34 research outputs found

    Semi-Automatic Annotation Tool to Build Large Dependency Tree-Tagged Corpus

    Get PDF
    PACLIC 21 / Seoul National University, Seoul, Korea / November 1-3, 200

    Proceedings of the COLING 2004 Post Conference Workshop on Multilingual Linguistic Ressources MLR2004

    No full text
    International audienceIn an ever expanding information society, most information systems are now facing the "multilingual challenge". Multilingual language resources play an essential role in modern information systems. Such resources need to provide information on many languages in a common framework and should be (re)usable in many applications (for automatic or human use). Many centres have been involved in national and international projects dedicated to building har- monised language resources and creating expertise in the maintenance and further development of standardised linguistic data. These resources include dictionaries, lexicons, thesauri, word-nets, and annotated corpora developed along the lines of best practices and recommendations. However, since the late 90's, most efforts in scaling up these resources remain the responsibility of the local authorities, usually, with very low funding (if any) and few opportunities for academic recognition of this work. Hence, it is not surprising that many of the resource holders and developers have become reluctant to give free access to the latest versions of their resources, and their actual status is therefore currently rather unclear. The goal of this workshop is to study problems involved in the development, management and reuse of lexical resources in a multilingual context. Moreover, this workshop provides a forum for reviewing the present state of language resources. The workshop is meant to bring to the international community qualitative and quantitative information about the most recent developments in the area of linguistic resources and their use in applications. The impressive number of submissions (38) to this workshop and in other workshops and conferences dedicated to similar topics proves that dealing with multilingual linguistic ressources has become a very hot problem in the Natural Language Processing community. To cope with the number of submissions, the workshop organising committee decided to accept 16 papers from 10 countries based on the reviewers' recommendations. Six of these papers will be presented in a poster session. The papers constitute a representative selection of current trends in research on Multilingual Language Resources, such as multilingual aligned corpora, bilingual and multilingual lexicons, and multilingual speech resources. The papers also represent a characteristic set of approaches to the development of multilingual language resources, such as automatic extraction of information from corpora, combination and re-use of existing resources, online collaborative development of multilingual lexicons, and use of the Web as a multilingual language resource. The development and management of multilingual language resources is a long-term activity in which collaboration among researchers is essential. We hope that this workshop will gather many researchers involved in such developments and will give them the opportunity to discuss, exchange, compare their approaches and strengthen their collaborations in the field. The organisation of this workshop would have been impossible without the hard work of the program committee who managed to provide accurate reviews on time, on a rather tight schedule. We would also like to thank the Coling 2004 organising committee that made this workshop possible. Finally, we hope that this workshop will yield fruitful results for all participants

    Proceedings

    Get PDF
    Proceedings of the Ninth International Workshop on Treebanks and Linguistic Theories. Editors: Markus Dickinson, Kaili Müürisep and Marco Passarotti. NEALT Proceedings Series, Vol. 9 (2010), 268 pages. © 2010 The editors and contributors. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/15891

    Representation and Processing of Composition, Variation and Approximation in Language Resources and Tools

    Get PDF
    In my habilitation dissertation, meant to validate my capacity of and maturity for directingresearch activities, I present a panorama of several topics in computational linguistics, linguisticsand computer science.Over the past decade, I was notably concerned with the phenomena of compositionalityand variability of linguistic objects. I illustrate the advantages of a compositional approachto the language in the domain of emotion detection and I explain how some linguistic objects,most prominently multi-word expressions, defy the compositionality principles. I demonstratethat the complex properties of MWEs, notably variability, are partially regular and partiallyidiosyncratic. This fact places the MWEs on the frontiers between different levels of linguisticprocessing, such as lexicon and syntax.I show the highly heterogeneous nature of MWEs by citing their two existing taxonomies.After an extensive state-of-the art study of MWE description and processing, I summarizeMultiflex, a formalism and a tool for lexical high-quality morphosyntactic description of MWUs.It uses a graph-based approach in which the inflection of a MWU is expressed in function ofthe morphology of its components, and of morphosyntactic transformation patterns. Due tounification the inflection paradigms are represented compactly. Orthographic, inflectional andsyntactic variants are treated within the same framework. The proposal is multilingual: it hasbeen tested on six European languages of three different origins (Germanic, Romance and Slavic),I believe that many others can also be successfully covered. Multiflex proves interoperable. Itadapts to different morphological language models, token boundary definitions, and underlyingmodules for the morphology of single words. It has been applied to the creation and enrichmentof linguistic resources, as well as to morphosyntactic analysis and generation. It can be integratedinto other NLP applications requiring the conflation of different surface realizations of the sameconcept.Another chapter of my activity concerns named entities, most of which are particular types ofMWEs. Their rich semantic load turned them into a hot topic in the NLP community, which isdocumented in my state-of-the art survey. I present the main assumptions, processes and resultsissued from large annotation tasks at two levels (for named entities and for coreference), parts ofthe National Corpus of Polish construction. I have also contributed to the development of bothrule-based and probabilistic named entity recognition tools, and to an automated enrichment ofProlexbase, a large multilingual database of proper names, from open sources.With respect to multi-word expressions, named entities and coreference mentions, I pay aspecial attention to nested structures. This problem sheds new light on the treatment of complexlinguistic units in NLP. When these units start being modeled as trees (or, more generally, asacyclic graphs) rather than as flat sequences of tokens, long-distance dependencies, discontinu-ities, overlapping and other frequent linguistic properties become easier to represent. This callsfor more complex processing methods which control larger contexts than what usually happensin sequential processing. Thus, both named entity recognition and coreference resolution comesvery close to parsing, and named entities or mentions with their nested structures are analogous3to multi-word expressions with embedded complements.My parallel activity concerns finite-state methods for natural language and XML processing.My main contribution in this field, co-authored with 2 colleagues, is the first full-fledged methodfor tree-to-language correction, and more precisely for correcting XML documents with respectto a DTD. We have also produced interesting results in incremental finite-state algorithmics,particularly relevant to data evolution contexts such as dynamic vocabularies or user updates.Multilingualism is the leitmotif of my research. I have applied my methods to several naturallanguages, most importantly to Polish, Serbian, English and French. I have been among theinitiators of a highly multilingual European scientific network dedicated to parsing and multi-word expressions. I have used multilingual linguistic data in experimental studies. I believethat it is particularly worthwhile to design NLP solutions taking declension-rich (e.g. Slavic)languages into account, since this leads to more universal solutions, at least as far as nominalconstructions (MWUs, NEs, mentions) are concerned. For instance, when Multiflex had beendeveloped with Polish in mind it could be applied as such to French, English, Serbian and Greek.Also, a French-Serbian collaboration led to substantial modifications in morphological modelingin Prolexbase in its early development stages. This allowed for its later application to Polishwith very few adaptations of the existing model. Other researchers also stress the advantages ofNLP studies on highly inflected languages since their morphology encodes much more syntacticinformation than is the case e.g. in English.In this dissertation I am also supposed to demonstrate my ability of playing an active rolein shaping the scientific landscape, on a local, national and international scale. I describemy: (i) various scientific collaborations and supervision activities, (ii) roles in over 10 regional,national and international projects, (iii) responsibilities in collective bodies such as program andorganizing committees of conferences and workshops, PhD juries, and the National UniversityCouncil (CNU), (iv) activity as an evaluator and a reviewer of European collaborative projects.The issues addressed in this dissertation open interesting scientific perspectives, in whicha special impact is put on links among various domains and communities. These perspectivesinclude: (i) integrating fine-grained language data into the linked open data, (ii) deep parsingof multi-word expressions, (iii) modeling multi-word expression identification in a treebank as atree-to-language correction problem, and (iv) a taxonomy and an experimental benchmark fortree-to-language correction approaches

    Compiling and annotating a learner corpus for a morphologically rich language: CzeSL, a corpus of non-native Czech

    Get PDF
    Learner corpora, linguistic collections documenting a language as used by learners, provide an important empirical foundation for language acquisition research and teaching practice. This book presents CzeSL, a corpus of non-native Czech, against the background of theoretical and practical issues in the current learner corpus research. Languages with rich morphology and relatively free word order, including Czech, are particularly challenging for the analysis of learner language. The authors address both the complexity of learner error annotation, describing three complementary annotation schemes, and the complexity of description of non-native Czech in terms of standard linguistic categories. The book discusses in detail practical aspects of the corpus creation: the process of collection and annotation itself, the supporting tools, the resulting data, their formats and search platforms. The chapter on use cases exemplifies the usefulness of learner corpora for teaching, language acquisition research, and computational linguistics. Any researcher developing learner corpora will surely appreciate the concluding chapter listing lessons learned and pitfalls to avoid

    CLiFF Notes: Research in the Language, Information and Computation Laboratory of the University of Pennsylvania

    Get PDF
    One concern of the Computer Graphics Research Lab is in simulating human task behavior and understanding why the visualization of the appearance, capabilities and performance of humans is so challenging. Our research has produced a system, called Jack, for the definition, manipulation, animation and human factors analysis of simulated human figures. Jack permits the envisionment of human motion by interactive specification and simultaneous execution of multiple constraints, and is sensitive to such issues as body shape and size, linkage, and plausible motions. Enhanced control is provided by natural behaviors such as looking, reaching, balancing, lifting, stepping, walking, grasping, and so on. Although intended for highly interactive applications, Jack is a foundation for other research. The very ubiquitousness of other people in our lives poses a tantalizing challenge to the computational modeler: people are at once the most common object around us, and yet the most structurally complex. Their everyday movements are amazingly fluid, yet demanding to reproduce, with actions driven not just mechanically by muscles and bones but also cognitively by beliefs and intentions. Our motor systems manage to learn how to make us move without leaving us the burden or pleasure of knowing how we did it. Likewise we learn how to describe the actions and behaviors of others without consciously struggling with the processes of perception, recognition, and language. Present technology lets us approach human appearance and motion through computer graphics modeling and three dimensional animation, but there is considerable distance to go before purely synthesized figures trick our senses. We seek to build computational models of human like figures which manifest animacy and convincing behavior. Towards this end, we: Create an interactive computer graphics human model; Endow it with reasonable biomechanical properties; Provide it with human like behaviors; Use this simulated figure as an agent to effect changes in its world; Describe and guide its tasks through natural language instructions. There are presently no perfect solutions to any of these problems; ultimately, however, we should be able to give our surrogate human directions that, in conjunction with suitable symbolic reasoning processes, make it appear to behave in a natural, appropriate, and intelligent fashion. Compromises will be essential, due to limits in computation, throughput of display hardware, and demands of real-time interaction, but our algorithms aim to balance the physical device constraints with carefully crafted models, general solutions, and thoughtful organization. The Jack software is built on Silicon Graphics Iris 4D workstations because those systems have 3-D graphics features that greatly aid the process of interacting with highly articulated figures such as the human body. Of course, graphics capabilities themselves do not make a usable system. Our research has therefore focused on software to make the manipulation of a simulated human figure easy for a rather specific user population: human factors design engineers or ergonomics analysts involved in visualizing and assessing human motor performance, fit, reach, view, and other physical tasks in a workplace environment. The software also happens to be quite usable by others, including graduate students and animators. The point, however, is that program design has tried to take into account a wide variety of physical problem oriented tasks, rather than just offer a computer graphics and animation tool for the already computer sophisticated or skilled animator. As an alternative to interactive specification, a simulation system allows a convenient temporal and spatial parallel programming language for behaviors. The Graphics Lab is working with the Natural Language Group to explore the possibility of using natural language instructions, such as those found in assembly or maintenance manuals, to drive the behavior of our animated human agents. (See the CLiFF note entry for the AnimNL group for details.) Even though Jack is under continual development, it has nonetheless already proved to be a substantial computational tool in analyzing human abilities in physical workplaces. It is being applied to actual problems involving space vehicle inhabitants, helicopter pilots, maintenance technicians, foot soldiers, and tractor drivers. This broad range of applications is precisely the target we intended to reach. The general capabilities embedded in Jack attempt to mirror certain aspects of human performance, rather than the specific requirements of the corresponding workplace. We view the Jack system as the basis of a virtual animated agent that can carry out tasks and instructions in a simulated 3D environment. While we have not yet fooled anyone into believing that the Jack figure is real , its behaviors are becoming more reasonable and its repertoire of actions more extensive. When interactive control becomes more labor intensive than natural language instructional control, we will have reached a significant milestone toward an intelligent agent

    CLiFF Notes: Research in the Language Information and Computation Laboratory of The University of Pennsylvania

    Get PDF
    This report takes its name from the Computational Linguistics Feedback Forum (CLIFF), an informal discussion group for students and faculty. However the scope of the research covered in this report is broader than the title might suggest; this is the yearly report of the LINC Lab, the Language, Information and Computation Laboratory of the University of Pennsylvania. It may at first be hard to see the threads that bind together the work presented here, work by faculty, graduate students and postdocs in the Computer Science, Psychology, and Linguistics Departments, and the Institute for Research in Cognitive Science. It includes prototypical Natural Language fields such as: Combinatorial Categorial Grammars, Tree Adjoining Grammars, syntactic parsing and the syntax-semantics interface; but it extends to statistical methods, plan inference, instruction understanding, intonation, causal reasoning, free word order languages, geometric reasoning, medical informatics, connectionism, and language acquisition. With 48 individual contributors and six projects represented, this is the largest LINC Lab collection to date, and the most diverse

    Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020

    Get PDF
    On behalf of the Program Committee, a very warm welcome to the Seventh Italian Conference on Computational Linguistics (CLiC-it 2020). This edition of the conference is held in Bologna and organised by the University of Bologna. The CLiC-it conference series is an initiative of the Italian Association for Computational Linguistics (AILC) which, after six years of activity, has clearly established itself as the premier national forum for research and development in the fields of Computational Linguistics and Natural Language Processing, where leading researchers and practitioners from academia and industry meet to share their research results, experiences, and challenges
    corecore