776 research outputs found

    Comparison of the performance of sensitivity-based voltage control algorithms in DG-integrated distribution systems

    Get PDF
    Conference ProceedingsThe integration of renewable energy generators in distribution grids has increased the complexity of the voltage control problem. Reactive power control (RPC) algorithms based on sensitivity analysis have been proposed in the literature for the management of the voltage problem. Sensitivity methods are computationally complex for practical real-time analysis and this has led to use of de-coupled and other simplified load flow models. However, algorithms based on decoupled models have been shown to be inefficient for analysis of distribution systems with low X/R ratio. This paper uses a simplified line modelling approach recently proposed in the literature to facilitate the development of computationally simple distributed, non-decoupled, load flow equations that completely capture the characteristics of the radial distribution feeder, removing the need to use the decoupled models. Results show that the simple algorithm based on this new line modelling approach gives better voltage control performance compared to the decoupled models

    Sensitivity-Based Model of Low Voltage Distribution Systems with Distributed Energy Resources

    Get PDF
    A key issue in Low Voltage(LV) distribution systems is to identify strategies for the optimal management and control in the presence of Distributed Energy Resources (DERs). To reduce the number of variables to be monitored and controlled, virtual levels of aggregation, called Virtual Microgrids (VMs), are introduced and identified by using new models of the distribution system. To this aim, this paper, revisiting and improving the approach outlined in a conference paper, presents a sensitivity-based model of an LV distribution system, supplied by a Medium/Low Voltage (MV/LV) substation and composed by several feeders, which is suitable for the optimal management and control of the grid and for VM definition. The main features of the proposed method are: it evaluates the sensitivity coefficients in a closed form; it provides an overview of the sensitivity of the network to the variations of each DER connected to the grid; and it presents a limited computational burden. A comparison of the proposed method with both the exact load flow solutions and a perturb-and-observe method is discussed in a case study. Finally, the method is used to evaluate the impact of the DERs on the nodal voltages of the network

    Centralized Control of Distribution Networks with High Penetration of Renewable Energies

    Get PDF
    Distribution networks were conceived to distribute the energy received from transmission and subtransmission to supply passive loads. This approach, however, is not valid anymore due to the presence of distributed generation, which is mainly based on renewable energies, and the increased number of plug-in electric vehicles that are connected at this voltage level for domestic use. In this paper the ongoing transition that distribution networks face is addressed. Whereas distributed renewable energy sources increase nodal voltages, electric vehicles result in demand surges higher than the load predictions considered when planning these networks, leading to congestion in distribution lines and transformers. Additionally, centralized control techniques are analyzed to reduce the impact of distributed generation and electric vehicles and increase their effective integration. A classification of the different methodologies applied to the problems of voltage control and congestion management is presented.Unión Europea Convenio 764090Ministerio de Ciencia e Innovación CER-2019101

    Impact Analysis and Mitigation of Voltage Regulation Issues in PV Rich Low Voltage Residential Distribution Networks

    Get PDF
    Modern distribution networks are undergoing major changes with the increased uptake of rooftop photovoltaic (PV) units in low voltage (LV) residential distribution networks. These renewable based distributed energy resources (DERs) impose adverse effects which can propagate from LV to medium voltage (MV) and high voltage (HV) levels. Some of the major areas of concern to network operators include reverse power flow, voltage unbalance, voltage rise, increased harmonics, increased potential of islanding, and component and line overloading. These issues create both an operational mitigation requirement and a need for Distribution Network Service Providers (DNSPs) to adjust LV network design procedures. In Australia DNSPs are bound by strict regulation to provide supply to customers complying with several power quality standards. Australian Standard AS 61000.3.100 requires the voltage at the consumer point of supply to be within +10%, -6% of the 230 V nominal for single phase LV customers. Since residential peak load is typically observed during evening time and power generated from PV during daytime, rooftop PV does little to reduce peak demand. Increased numbers of rooftop PV systems in future LV feeders, combined with increased demand, means DNSPs need to invest in infrastructure to alleviate issues related to overgeneration or overloading and voltage regulation. Traditionally, voltage regulation devices such as on-load tap changers (OLTCs), regulators and capacitor banks have been sufficient to regulate voltage within mandated limits. Bidirectional power flow that arises as a result of DER in LV limits the ability of these devices, as LV voltage issues cannot be detected or do not propagate further up the network. Compared to HV/MV networks, residential LV networks experience more variable loads, have inherent unbalance due to the overhead 4-wire structure, and lack visibility with respect to operational states. This thesis aims to contribute new knowledge and understanding to the field of power distribution network voltage regulation. This includes investigation and analysis of different approaches to voltage regulation in power distribution networks in the literature, and to propose new methods and improvements to existing methods. Specifically, this thesis aims to highlight the shortcomings of the current voltage regulation techniques available to DNSPs in LV feeder. The case studies to be provided in this thesis presents 24 h time series simulation to investigate the performance with varying load and PV generation

    Computational study of resting state network dynamics

    Get PDF
    Lo scopo di questa tesi è quello di mostrare, attraverso una simulazione con il software The Virtual Brain, le più importanti proprietà della dinamica cerebrale durante il resting state, ovvero quando non si è coinvolti in nessun compito preciso e non si è sottoposti a nessuno stimolo particolare. Si comincia con lo spiegare cos’è il resting state attraverso una breve revisione storica della sua scoperta, quindi si passano in rassegna alcuni metodi sperimentali utilizzati nell’analisi dell’attività cerebrale, per poi evidenziare la differenza tra connettività strutturale e funzionale. In seguito, si riassumono brevemente i concetti dei sistemi dinamici, teoria indispensabile per capire un sistema complesso come il cervello. Nel capitolo successivo, attraverso un approccio ‘bottom-up’, si illustrano sotto il profilo biologico le principali strutture del sistema nervoso, dal neurone alla corteccia cerebrale. Tutto ciò viene spiegato anche dal punto di vista dei sistemi dinamici, illustrando il pionieristico modello di Hodgkin-Huxley e poi il concetto di dinamica di popolazione. Dopo questa prima parte preliminare si entra nel dettaglio della simulazione. Prima di tutto si danno maggiori informazioni sul software The Virtual Brain, si definisce il modello di network del resting state utilizzato nella simulazione e si descrive il ‘connettoma’ adoperato. Successivamente vengono mostrati i risultati dell’analisi svolta sui dati ricavati, dai quali si mostra come la criticità e il rumore svolgano un ruolo chiave nell'emergenza di questa attività di fondo del cervello. Questi risultati vengono poi confrontati con le più importanti e recenti ricerche in questo ambito, le quali confermano i risultati del nostro lavoro. Infine, si riportano brevemente le conseguenze che porterebbe in campo medico e clinico una piena comprensione del fenomeno del resting state e la possibilità di virtualizzare l’attività cerebrale

    Analytical Study Based Optimal Placement of Energy Storage Devices in Distribution Systems to Support Voltage and Angle Stability

    Get PDF
    Larger penetration of Distributed Generations (DG) in the power system brings new flexibility and opportunity as well as new challenges due to the generally intermittent nature of DG. When these DG are installed in the medium voltage distribution systems as components of smart grid, further support is required to ensure smooth and controllable operation. To complement the uncontrollable output power of these resources, energy storage devices need to be incorporated to absorb excessive power and provide power shortage in time of need. They also can provide reactive power to dynamically help the voltage profile. Energy Storage Systems (ESS) can be expensive and only a limited number of them can practically be installed in distribution systems. In addition to frequency regulation and energy time shifting, ESS can support voltage and angle stability in power network. This thesis applies a Jacobian matrix-based sensitivity analysis to determine the most appropriate node in a grid to collectively improve the voltage magnitude and angle of all the nodes by active/reactive power injection. IEEE 14-bus distribution system is selected to demonstrate the performance of the proposed method due to its clear and simple configuration. The developed technique is also applied to the IEEE 123-bus system to further evaluate the effectiveness and demonstrate the performance for a more complicated system. As opposed to most previous studies, this method does not require an iterative loop with convergence problem nor a network-related complicated objective function

    Optimisation-based Approaches for Evaluating the Aggregation of EVs and PVs in Unbalanced Low-Voltage Networks

    Get PDF
    214 p.In the near future, it is expected that the distribution system operators face different technical challenges derived from the massification of electric mobility and renewable energy sources in the low voltage networks. The purpose of this thesis is to define different smart coordination strategies among different agents involved in the low voltage networks such as the distribution system operator, the aggregators and the end-users when significant penetration levels of these resources are adopted. New models for representing the uncertainty of the photovoltaic output power and the connection of the electric vehicles are introduced. A new energy boundary model for representing the flexibility of electric vehicles is also proposed. In combination with the above models, four optimisation models were proposed as coordination strategies into three different approaches: individual, population, and hybrid. The first model was defined at the aggregator level, whereas the other models were proposed at the distribution system operator level. Complementary experimental cases about the proposed optimisation model in the individual-based approach and the quadratic formulation in the hybrid approach for the PV power curtailment were carried out to test its response in real-time. Simulations results demonstrated that the proposed coordination strategies could effectively manage critical insertion levels of electric vehicles and photovoltaic units in unbalanced low voltage networks

    EV integration-oriented DC conversion of AC low-voltage distribution networks and the associated adaptive control strategy

    Get PDF
    Driven by carbon-neutral targets and transportation electrification, the widespread use of electric vehicles (EVs) has become an irreversible trend. However, low-voltage distribution networks (LVDNs) can face several challenges under the high-penetration EV integration, including overloads, voltage violations and unbalance issues. In this paper, an EV integration-oriented DC conversion scheme and the associated adaptive control method for LVDNs is proposed, aiming at releasing more capacity for EVs and collaborative improvement of the above issues caused by EV charging. Based on analyzing the influence of different charging piles connected to the AC and DC LVDNs, a DC conversion scheme for three-phase four-wire LVDNs under high-penetration EVs is proposed. The voltage source converter (VSC) control strategies aimed at alleviating the overload of the DTs, voltage violations, and three-phase unbalance are designed separately based on the modified three-phase four-wire voltage sensitivity. Then, a coordinated adaptive control strategy of on-load tap changer and VSCs is proposed considering the simultaneous occurrence of multiple power quality issues in hybrid AC/DC LVDNs. Case study verifies the effectiveness of the proposed DC conversion and adaptive control methods, by which the maximum EV penetration of the hybrid AC/DC LVDN is increased from 85% to 215% compared with the AC LVDN

    Smart metering and its use for distribution network control

    Get PDF
    Global energy demand is increasing, with the adoption of electric vehicles, in particular, representing a significant prospective demand on electricity distribution networks. The exploitation of renewable generation sources, driven by increased economic viability, technological maturity, and the need for environmental sustainability, is expected to play an increasingly important role in meeting this demand. However, the adoption of such low-carbon technologies necessitates a significant change in the way that distribution networks are monitored and controlled. This work examines the state of the art in the impact of low-carbon technologies on distribution networks, the technical strategies available to mitigate these impacts and their relative merits, and the architecture of the control systems used to effect such strategies. Smart metering and advanced metering infrastructure (AMI) are a fundamental component of these smart grid systems, providing widespread visibility of conditions at the very periphery of distribution networks which has not previously been feasible, but where the impact of low-carbon technologies is significant. This work describes the development of a hardware-in-the-loop test rig incorporating multiple, custom-built, hardware smart meter test beds, and the use of this test rig to demonstrate the implementation of real-time voltage control within a simulated low voltage (LV) distribution network. However, the adoption of smart metering and AMI inevitably incurs cyber security vulnerabilities which did not exist in the case of meters with no facility for remote communication. This work examines cyber security issues pertinent to smart grids and AMI in particular, and describes the analysis of the cyber security vulnerabilities of a commercially deployed smart electricity meter. The exploitation of these vulnerabilities in a manner which permits unauthorised electronic access to the device is also described. Finally, recommendations are made of revisions to the hardware, firmware and communications protocols used by the compromised meter which may mitigate the vulnerabilities identified
    corecore