calculation of the

joint histogram.

Estimation of h(x, y) for images X and Y is usually achieved by calculating the

number of times the intensity pair (x, y) occurs, i.e., all pixels contribute similarly.

In contrast, we give weight w(s) to each pixel based on its structure tensor value.

Coherency varies between 0 and 1. If Cc(s) = 1, the pixel is included in the line land-

marks, otherwise, the pixel is included in the road surface. Thus, each pixel contributes

to the calculation of the joint histogram according to its weight. This is similar to cal-

culating a similarity measure using irregular sampling. The weight,w(s), given to each

pixel, s, in the reference image was chosen to be an exponential function of I(s), φ(s),

and Cc(s) (from eqs. (10) to (12), respectively),

w(s) = exp(−qφ(s)/Cc(s)I(s)), (3.24)

where q is a positive constant. The constant k is used to control the slope of the expo-

nential function and can be set to any convenient fixed value proportional to the image

resolution. For q = 0, the equation reduces to the conventional mutual information

method.

The weight function allows us to calculate the joint histogram from pixels includ-

ing different landmarks. Rather than calculating the matching cost of whole pixel, it is
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effective to calculate meaningful pixel values including important features. Therefore,

H(X), H(Y ) and H(X,Y ) become

H(X) =
∑
x

−w(s)Px(x) log[w(s)Px(x)], (3.25)

H(Y) =
∑
y

−w(s)Py(y) log[w(s)Py(y)], (3.26)

and

H(X,Y) =
∑
x,y

−w(s)Px,y(x, y) log[w(s)PX,Y (x, y)]. (3.27)

In summary, we can find the values of x, y, and yaw by optimizing

(
_
xk,

_
yk,

_

θk) = arg max
(xk,yk,θk)

H(X) +H(Y )

H(X,Y )
. (3.28)

3.4 Experiments and Result

3.4.1 Methodology

We present results from real data collected using a 3D laser scanner (Velodyne HDL-

64E) on the roof and monocular camera mounted at the location of the rear-view mir-

ror within the vehicle. To evaluation the proposed algorithm, we used an automatically

created high-precision 3D digital map. The test vehicle was equipped with RTK-GPS

(OXTS RT3002) and high-precision Inertial Navigation System (INS), as shown in

Fig. 3.7, which provides ground truth for the position measurements. The proposed

localization system was evaluated on campus roads, comprising approximately 3.7

km, as shown in Fig. 3.8. All experiments were performed using a PC with 3.40 GHz

i7-4770 CPU. We determined the absolute position errors, including lateral and longi-

tudinal error, by differencing ground truth and measured positions using the proposed

algorithm.
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Figure 3.7: Autonomous vehicle equipped with a 3D LIDAR for generating map.

monocular camera is mounted on the location of rear-view mirror in the vehicle.

We also measured the performance of removing dynamic objects using

precision =
TP

(TP + FP )
, (3.29)

and

recall =
TP

(TP + FN)
, (3.30)

where TP , FP , and FN denote true positive, false positive, and false negative, re-

spectively. These were computed object-wise in each frame and frames that did not

include the actual object or detected object were skipped for accurate performance

evaluation. Successful detection means more than 50 percent of objects were detected

for accurate performance evaluations.
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(a) High precision 3D digital map

(b) Aerial image

Figure 3.8: (a) Digital map generation result and (b) aerial image of the area with the

vehicle trajectory (red).
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Methods Detection rate

Precision 0.824

Recall 0.811

Table 3.1: Precision and recall for removing dynamic objects.

Figure 3.9: Experimental results. First row: original images, Second row: structural

tensor images in pseudo color, Third row: synthetic view generated from digital map,

Fourth row: the result of removing dynamic object.
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Position RMS Error

Absolute position 20.19cm

Lateral position 7.53cm

Longitudinal position 18.73cm

Yaw angle 0.354 deg.

Table 3.2: The localization errors.

3.4.2 Quantitative Results

Figure 3.8 shows the digital map describing the campus, with the vehicle trajectory in

red. We verify the effectiveness of removing dynamic objects with experiments on the

campus dataset. To create ground truth images, we used graphical software to label

dynamic objects manually, focusing on preserving features while removing dynamic

objects such as vehicles and pedestrians. Table 3.1 shows the precision and recall for

removing dynamic objects using the proposed method compared to the ground truth

images. Recall is also referred to as the true positive rate or sensitivity, and precision

is also referred to as positive predictive value.

The vehicle traveled a loop of the campus. We assume the initialization position

was given using GPS and calculated the position errors from ground truth, achieving

root mean square (RMS) errors of 20.19 cm. The campus was located in mountainous

terrain and had many speed bumps in the route chosen. Therefore, the experimental

result had maximum RMS error of 40 cm. In future work, we propose to develop a

stabilization algorithm for motion compensation.

Finally, Fig. 3.9 shows several examples of the proposed method, summarizing

results for removing dynamic objects, digital map conversion, and structural tensor
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images in psuedo color.

3.5 Conclusions and Future Works

We proposed a visual localization system based on a high-precision 3D digital map.

Localization is the core application for automated driving. The proposed system com-

prises extrinsic calibration, dynamic object removal, illumination invariant transforma-

tion, and visual localization. We propose a visual localization algorithm using structure

tensors and mutual information. Experiments were conducted to demonstrate the sys-

tem estimates for vehicle location on the high precision map. Although the achieved

accuracies are not yet sufficient for autonomous driving, the proposed system enables

robust localization in areas without GPS, and a good basis for constitutive visual map-

ping methods.

Further improvements could be realized by reducing processing time using GPU

acceleration, and the proposed approach should be extended to urban areas for im-

proved reliability and accuracy.
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Chapter 4

Free Space Computation using a Sensor Fusion of LI-

DAR and RGB Camera in Vehicular Environments

4.1 Introduction

Drivable free space is a fundamental research topic in automated driving vehicles. In

addition, visual perception and sensor fusion have made clear that they will play a key

role. To achieve accurate and reliable performance, various algorithms based on dif-

ferent kinds of sensors have been developed. For automated driving vehicles, reliable

and accurate free space detection is a prerequisite. As there are many different kinds

of roads, such as highways, urban roads and country roads, with different features, the

approaches to detect them are different. Besides obstacle avoidance, the drivable free

space can also facilitate the path planning and decision making, especially in such a

situation where lane markers are invisible or not present.

The problem has been investigated for many years and a large variety of ap-

proaches can be found in the literature based on a monocular camera. Among the

algorithms that perform best on the KITTI road benchmark data set [85], the majority
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work only on single camera image and several make use of deep neural networks [71].

Despite achieving outstanding results, image-based approaches are greatly affected by

lighting environment. As a result, their outcomes are expected to decrease significantly

in the time of night or whenever presented with light conditions that deviate from those

seen during training.

Stereo vision based approaches first get dense disparity map through stereo match-

ing. Then the image including depth information can be used to detect the road. How-

ever, it is a contradiction between the computational cost and recover accuracy. In

addition, stereo camera can also be badly affected by the light like a monocular cam-

era.

High definition 3D LIDARs use the accurate 3D information to analyze the struc-

ture of the field and take the ground area without obstacles as road. This type of method

uses only the sparse 3D information while the color and texture information are not

enough to distinguish the non-road areas that have little differences in height.

Since each modal of sensor has its weakness, multi-modal sensor fusion can be a

simple solution to fill the gap. This chpater will provide a method to detect the reliable

free space fusing the information of LIDAR and monocular image. Specifically, given

a pair of RGB image and sparse depth map projected from LIDAR point cloud, we

generate dense depth map. Furthermore, we compute the drivable free space using

visual features from dense depth map. We tested our algorithm on the KITTI-Road

dataset[85] and the results show that the proposed method reaches the state-of-the-art.

The chapter is organized as follows: In Section 4.2, we describe the proposed algo-

rithm . The experimental results are presented in Section 4.3, and Section 4.4 contains

conclusions concerning this study.
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Figure 4.1: Processing flow of the proposed algorithm.

4.2 Methodology

This section describes overall procedure of the proposed algorithm. We first generate

the dense depth map using LIDAR data and introduce how to extract feature from

image. Figure 4.1 shows a whole framework of this chapter.

4.2.1 Dense Depth Map Generation

A point cloud is a set of data points in some coordinate systems. The point cloud

represents the set of points that that the device has measured. Unfortunately, such

point clouds tend to be sparse. By using the LIDAR and the camera, we achieve a best

approximation of a pixel’s depth value based on the values at surrounding pixels. An

iterative computer vision technique in which the intensity value, Ic, of each pixel p is
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updated according to the intensity value of its neighbors q0, q1, q2, and q3:

Inc (p) = In−1c (p)(1− λ
3∑
j=0

c(p, qj)
n−1) + λ

3∑
j=0

c(p, qj)
n−1Ic

n−1(qj), (4.1)

where 0<λ<0.25 controls the influence of neighboring pixels and n is the iteration

number. Different functions can be used to implement the diffusion coefficient c(p, q).

One possibility is the exponential function of the negative euclidean distance ∆cpq in

the sparse depth map from LIDAR data:

c(p, q) = exp(−∆cpq
rc

). (4.2)

Figure 4.2 shows a example of a dense depth map. The image is a sample image in

KITTI dataset; RGB image, sparse depth map and dense depth map result. It produces

some blurry boundaries in object but we smooth the area using the image data. Some

example results using KITTI dataset are depicted in figure 4.3.

4.2.2 Color Distribution Entropy

We develop an color distribution entropy using a monocular camera to model the equa-

tion for each area to be free space or not. We use a area prior to enforce pixels that are

always free space to be so. Our purpose is to detect the free space that the line exists on

the boundary. Towards this, we derive an equation that finds the entropy of the color

distribution in blocks around the labels:

Ea(yi = k) = (w1T [L(z) = 0] + w2T [L(z) > 0])×H(i, k)

h∑
j=k

H(i, j). (4.3)

Here the entropy H(i, j) is computed in terms of the color distribution of free space

pixels in a block centered at pixel location (i, j). w1 and w2 are penalty considering

the height of the LIDAR data. To extract the color distribution of free space pixel, we

58



Figure 4.2: Original image, dense depth images, LIDAR frame.
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Figure 4.3: Examples of original image and depth images.

consider the data near the ground. If the pixel is belong to the object, the weight factor

is small. The entropy H(i, j) should be higher near the boundary pixels. Since we are

finding a line that passes through the boundary between the closest set of obstacles and

the road, we use a cumulative sum that prefers pixels that are closer to the obstacle and

the ones with non-zero H(i, k) values.

4.2.3 Edge Extraction

Edge detection is a process of locating an edge of an image. Detection of edges in

an image is a important step towards understanding image features. Edges consist of

meaningful features and contain significant information. It significantly reduces the

image size and filters out information that may be regarded as less relevant, thus pre-

serving the improtant structural properties of an image. Since edges often occur at

image locations representing object boundaries, edge detection is extensively used in
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boundary detection when images are divided into areas corresponding to different ob-

jects. Considering this, we define an equation which accumulates edge evidence as

Eedge(yi = k) = e(i, k)
h∑
j=k

e(i, j), (4.4)

where e(i, j) = 1 if there is an edge at the pixel (i, j), and 0 otherwise. The edges are

obtained by simply using the Canny edge detector with default parameters. Note that

more complicated edge detectors could be realized.

4.2.4 Temporal Smoothness

In a vehicular environment, a camera is ported in front of a vehicle and the road is

observed by this camera set-up. Temporal smoothness between consecutive frames

by cumulating temporal data increases robustness and accuracy of the estimation. As

the first step, the percentage of histogram change is calculated between previous and

current frames as follows.

∆t =
1

t

∑
i=1:w

|Histt(i)−Histt−1(i)|, (4.5)

where N is the total number of frames, Histt is the histogram of the frame at time

instant t. The rate of change is utilized as a weighting function to model in temporal

transfer of data relating weights. Hence, weights in the current frame are weighted by

the values in the previous frame as follows:

µt(x) = (1−∆t)µt(x) + ∆tµt−1(x), (4.6)

where µt is the vector involving weights in four fundamental directions for time instant

t. The update formula in (4.11) enforces utilization of weights in the current frame, as

long as significant scene change is not observed. On the other hand, when there is
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significant scene change, which is not an expected case, weights of the previous frame

are utilized. Once the weights are calculated, histogram of the current frame is updated

by the change factor for the analysis of the next frame as follows:

Histt(i) = (1−∆t)Histt(i) + ∆tHistt−1(i), (4.7)

The histogram update in (4.12) provides robustness against multiple inconsistent con-

secutive frames. Therefore, data from the last reliable frame is transferred to the frames

involving severe flares, reflections and sudden large occlusions as soon as a consistent

frame is encountered with similar histogram characteristics.

The other temporal modification is provided by enforcing smoothness of intensity

values along pixels with low intensity change between consecutive frames. For this

purpose, temporal weights are calculated for each pixel as

µt(x) = exp(−|It(x)− It−1(x)|/σ), (4.8)

where It is the intensity image for time instant t, σ is a scaling factor (set as 16). Tem-

poral weight relates the change of the corresponding pixel in time, which is utilized

to enforce intensity values of the previous frame to the estimation of current intensity

value.

4.2.5 Spatial Smoothness

Spatial smoothing means that data points are averaged with their neighbours. This

has the effect of a low pass filter meaning that high frequencies of the signal are re-

moved from the data while enhancing low frequencies. We employ the spatial smooth-

ing shown as below.

Espatial = exp(−α(yi − yj)2), (4.9)

where α is constants.
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4.3 Experiment and Evaluation

4.3.1 Evaluated Methods

We evaluate our algorithm on KITTI visual benchmark suite[19]. The KITTI dataset

is an opensource dataset created by Dr. Andreas Geiger et al. for outdoor autonomous

driving application. The object sub-dataset in KITTI is captured by Velodyne HDL-

64E laser scanner and two highly-calibrated binocular cameras. Each image captured

by camera is registered to a set of 3D laser point cloud, which means that, for each

image, we can get one corresponding sparse depth map by projecting the 3D laser

point cloud to the image plane. We use the training set from the road challenge in

KITTI. The road and lane estimation benchmark consists of 289 training and 290 test

images. It contains three different categories of road scenes: UU(Urban Unmarked),

UM (Urban Marked), and UMM (Urban Multiple Marked Lanes). In this chapter, we

only deal with free space detection, the lane information is not considered here. The

dataset offer groundtruth for training data and online evaluation of testing data is of-

fered on the website. For evaluation, the dataset offered pixel-based evaluation and

behaviour-based evaluation. A set of metrics including precision (PRE), recall (REC),

maximum F1-measure (MaxF) ,average precision (AP), false positive rate (FPR) and

false negative rate (FNR) are used for evaluation.

Precision =
TP

TP + FP
, (4.10)

Recall =
TP

TP + FN
, (4.11)

F −measure = (1 + β2)
PrecisionRecall

β2Precision+Recall
, (4.12)

Accuracy =
TP + TN

TP + FP + TN + FN
. (4.13)
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Furthermore, in order to provide insights into the performance over the full recall

range, the average precision (AP) as defined in [76] is computed for different recall

values r:

AP =
1

11

∑
r∈0,0.1,...1

max
r′:r′>r

precision(r′). (4.14)

The experiments were tested on a standard PC with 8GB of RAM and a dual-core

Intel Core i7-4770 CPU clocked at 3.4 GHz. The algorithm was implemented with

C++ under Windows8. As we take each pixel as a random variable, for images from

KITTI-Road dataset(with resolution of about 1240x375), the average time consuming

is about 0.4 seconds.

4.3.2 Experiment on KITTI Dataset

We compared our algorithm with the recently developed ones, including, RES3D-

Velo[103], FusedCRF[104], and HybridCRF[105]. The evaluation on KITTI datasets

and the average results are shown in table 4.1 and 4.2. From the results showed in the

tables, we can see that our algorithm get fine results using fusion method on KITTI

dataset. But the results is less competitive than those on deep learning-based method,

that may be due to the images contain little high rising non-road objects and the 3D

information of LIDAR are less helpful. And in average, the proposed algorithm gets

the best MaxF. In Figure 4.5 to 4.7, the result of the proposed algorithm are shown.

We generate the dense depth map from the LIDAR frame and detect the free space

using the fusion of the camera data and LIDAR frame. We compare the result from

the ground truth. The Table 4.1 show the MaxF, AP, PRE, REC, FPR and FNR results.

Table 4.2 shows the result based on the distance.
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Method MaxF AP PRE REC FPR FNR

FUSEDCRF 89.55% 80% 84.87% 94.78% 7.7% 5.22%

HYBRIDCRF 90.99% 85.26% 90.65% 91.33% 4.29% 8.67%

RES3D-VELO 83.81% 93.95% 78.56% 89.8% 11.16% 10.2%

AUTHOR’S 91.36% 84.92% 90.18% 93.28% 5.45% 6.72%

Table 4.1: Comparison of evaluation on KITTI Dataset.

Distance(m) MaxF PRE REC FPR FNR

0-20 92.36 90.67 94.11 5.19 6.92

20-25 92.37 90.78 94.02 4.8 6.93

25-30 92.34 90.75 93.99 4.5 6.95

30-35 92.13 90.54 93.78 4.37 7.15

35-40 91.9 90.36 93.5 4.33 7.42

AVERAGE 92.26 90.65 93.88 4.45 6.97

Table 4.2: Distance accuracy comparison on KITTI Dataset.
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Figure 4.4: Original image and LIDAR frame.

Figure 4.5: Example of experimental result.
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Figure 4.6: Example of experimental result.

Figure 4.7: Example of experimental result.

Figure 4.8: Ground truth, false positive, false negative and true positive.
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4.4 Conclusion

In this chapter, we have proposed free space detection method by combing RGB image

and LIDAR. We generate the dense depth map from the LIDAR data and extract the

feature using the camera data. Also, we propose a method using a temporal and spatial

smoothing technique. Particularly, the approach was tested on KITTI datasets involv-

ing road scenes. We designed our algorithm using simple and light-weight techniques

for real-time computation. In future work, we will involve the initial depth value into

geodesic distance computation and implement the algorithm on GPU for real-time ap-

plication.
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Chapter 5

Conclusion

In this dissertation, we focused on several issues for the computer vision applications

of the automated driving vehicles. In chapter 2, we proposed a method for measuring

the distances based on frequency-domain analysis using a stereo camera. By analyzing

the frequency-domain information, the depth value of an object can be obtained accu-

rately in less time than the existing comparable methods. Experimental results show

that the proposed method significantly improves the accuracy of distance measure-

ment. In chapter 3, we proposed a visual localization system based on a high-precision

3D digital map. The proposed system comprises extrinsic calibration, dynamic object

removal, illumination invariant transformation, and visual localization. We propose a

visual localization algorithm using structure tensors and mutual information. Exper-

iments were conducted to demonstrate the system estimates for vehicle location on

the high precision map. Although the achieved accuracies are not yet sufficient for

autonomous driving, the proposed system enables robust localization in areas with-

out GPS, and a good basis for constitutive visual mapping methods. In chpater 4, we

proposed a method for drivable free space detection using fusion of a LIDAR and a
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camera. We generate the dense depth map from LIDAR and extract features from a

camera.

A number of open problems should be solved to develop the automated driving

vehicles that can be driven on roads. Although some parts of the studies remain unre-

solved and need further attention in the future, we believe that the theoretical analysis

and outstanding results in this dissertation will definitely provide useful guidelines

to improve the automated driving vehicles. We hope many follow-up studies will be

carried out and many valuable research results will be produced.
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초록

기계및전자기술의발달로운전자의개입없이주변환경을인식하고주행상

황을 판단해 차량을 제어하는 자율 주행 자동차가 현실로 다가오기 시작했다. 본

논문집은 카메라 센서를 활용하여 자율 주행 차량에 필요한 영상 처리 기법에 대

한연구결과를다루었다.첫번째문제는,선행차량에대한거리측정방법에대한

연구이다. 스테레오 카메라를 활용하여 주파수 영역에서의 분석을 통해 정확한 거

리를 추정하는 방법을 고안하여 문제를 해결하였다. 두 번째 문제는, 고정밀 3차원

정밀지도상에서단안카메라를활용하여위치를추정하는방법에대한연구이다.

움직이는 물체를 제거하고 다양한 조명 상황에서 강건하게 위치를 파악할 수 있도

록 상호 정보량을 활용하여 문제를 해결하였다. 마지막 문제는, 주행 가능 영역을

탐지하는 방법에 대한 연구이다. 카메라와 라이다 센서 융합을 통해 특징 추출 및

변위지도를생성하여문제를해결하였다.

주요어:거리탐지,차량측위,주행가능영역탐지,자율주행,영상처리
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