55,425 research outputs found

    Implementing Default and Autoepistemic Logics via the Logic of GK

    Full text link
    The logic of knowledge and justified assumptions, also known as logic of grounded knowledge (GK), was proposed by Lin and Shoham as a general logic for nonmonotonic reasoning. To date, it has been used to embed in it default logic (propositional case), autoepistemic logic, Turner's logic of universal causation, and general logic programming under stable model semantics. Besides showing the generality of GK as a logic for nonmonotonic reasoning, these embeddings shed light on the relationships among these other logics. In this paper, for the first time, we show how the logic of GK can be embedded into disjunctive logic programming in a polynomial but non-modular translation with new variables. The result can then be used to compute the extension/expansion semantics of default logic, autoepistemic logic and Turner's logic of universal causation by disjunctive ASP solvers such as claspD(-2), DLV, GNT and cmodels.Comment: Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    General logical databases and programs: Default logic semantics and stratification

    Get PDF
    AbstractDefault logic is introduced as a well-suited formalism for defining the declarative semantics of deductive databases and logic programs. After presenting, in general, how to use default logic in order to define the meaning of logical databases and logic programs, the class of stratifiable databases and programs is extensively studied in this framework. Finally, the default logic approach to the declarative semantics of logical databases and programs is compared with the other major approaches. This comparison leads to showing some advantages of the default logic approach

    Graph theoretical structures in logic programs and default theories

    Get PDF
    In this paper we present a graph representation of logic programs and default theories. We show that many of the semantics proposed for logic programs can be expressed in terms of notions emerging from graph theory, establishing in this way a link between the fields. Namely the stable models, the partial stable models, and the well-founded semantics correspond respectively to the kernels, semikernels and the initial acyclic part of the associated graph. This link allows us to consider both theoretical problems (existence, uniqueness) and computational problems (tractability, algorithms, approximations) from a more abstract and rather combinatorial point of view. It also provides a clear and intuitive understanding about how conflicts between rules are resolved within the different semantics. Furthermore, we extend the basic framework developed for logic programs to the case of Default Logic by introducing the notions of partial, deterministic and well-founded extensions for default theories. These semantics capture different ways of reasoning with a default theory

    An encompassing framework for Paraconsistent Logic Programs

    Get PDF
    AbstractWe propose a framework which extends Antitonic Logic Programs [Damásio and Pereira, in: Proc. 6th Int. Conf. on Logic Programming and Nonmonotonic Reasoning, Springer, 2001, p. 748] to an arbitrary complete bilattice of truth-values, where belief and doubt are explicitly represented. Inspired by Ginsberg and Fitting's bilattice approaches, this framework allows a precise definition of important operators found in logic programming, such as explicit and default negation. In particular, it leads to a natural semantical integration of explicit and default negation through the Coherence Principle [Pereira and Alferes, in: European Conference on Artificial Intelligence, 1992, p. 102], according to which explicit negation entails default negation. We then define Coherent Answer Sets, and the Paraconsistent Well-founded Model semantics, generalizing many paraconsistent semantics for logic programs. In particular, Paraconsistent Well-Founded Semantics with eXplicit negation (WFSXp) [Alferes et al., J. Automated Reas. 14 (1) (1995) 93–147; Damásio, PhD thesis, 1996]. The framework is an extension of Antitonic Logic Programs for most cases, and is general enough to capture Probabilistic Deductive Databases, Possibilistic Logic Programming, Hybrid Probabilistic Logic Programs, and Fuzzy Logic Programming. Thus, we have a powerful mathematical formalism for dealing simultaneously with default, paraconsistency, and uncertainty reasoning. Results are provided about how our semantical framework deals with inconsistent information and with its propagation by the rules of the program
    • …
    corecore