
INFORMATION AND COMPUTATION 91, 15-54 (1991)

General Logical Databases and Programs:
Default Logic Semantics and Stratification

NICOLE BIDOIT* AND CHRISTINE FROIDEVAIJX~

L.R.I., U.A. 410 du CNRS, UnioersitP Paris Sud,
91405 Orsay Cedex, France

Default logic is introduced as a well-suited formalism for defining the declarative
semantics of deductive databases and logic programs. After presenting, in general,
how to use default logic in order to define the meaning of logical databases and
logic programs, the class of stratitiable databases and programs is extensively
studied in this framework. Finally, the default logic approach to the declarative
semantics of logical databases and programs is compared with the other major
approaches. This comparison leads to showing some advantages of the default logic
approach. 0 1991 Academic Press, Inc.

1. INTRODUCTION

In the past few years, a number of non-monotonic logics have been
introduced for default reasoning (McCarthy, 1980; McDermott and Doyle,
1980; Reiter, 1980). These logics have recently received a great deal of
attention, especially in the fields of logic programming and deductive
databases.

The purpose of this paper is to show that Reiter’s (1980) default logic is
a well-suited formalism for defining the meaning of logical databases and
logic programs in a declarative fashion. Default logic provides a natural
formalization of the “closed world assumption.” It also provides a natural
interpretation of negation, that we call negation by default. Intuitively,
negation by default can be viewed as the declarative analog of negation by
failure (Clark, 1978) which is essentially a computational notion. Thus, the
declarative semantics of logical databases and logic programs’ is defined
here by means of the extensions of the default theories associated with
these databases or programs. (Extensions of the default theory specifying a
logical database are maximally consistent which is not the case for exten-

*Work performed by this author was partially supported by the PRC BD3 national
project.

+ Work performed by this author was partially supported by the PRC IA national project,
i By convention disjunction is allowed in a database but not in a logic program.

15
643.,91,,-?

0890-5401/91 $3.00
Copyright 0 1991 by Academtc Press, Inc.

All rights of reproduction in any form reserved.

16 BIDOIT AND FROIDEVAUX

sion of default theories in general.) However, the default theory specifying
a logical database may not have an extension. In other words, a logical
database may be inconsistent with respect to default logic. The class of
stratiliable databases is investigated as a subclass of consistent logical
databases, in the default logic framework. The concept of stratification
primarily introduced in Chandra and Hare1 (1985) and further studied in
(Apt, Blair, and Walker, 1988; Lifschitz, 1988; Naqvi, 1986; Przymusinski,
1989; Przymusinska and Przymusinski, 1988; Van Gelder, 1988) forbids
recursion involving negation.

The second purpose of the paper is to compare the expressiveness of
default logic with the expressiveness of other formalisms proposed in order
to define the declarative semantics of logical databases and logic programs.
Mainly, we lay stress on the comparison between the default logic
approach and the perfect model approach (Przymusinski, 1989). This
comparative study leads to the following conclusions:

(1) In general, the two approaches do not behave in the same way.
In particular, the perfect model approach fails to capture the intended
meaning of simple and useful programs while the default logic semantics
behave satisfactory for these programs.

(2) For stratiliable databases, the two approaches are equivalent.
Stratifiable databases have a quite simple structure. Indeed, roughly
speaking, a stratifiable database (with negation) can be organized as a
sequence of positive databases (databases without negation). This explains
why the declarative semantics of a stratiliable database can be defined
exclusively in terms of minimal models of subsets of this database. This also
implies that concepts such as extension of default theories, supported
model, preference relation (among minimal models) are unnecessarily
introduced on top of the notion of minimal model while dealing with
stratifiable logical databases. The equivalence between the default logic and
the perfect model approaches is established through the property explained
above and satisfied (only) by stratifiable databases.

For stratifiable logic programs, the equivalence of default logic, iterative
fixed point approach, and pointwise circumscription is shown through the
equivalence of default logic and perfect model and through the equivalence
of perfect model, iterative fixed point, and pointwise circumscription
established in (Przymusinski, 1989; Lifschitz, 1988).

The autoepistemic approach (Gelfond, 1987) and the stable model
approach (Gelfond and Lifschitz, 1988) are also discussed versus the
default logic semantics.

The paper is organized as follows. Section 2 provides a review of basic
notions on default logic. In Section 3, the declarative semantics of logical

GENERAL LOGICALDATABASES AND PROGRAMS 17

databases and logic programs is investigated in the default logic
framework. In Section 4, we proceed to a comparative study of the default
logic approach and the other approaches proposed in the literature.

2. DEFAULT LOGIC

In the following, we assume that the reader is familiar with propositional
and first-order logic. In order to make the discussion clear, we review some
concepts of logic and introduce default logic (Reiter, 1980). We also
present the notations used throughout the paper.

Let L be a first-order language. A set of formulae of L is said to be con-
sistent if it has at least one (first-order) model, and is said to be complete
if it is maximally consistent. First-order inference is denoted I---. The logical
closure of a set E of formulae, denoted Th(E), is {CX 1 a E L and E + a}. By
convention, a Herbrand model M of a set of formulae is represented by
enumerating the ground atomic formulae true for M. Finally, let A4 and M’
be two models of a set W of formulae, we say that 44’ is less than M,
denoted M’ d M, iff M’ c M, and that M is a minimal model (Bossu and
Siegel, 1985) of W iff there exists no model M’ of W such that M # M’ and
M’<M.

Default logic has been introduced by Reiter (1980) in order to formalize
default reasoning. Default reasoning is a fundamental component of com-
mon sense reasoning and is a form of non-monotonic reasoning. Default
logic allows one to reason about real world situations and more specifically
about incomplete descriptions of real world situations using non-
monotonic inferences of the form: “in absence of any information to the
contrary, assume...,” or “if certain information cannot be deduced from the
given knowledge base, then conclude... .” In order to formally represent
such a type of inference, default rules are introduced.

A closed default rule d over L is any expression of the form
a : M/I,, Mfl,/y, where n 2 1 and a, called prerequisite, fll, /?,, called
justifications and y, called consequent, are well-formed closed formulae in
L. Note here that M is simply a new symbol to be read as “it is consistent.”
We denote by prer(d) the formula a, just(d) the set (,!?,, /I,,}, cons(d) the
formula y, and for a set D of default rules JUST(D) = UdeD just(d).
A default rule d is normal iff just(d) = (cons(d)}.

A (closed) default theory A over L consists of a pair (D, W), where W is
a set of closed formulae in L (W is a possibly incompletely specified
knowledge base) and D is a set of (closed) default rules over L (D is a set
of meta-rules used to enrich W). In fact a default theory A induces a set of
first-order theories, called extensions of A. For the purpose of our discus-
sion, to the least fixed point definition of Reiter we prefer the more intuitive
characterization :

18 BIDOIT AND FROIDEVAUX

A set E of sentences of L is an extension for the default theory
A = (D, W) iff E= Ui=O...m Ei, where:

E,,= Wand, for i30,

Ei+, = Th(Ej)u (y I dED, cons(d)=?, prer(d)EE,, and Vg~just(d),
-$$El.

Let us point out that E occurs in the definition of Ei+ ,
The generating defaults of E with respect to A are: GD(A, E)=

{dE D 1 prer(d) E E and VP E just(d), 1 p 4: E}. In general, a default theory
may not have extensions and if it does, these extensions may not be
complete.

THEOREM 2.1 (Reiter, 1980). Every normal default theory has an exten-
sion.

A default model for A is a Herbrand model of an extension E for A.
Because an extension E for A may not be complete in general, E may have
more than one Herbrand model. This implies that a default theory d may
have a unique extension but more than one default model.

Notation. Let T, ... T, be a sequence of sets. By convention, TAi
(1 <i,<t) denotes Ui=,...iTi.

3. POSITIVIST DEFAULT THEORIES AND STRATIFICATION

The purpose of this section is to describe the declarative semantics of
logic programs and deductive databases using Reiter’s default logic. The
two main issues raised by this are: for logic programs, it is largely
recognized that their expressive power should be increased by the ability
to express negation (Clark, 1978; Chandra and Harel, 1985; Clark and
Tarnlund, 1982; Lloyd, 1987); for deductive databases, both expressing
negation in the premises of rules and allowing the inference of disjunctive
information have to be combined (Bidoit and Hull, 1986, 1989).

In order to make the discussion clear, the concepts and results of the
paper are in general stated in the propositional case. At the end of this
section, a short discussion explains how to generalize these concepts and
results to encompass full first-order languages. In the following, Prop
denotes a set of propositions and L the propositional language over Prop.

We first show that the “closed world assumption” is an instance of
default reasoning. Roughly speaking, making the closed world assumption
(CWA) corresponds to making the choice to give a description of real
world situations by restricting it to positive (true) information. The CWA

GENERALLOGICALDATABASESAND PROGRAMS 19

tremendously simplifies the representation of information. Under the CWA,
the description of the information contained in the database is incomplete:
it does not include negative information. However, the CWA presumes a
complete knowledge about the real world situation being modeled; under
the CWA, in order to derive negative information, for example, in order to
derive the negative fact 1 A, one resorts to the following (default) inference
process. * “if 1 A is consistent with the knowledge base, then infer that 1 A
is part of the knowledge base,” or in terms of default rules, :M 1 A/l A.

Formally, we have

DEFINITION 3.1. Let A E Prop. The closed world default rule associated
with the proposition A is the expression :M 1 A/i A. The set of closed
world default rules associated with the propositional language L, denoted
CWA,, is

CWA,= {:MlA/lA (AEProp}.

CWA default reasoning is a powerful form of default reasoning. The
following property illustrates that the CWA presumes full knowledge of the
domain modeled: if a fact A is not known (to be true or to be false), from
the absence of A in the database, we would deduce 1 A which contradicts
our lack of knowledge about the fact A.

LEMMA 3.1. Let L be a propositional language and A = (D, W) be a
default theory over L such that CWA, c D and W is consistent. Then each
extension E of A = (D, W) is complete.

ProoJ: Let E be an extension of (D, W). W consistent implies that E is
consistent (Reiter, 1980). Assume that neither A nor -IA belongs to E.
Because E = Th(E), E u (1 A} is consistent. Hence the CWA-default rule
:M 1 A/i A can be “applied” to infer that -IA is in E, a contradiction. m

Because an extension E of a default theory A = (D, W) whose set of
default rules D includes the CWA-rules is complete, E has a unique model.
This implies that for a default theory A = (D, W) whose set of default rules
D includes the CWA-rules, the set of extensions of A can be identified with
the set of default models for A.

A strong correspondence between CWA-default logic and minimalism
was exhibited in Bidoit and Hull (1986, 1989). For the purpose of our
further discussion, we formally recall this result here:

THEOREM 3.2 (Bidoit and Hull, 1986). Let A= (CWA,, W) be u
default theory over L such that W is a set of definite clauses (where the

20 BIDOJT AND FROJDEVAUX

disjunctive form of a definite clause has at least one positive literal). The
three assertions are equivalent:

a. E is an extension of A,

b. E=Th(Wv{lPl PEPropand ~PEE}), and

The set A4 of positive literals in E is a minimal (Herbrand) model
for ii 1

Intuitively, part b says that Wand the negative “facts” in E are sufficient
to imply all (true) facts in E, hence E contains as much “false” facts as
possible (part c). Part c of the theorem can be also read as “a default model
for A is a minimal model for W.”

We are now interested in expressing negation in the premises of deduc-
tive rules in a logical database. Assume, for example, that we want to
express the following information: “If today is a week day and if John is
not sick then John is at work.” It is quite obvious that negation here
cannot be interpreted by first-order logic negation. The formulae
(WEEK-DAY A ~SJCJ~OHN-,WORK-JOHN) and (WEELDAY+SJCK-IOHN v
WORK-JOHN) are semantically equivalent in first-order logic. From the
point of view of logic programming and deductive databases, it is largely
recognized that this equivalence is undesirable. In fact, making the CWA
leads to interpret negation not in the classical manner but as negation by
default (Gabbay and Sergot, 1986). In a coherent fashion, we claim that
negation in premises of deductive rules should also be interpreted as nega-
tion by default. It is clear that the meaning of “If today is a week day and
if John is not sick then John is at work” is more accurately captured (under
CWA) by: “if it is known that today is a week day and if there is no
contradiction to assume that John is not sick then infer that John is at
work.” Thus, using the default logic of Reiter, we would write: WEELDAY :
Ml SICK-JOHN/WORK-JOHN.

We would like to point out here that negation by default and negation
as failure (Clark, 1978) are slightly different. As explained in Gabbay and
Sergot (1986), the notion of negation as failure is a computational notion.
It is based on a resolution procedure and on the concept of failure of this
procedure. On the other hand, the notion of negation by default is a logical
one. It is based on the classical notion of consistency.

The general form of default rules used to express deductive rules with
negative premises is defined below:

Definition 3.2. A default rule d over L is a positivist default rule if
prer(d) is a conjunction (possibly empty) of positive literal% just(d) is a
nonempty set of negative literals, and cons(d) is a disjunction of positive
literals (at least one).

GENERAL LOGICALDATABASESAND PROGRAMS 21

We now are able to syntactically specify logical databases and logic
programs in the framework of default logic, Logical databases and logic
programs are mapped on a specific class of default theories called positivist
default theories whose definition follows:

DEFINITION 3.3. A default theory A = (D, W) over a language L is a
positivist default theory iff CWA, E D, D - CWA, is a set of positivist
default rules, and W is a set of definite clauses.

CONVENTION. In the following, by convention:

“logical database” designates a positivist default theory, in general and

“logic program” designates more specifically a positivist default theory
A = (D, W) without disjunction; i.e., consequence of any positivist default
rule in D is reduced to a single literal and W is a set of definite Horn
clauses.

PRINCIPLE. In the following, the declarative semantics of a logical
database/logic program is defined by means of the set of extensions of the
positivist default theory specifying the database/program or in an equiva-
lent way by means of the set of default models of the positivist default
theory specifying the database/program.

Recall here that the set of default rules of a positivist default theory A
includes the CWA-rules and thus the set of extensions of A can be
identified with the set of default models for A.

EXAMPLE 3.1 (A logical database). Assume we want to express the
following information about someone named John:

Today is a weak day.

If today is a weak day and if John is not sick then John is at work.

If John is at work then he is teaching or attending a meeting.

This database is specified by the following positivist default theory (D, W)
below.

WEEKDAY

WEEKI)AY : M 1 SICLJOHN/WORKJOHN WORK-JOHN * TEACHJOHN V meetingJoHN

Positivist default rules

D
Positive clauses

W

22 BIDOIT AND FROIDEVAUX

It is easy to verify that the positivist default theory (D, W) admits two
extensions :

E= Th(W

U {WEEK-DAY, 1 SICK-JOHN, WORKJOHN, TEACH-JOHN,

1 MEETING-IOHN }),

E’=Th(W

U (WEEK-DAY, 1 SICK-JOHN, WORK-JOHN, 1 TEACH.JOHN,

MEETINGJOHN }).

Using default logic allows us to clearly distinguish rules that involve
negation from those that do not. This distinction is of particular interest
because first-order logic is not sufficient for defining the semantics of the
first kind of rules, while it is sufficient for the second kind.

Let us discuss two more examples in order to illustrate well-known
problems that arise when one increases the expressive power of logical
databases and logic programs with negation.

EXAMPLE 3.2. Consider the two positivist default theories A, =
(Di, W,) and A, = (D2, W,) where:

D,={:Ml AIlA, :A41 B/TB, :MlA/B, :Ml B/A}, W,={ };and

D, = (:M -I AIlA, :M 1 B/-I B, :A4 -I A/A}, W,= (B}.

d, has two extensions, namely Th({ 1 A, B)) and Th({ A, -I B}) but A, has
no extension.

The example above shows that a positivist default theory (d,) may not
have an extension: “inconsi.stent” programs can be written. Intuitively, this
arises when a certain type of recursion occurs on negation. Note that recur-
sion involving negation does not necessarily lead to inconsistencies in our
framework. The default theory A, does not contain (syntactically) any dis-
junctive consequences, neither in D, nor in WI. Intuitively, this suggests
that A, does not contain incomplete informations. However, A, has two
extensions (as a matter of fact the same extensions as the “disjunctive”
default theory ({ :M 1 AIlA, :M 1 B/iB), {A v B)). In this case, we
say that the logic program A, is “ambiguous.”

At this point of the presentation, it is interesting to examine the various
semantics associated by other approaches with the logic program A, of
Example 3.2. Recall that under default logic interpretation, this program is
considered to be inconsistent.

(a) Following the perfect model approach (Przymusinski, 1988)
further discussed in Section 4, this logic program would be specified by the

GENERALLOGICALDATABASES AND PROGRAMS 23

set { B,l A + A} of P-clauses and has a unique perfect model {A, B}. Note
that following this approach, negation is surprisingly “interpreted” in this
case by first-order negation and that this program is equivalent to
{A v A, B} = (A, B).

(b) Following the autoepistemic approach (Gelfond, 1987; Moore,
1985) further discussed in Section 4, this program would be specified by the
autoepistemic theory {B, 1 LA --, A} and does not have stable expansions.

(c) Following the default logic approach of Lukaszewicz (1988)
which is a variant of Reiter’s default logic, the default theory used to
specify this program is still A, but in this case, A, has a unique m-extension
(modified extension) Th({ B, 1 A 1) with respect to F= { 1 A 1.

(d) Finally, following the completion approach (Clark, 1978), the
completion of this program is {B ++ true, 1 A t-) A}. It is inconsistent.

In the following, we restrict our attention to consistent and non-
ambiguous logical databases/logic programs, that is, to positivist default
theories having at least one extension or equivalently having at least one
default model. More precisely, among these consistent and non-ambiguous
logical databases, we are going to investigate the class of stratifiable logical
databases. Stratification has been first introduced in Chandra and Hare1
(1985), then investigated in Apt et al. (1988), Naqvi (1986), and Van
Gelder (1988) and also extended by Przymusinski (1988). Roughly
speaking, stratification forbids recursion involving negation.

DEFINITION 3.4. A positivist default theory A = (D, W) over the
language L is stratifiable iff there exists a sequence S= Prop, . . . Prop,,
called a strat@cation for A, such that Prop, . . Prop, is a partition of the
set Prop associated with L and satisfying:

(i) For each (P, A ... A P,: M 1 Q,, A4 1 Q,/RI v . . . v R,)
in D, there exists k in [1 . . . s] such that:

VIE [l . ..r]. RjEPropk,

VIE [l . ..p]. 31 <i<k 1 P,EPropi,

VIE [l ..+q], 31 <i<k 1 Q,jEPropi;

and
(ii) for each (P, A . . ’ A P, + R, v . . . v R,) E W, there exists k in

Cl . . . s] such that:

VIE [l . ..r]. RjEPropk,

Vj~[l . ..p]. 31 <idk 1 PjePropi.

24 BIDOIT AND FROIDEVAUX

EXAMPLE 3.1 (Continued). Two possible stratifications for (D, W) are
given below:

S= Prop,Prop, is a stratification for (D, W) with:

Prop, = {SICK-TOHN),

Prop, = {WEEK-DAY, wo~IuoHN, TEACH-JOHN, MEETINGJOHN},

and

S’= Prop;Prop;Prop;Propi is also a stratification for (D, W) with:

Prop; = { SICK-IOHN), Prop;= { WEEK-DAY}

Prop; = {WORKJOHN}, Prop:,= {TEACHJOHN, MEETINGJOHN}.

This example shows that there may be several different stratifications for
a positivist default theory. Note also that in our example, the “smallest” (in
the number of strata) stratification for (D, W) has two strata. Intuitively,
(D, W) is stratiliable because the “definition” of WORKJOHN in which
SICKJOHN occurs negatively can be totally “isolated” from the “definition”
of SICKJOHN. The notion of stratification implies a hierarchy of the
“definitions” of the propositions.

We just mention here without development that the problem of deciding
whether a database is stratiliable, is polynomial. The algorithm proposed in
Apt et al. (1988) takes into account logic programs (no disjunction) but is
easily generalizable to check whether a logical database (with disjunction)
is stratiliable.

Notation. Given a stratiliable positivist default theory (D, W) and a
stratification S = Prop, ... Prop, for (D, W), S induces a partitioning on D
and W. In the following, when S is understood, we denote by Li the
propositional language over the set Prop, of propositions. Also, when S is
understood, we denote by D, . . . D, (resp., W, ... W,) the elements of the
partition induced by S on D (resp., on W). For i = 1 . . . s, D; = {d) d E D and
cons(d)E and Wi= {u -+/? 1 CI+~E W and DE&}. In the following,
(Di, Wi) is called the ith stratum induced by S on (D, W). When S is
understood, CWA, denotes the set of closed world default rules associated
with the sublanguage Li of L. Note in particular, that for any stratification
S for (D, W), D, =CWA,.

Actually, an alternative definition of the meaning of a stratifiable logical
database can be easily and naturally obtained by utilizing the hierarchy of
the database induced by any stratification. Such an alternative definition is
proposed and shown equivalent to the general default semantics for logical
databases (Principle). Given a stratification S of a stratifiable positivist

GENERAL LOGICAL DATABASES AND PROGRAMS 25

default theory A, intuitively we know that, the negative premises of a
deductive rule in the ith stratum of A (that is, the justifications of default
rules in Di) are “completely defined” at some level j such that j< i. Thus
we propose to consider successively each stratum induced by 5’ on A and
propagate the information obtained at the ith level while examining the
(i+ 1)th stratum. This leads to an alternative definition of the semantics of
logical databases and logic programs based on the structure of these
databases or programs. However, we show in the further discussion that
this definition is independent of a given stratification.

DEFINITION 3.5. Let A be a positivist default theory over the language
L such that A is stratifiable. Let S = Prop, . . . Prop, be a stratification for
A. A set E of sentences over L is an extension of A with respect to S iff there
exists a sequence El, E, such that:

(i) E= E,, and

(ii) Vi~[l...~],E~isanextensionofA~=(D~, WiuEi_,),assuming
E,=@.

EXAMPLE 3.1 (Continued). Consider the already given stratification S.
The first stratum (0, = { :A4 1 SICK-JOHN/~SICK.IOHN}, W, = 0) induced
by S on (D, W) has a unique extension, namely:

E, = { 1 SICKJOHN >,

Now let us propagate E, in the second stratum (D2, W2) induced by S
on (D, W), that is let us consider the default theory (D,, IV;), where:

D2 = (:bf 1 WEEK-DAY/l WEEK-DAY, :M 1 WORIUOHN/l WORKJOHN,

:M 1 TEACHJOHN/l TEACK-JOHN,

:M 1 MEETINGJOHN/ 1 MEETING-JOHN

WEEK-DAY :M 1 SICKJOHN/WORKJOHN}

w; = {WEEK-DAY, WORKJOHN -+ TEACIE-IOHN V MEETINGJOHN}

U (-I SICK-JOHN >.

This default theory has two extensions, namely:

E2 = Th({WEEKJAY, 1 SICK-IOHN, WORK-JOHN,

TEACHJOHN, 1 MEETINGJOHN }),

E; = Th({WEEKDAY, 1 SICK-JOHN, WORK-JOHN,

1 TEACH-JOHN, MEETING-JOHN }).

26 BIDOIT AND FROIDEVAUX

Thus E, and E; are two extensions of (D, IV) with respect to the
stratification S. Note that they respectively coincide with the already given
extensions E and E’ of (D, W).

We now are going to show that a stratiliable positivist default theory has
at least one extension with respect to any stratification. Then we argue that
for a stratitiable positivist default theory, the notion of extension (as
defined by Reiter) and the notion of extension with respect to a stratifica-
tion are strictly equivalent. From this, we easily deduce that the concept of
extension with respect to a stratification is independent of the given
stratification and, moreover, that the stratification property is sufficient to
conclude the existence of canonical extensions for a positivist default
theory.

In order to proceed with this study, we need some intermediate results.
Roughly speaking, the next technical lemma states that given a positivist
default theory (D, W), if justifications of non-CWA-default rules in D have
their thruth value totally determined by the contents of W, then these
non-CWA-default rules can be turned into clauses that are added to W.

LEMMA 3.3. Let A = (D, W) be a default theory over the language L
such that D is a set of positivist default rules including CWA, and W is a
set of clauses. Assume that Q(1 Q) E JUST(D - CWA,), Q E W or 1 Q E W.
Then E is an extension of A iff E is an extension of (CWA,, WV W’),
where :

W’ = {a + y / d E D, a= prer(d), y = cons(d), and

Q(lQ)ejust(d), (~Q)E W}.

Sketch of Proof: (=E-) Assume that E is an extension of A. Let T
denote Th(WV W’ u { 1Q) 1Q E E}). To show that E is an extension of
A’= (CWA,, Wu W’), it suffices, by Theorem 3.2b, to show that E= T.
By noticing that W s E and by definition of W’, we directly obtain that
TcE.

In order to prove that E = u, = O.. ,xi Ei c T, we prove, by induction on
i, that Ei s T, where E, = W, and for i> 0, E,, , = Th(E,) u Fi with
Fi = (cons(d) (de D, prer(d) E Ei, Q(1 Q) E just(d), (1 Q) E E).

(-z=) Assume that E’ is an extension of A’= (CWA,, WV W’). To
prove that E’ is an extension of A = (D, W), we show that
E’=lJiCo.,,,Ei, where EO= W, and for i>O, Ej+,=Th(E,)uFi with
Fj = {cons(d)) de D, prer(d) E Ei, Q(1 Q) E just(d), (1 Q) E E’}.

WenotethatF,={~Q~(~Q)~W}w{y(a+y~W’,cl~W)andfor
ial, F,=(y(or-,y~W’, CL E Eij. On the one hand, by induction on i, we
show that Eis E’. On the other hand, using Theorem 3.2b, we show that
E’=Th(Wu W’u{lQ/ ~QEE’})GU~=~ ..r;o E,. 1

GENERAL LOGICALDATABASESAND PROGRAMS 27

The next result provides a variant of the definition of an extension with
respect to a stratification. This result makes use of the previous lemma.

COROLLARY 3.4. Let A be a positivist default theory over the language L
and assume that S = Prop, ‘.. Prop, is a stratification for A. Then E is an
extension of A with respect to S iff there exists a sequence El, E, such
that:

(i) E= E, and

(ii) Vie [l . ..s]. Ei is an extension of (CWA+i, Vi) with:

v;= u (WjUWJ
j=1 . ..i

and,for j= 1 “.s,

W; = (a -+ y (dE Dj, a = prer(d), y = cons(d) and,

V(lQ)Ejust(d), (lQ)EEj-l),

assuming E,, = 0.

Proof

CLAIM 3.1. Let E 1, E, be a sequence such that for i = 1 . .. s, Ei is
a set of sentences of Lhi. Then, E,, E, satisfies condition (ii) of
Definition 3.5 ijjf E,, E, satisfies condition (ii) of Corollary 3.4.

The proof of the claim is presented in Appendix A. i

The proof of Corollary 3.4 is immediate from the above claim. 1

This last result is of interest because it gives a definition of an extension
with respect to a stratification in terms of extensions of CWA-default
theories. Then we know that the extensions of a CWA-default theory
(D, W) can be identified with the minimal models of W. In fact,
Corollary 3.4 together with Theorem 3.2~ leads us to expect that mini-
malism is enough to define the semantics of stratifiable logical databases
and programs (Lemma 4.1.1 and 4.1.2 of Section 4).

We now simply invoke Corollary 3.4 to prove the two main results of
this section: the first one shows that stratifiable programs or databases are
consistent in the sense that, given a stratification S, an extension with
respect to S can be exhibited for these programs or databases; the second
one states the equivalence between Reiter’s notion of extension and the
notion of extension with respect to a stratification.

THEOREM 3.5. Let A be a positivist default theory over the language L
and assume that S is a stratification for A. Then,

A has an extension with respect to S.

28 BIDOIT AND FROIDEVAUX

Proof: Assuming S = Prop, ... Prop,, it suffices to show that
VIE [l . ..s]. (Di, WiuEi-,)-recall that E0 is assumed to be empty-has
an extension or equivalently, that ViE [1 . . . s], (CWA,i, Vi) has an
extension, where Vi is defined in Corollary 3.4. Note that Vie [1 . ..s].
(CWA,i, Vi) is a closed normal default theory, therefore by Theorem 2.1,
it has an extension. [

Again using Corollary 3.4, we have

THEOREM 3.6. Let A be a positivist default theory over the language L
and assume that S is a stratification for A. Then:

E is an extension of A iff E is an extension of A with respect to S.

Proof: (e) Let E be an extension of A with respect to S= Prop, ...
Prop,. We show that E is an extension of A, that is, E= U i=O. no Gi,
where G,= W, and Gi+I=Th(Gi)uTi with Ti= (cons(d) 1 dED,
prer(d) E Gi, and V(1 Q) Ejust(d), 1 Q E E}. By hypothesis, E= E,, where
for je [1 . . .s] Ej is an extension of (D,, Wj u Ej- i) (recall that E0 = a)
(or equivalently, extension of (CWA,, Vi), where Vj is defined in
Corollary 3.4).

a. Let us show first that lJizO,..~ GjcE,. In order to do this, we
show that Vie [O...co[, 3je [l ‘. . s], G, c Ej. We proceed by induction
on i:

i=O: G,= W, E, is an extension of (CWA,,, V,) and Wr V,C E,.

Induction step. Assume now that Vi< k, 3jE [l . ..s]. Gic Ej. Consider
G - Th(G,) u Tk. By induction hypothesis, let jc [1 . . . s] be such that kfl-

G, E Ej. Ej extension of (CWA,j, Vj) is complete over L,j, thus Th(G,) E
Th(Ej) = Ej. Now let y be in Tk (i.e.) let y be such that 3dE D, cons(d) = y,
prer(d) E Gk, and V(1 Q) Ejust(d), 1 Q E E. Then, prer(d) E Ej. Let j’ be
such that V(1 Q) E just(d), 1 Q E E,, and j0 = max(j, j’). It is clear that
(prer(d) + y) E W;, + , and thus y E Th(WJ,, + i u E,) s Ej, + , E E,. In conclu-
sion, Gk+, GE,.

b. It remains to show that E, E lJizO, ~ Gi. In order to do this, we
prove that VjE [1 . . . s], E, c u i= O.. co Gi. We proceed by induction on j:

j = 1: E, c G, is immediate.

Induction step. Suppose now that Vj < k, Ej c ui= O.. o. Gi. Let Ek + i be
an extension Of (CWA,k+ Ir wk + I u wk+ L u Ek). By Theorem 3.2b,
E k+,=Th(Wk+,UWb+, uE,u {iQ) ~QEE~+~}). Using arguments

GENERAL LOGICAL DATABASES AND PROGRAMS 29

similar to the ones used in the proof of Lemma 3.3 (part (-)a), we easily
show that

W k+l” Wb+l u{lQ I lQ~Ek+l}~ U Gi.
j=lJ...m

On the other hand, by induction hypothesis, we have that
EkzUi=o...,Gi. Thus>

(3) Assume now that E is an extension of A. Then E=Ui,O...m Gi,
where Go = W and G,+i = Th(Gi) u Ti with Ti = (cons(d) / de D,
prer(d) B G,, V(1 Q) E just(d), 1 Q E E}. We need an intermediate result to
continue the proof:

CLAIM 3.2. Vie [l . ..co[. VIE [l . ..s]. Th(Gi)) Ldk= Th(G, (L&).

The proof of the claim can be found in Appendix B.

To show that E is an extension of d with respect to S, we show that for
t=l ...s, Et= E 1 L,, is an extension of (D,, WtuEIwl), where E,= 0.
We proceed by induction on t:

t=l: E,= u (Gil L,,).
;=o.. cc

LetusshowthatE,=Th(W,u{lQIlQ~E,}):

a. Clearly, Th(W,u (lQ f ~QEE,})sE,.

b. It remains to show that E, c Th(W, u (1Q (1Q c E,})(i.e.)
vie [l . ..cc[.

Gil L,,GTh(W,u (lQ I lQ+}).

Go I La+, = W,=WW,ubQl lQGj)>

G,IL,l= Th(G,) I L, u T, I L,,

with T,) L,1 = (cons(d)) dED,, prer(d)EG,, and V(lQ)Ejust(d),
-IQIzE}. Because Di=CWA,, T,) L,,={-IQI ~QEE,} and from
Claim 3.2, we have Th(G,)) L,1 c Th(G,) L,,) = Th(W,) and thus:

G, I L,,sTh(W,u(lQI -IQEE~}).

Finally, for i >, 2, it is easy to see that:

Gi I L-1 = Th(G, I L,,)G Th(W,u (1Q I ~QEE,}).

30 BIDOIT AND FROIDEVAIJX

In conclusion, E, E Th(W, u { 1 Q (1 Q E E, }).

Induction step. Assume that

for 1 d t < k, E, is an extension of (D,, W, u E,- ,) with E0 = @. (t)

Consider Ek+,=EI L+k+, and let us show that Ek+I=U,i=O...ac H,,
where H, = W, + , u E, and Hj+ , = Th(H,) v Si with

Sj= {cons(d) 1 de D k+l, prer(d)EH, and V(lQ)~just(d), ~QEE~+,}.

a. Let us first show that Ui=O...m HjsEk+,, that is, VjE [O...co[,
HjsEk+,. We proceed by induction on j:

j=O. Ho= W,,, uEk and by definition Wk+l= WI Ldktlc
E k+l. On the other hand, EkcEk+, thus HO&E,+,.

induction step. Assume now that for j 6 h, Hi c Ek + 1. Let us
consider H,, + , = Th(H,) u S,, and show that H,, + , c Ek + , .
By induction hypothesis, H,, s Ek + , and because E,, 1 is
complete over L+k+l: Th(H,)s Th(E,+,)= Ek+l. Let
YES~, then there exists de D,,, such that cons(d)=?,
prer(d) E Hh, and V(-~Q)~just(d), ~QEE~+,. From
ff,,~&+l, we deduce that prer(d) E Ek+ i E E; and from
(~Q)EE~+,cE, ~QEE. Thus dEGD(A,E) and GEE;
y E E and dE Dk + I implies that y E Ek+ i . In conclusion,
H h+l c&+, and U,=,. .=, Hi~Ekcl-

b. It remains to show that Ek+l c lJj=O...,, Hj (i.e.)
U;=o...,(Gi I L +k+l) c ~j=O...K, Hj. We show by induction on i that
Vie CO... a[, Gi I L.+k+l 5 Uj=O..,r H,.

i = 0. G,) L,, + i = W+k + r = W,, u W, + i. By induction hypoth-
esis (T), W,, c Ek E HO. On the other hand, W,, , c HO.
Thus W,k+l c HO.

induction step. Assume now that Vi $p, Gi I L,, + 1 s
u,=O...sn H,. Consider ~/EG~+, (L+k+, and let us show
that YEU~=~...~H,: G,,, IL~k+l=Th(Gp)ILk+lu
Tp I L-k+ 1. If YE Th(G,) [L+k+ i, then by Claim 3.2,
YE Th(G, I L+,+,) and then by induction hypothesis,
r~Th(Uj=o . . . x Hj)‘Ui=,..., Hj. NOW let ye(T,) 1 L-k+,:
(T,) 1 L,,+,=({o (dsD, o=cons(d), prer(d)EG,, and
V(~Q)~just(d), ~QEE)) I L+, (i.e., CT,) I Ldktl =
(0 I dED+,+ 1, w = cons(d), prer(d) E G,, and V(1 Q) E
just(d), 1 Q E E}. Because A is stratifiable, dE D+ + i implies
prer(d) E G,) L+k + , Two cases arise:

GENERAL LOGICAL DATABASESAND PROGRAMS 31

Case 1. dEDk+l; then by induction hypothesis from prer(d) E

G, I LA+I wehave that:3jOE[O...oO[,G,) L*k+l~
Hi, and thus (al) 3jO E [0 . . . co [, prer(d) E Hj,. On the
other hand, dE D, + 1 implies (b,) V(1 Q) E just(d),
~QEEI LA+I. From (a,) and (b,), we obtain that
y = cons(d) E H,,+, .

Case 2. d E Dj, j f k. Then prer(d) E G, c E and V(1 Q) E just(d),
1 Q E E, thus do GD(A, E), and y E E. Finally, d E D,
implies y E E, c_ Ek c_ H,.

In conclusion, YE Uj=O..,uo Hi, 1

From Theorems 3.5 and 3.6, we immediately deduce

COROLLARY 3.7. Let A be a positivist default theory over the language L
such that A is stratifiable. Then: E is an extension of A with respect to S iff
E is an extension of A with respect to S’ where S and S’ are two distinct
strat$cations for A.

More important is the following:

THEOREM 3.8. Let A be a positivist default theory over the language L
such that A is stratifiable. Then: There exists a set E offormulae over L such
that E is an extension of A (with respect to Reiter’s definition).

Once again, we emphasize the fact that the stratification constraint on
the positivist default theories is a sufficient but not necessary condition for
the existence of an extension; recall that the non-stratifiable default theory
A, of Example 3.2 has two extensions. Stratification also is not a necessary
condition for the uniqueness of the extensions: in Section 4, a non-
stratifiable program is given in Example 4.1.4 which has a unique exten-
sion,

As a matter of fact, we would like to lay stress on the significance of
Theorem 3.8 from the default logic point of view. Characterizing a class of
default theories that have at least one extension is a problem that received
a lot of attention but few and sometimes disappointing solutions. Reiter
has only established the existence of extensions for normal theories
(Theorem 2.1) whose semantics is given in Lukaszewicz (1985). Unfor-
tunately, the class of normal theories has turned out to be insuffucient for
practical applications like knowledge representation: semi-normal default
theories whose default rules are of the form ~1: M(P A y)/y, have been intro-
duced by Reiter and Criscuolo (1981). Although some semi-normal default
theories (those corresponding to acyclic inheritance networks with excep-
tions) have an extension (Etherington and Reiter, 1983), in general they

32 BIDOIT AND FROIDEVAUX

need not have extensions. In Froidevaux (1986), an other class of default
theories, called taxonomic default theories, is defined whose default rules are
neither normal nor semi-normal. Roughly speaking, “taxonomy” rules out
recursion completely and is not concerned with the CWA. In conclusion,
the class of stratiliable positivist default theories for which the existence of
extensions has been showed, extends the class of taxonomic default
theories. From a practical point of view, the class of stratiliable positivist
default theories is of great interest.

In this section, we have defined the declarative semantics of logical
databases and logic programs using default logic. For the class of
stratiliable positivist default theories, we have provided an alternative
definition of the concept of extension that utilizes the notion of stratifica-
tion. We have shown that stratiliable logical databases and thus logic
programs (positivist default theories without disjunction) are consistent.
We have not yet proved that logic programs are non-ambiguous, i.e., that
logic programs have exactly one extension. However, via the equivalence
between the default logic approach and the perfect model approach which
is discussed in the next section, and since stratifiable logic programs have
a unique perfect model, non-ambiguity of stratiliable logic programs can be
established.

To complete the presentation of default semantics for logical databases,
we briefly discuss how the definitions and results presented up to now can
be generalized in order to deal with first order languages.

Consider a finite (non-empty) set Const of constant symbols, a finite set
Fun of function symbols, an infinite set Var of variable symbols and a finite
set Pred of predicate symbols. In the following, L denotes the first-order
language over the alphabet Const u Fun u Var u Pred. We denote by H,
(or simply H when L is understood) the Herbrand base of L.

In this context, the CWA is expressed using the following set of default
rules :

CWA, = { 34 1 P(x) 1 1 P(x) / P E Pred and x is a vector of

variable symbols}.

A first order database over L is specified by a positivist (first-order)
default theory A = (D, W), where W is a set of positive clauses and D a set
of default rules satisfying the following properties:

1. CWA, G D, and

2. each default rule in D - CWA, is of the form:

P,(Xl) A ... A Pp(xp) : MlQl(Yl), MlQ,(Y,) I RI@,) ” ‘..
v R,(z,) with p > 0, q > 0, r > 0 and

X], xp, y1, Yy, Zl, “.> z, are vectors of terms.

GENERALLOGICALDATABASESAND PROGRAMS 33

In the definition above 1 states the CWA and 2 generalizes in a
straightforward manner the definition of a (propositional) positivist default
rule.

In Reiter (1980), the notion of extension is defined properly for the class
of closed default theories. Thus here, in order to define the semantics of
first-order databases, that is, in order to define the concept of extension for
the class of positivist first-order default theories, we need to introduce the
notion of ground instance of a positivist (first-order) default theory.

Given a clause a and x the set of variables occurring in c(, a ground
instance of u is a formula obtained by applying q to tl, where q is a sub-
stitution mapping the set of variables x to a set of ground terms. A ground
instance of a positivist default rule d is defined in exactly the same manner.
Let d = (D, W) be a positivist (first-order) default theory. The ground
instance of A is the default theory (D’, W), where D’ = {d’/3 de D, d’ is a
ground instance of d}. Note that if FUN is a nonempty set of function
symbols then the set of default rules of the ground instance of A may be
infinite. The ground instance of A is a closed default theory.

DEFINITION 3.6. Let A be a positivist (first-order) default theory and A’
its ground instance. Then a set E of formulae in L is an extension of A iff
E is an extension of A’.

We have shown that extensions of positivist propositional default
theories are complete. This result (Lemma 3.1) is generalized as follows:

LEMMA 3.9. Let A = (D, W) be a positivist first-order) default theory
over L such that W is consistent. Let E be an extension of A. Then:

VP(t) E H,, P(t)EEor iP(t)

The proof of Lemma 3.9 is totally similar to the proof of Lemma 3.1 and
is omitted here. Note that an extension E of a positivist (first-order) default
theory is not always complete: it may exist a sentence o such that o 4 E
and io$E.

From the preceding lemma, we immediately deduce that:

COROLLARY 3.10. Let A = (D, W) be a positivist @St-order) default
theory over L such that W is consistent. Let E be an extension of A. Then:

E has a unique Herbrand model.

The notion of stratifiable positivist (first-order) default theory is simply
obtained by considering in Definition 3.4 a partition of the set of predicate
symbols instead of a partition of the set of propositions. This definition is

34 BIDOIT AND FROIDEVAUX

not detailed here. We prefer to directly define locally stratifiable positivist
(first-order) default theories. Local stratiliability has been first introduced
in Przymusinski (1988) in order to enlarge the class of “permissible logic
programs with negation.”

DEFINITION 3.7 (Przymusinski, 1988). Let d = (D, W) be a positivist
first-order default theory over L. Let (D’, W) be the ground instance of A.
A is locally stratifiable iff there exists a sequence (possibly infinite)
S= H,, Hi, called Herbrand stratifi:cation for A, such that
H , , Hi, . . . is a partition of the Herbrand base H, and satisfies:

(i) For each P,(a,) A ... A P,(a,) : ~4 1 Ql(bl), ~4 1 Q&b,) I
Rl(C,) v ... v R,(c,)) in D’, there exists k 2 1 such that:

Vje [l . ..I-]. Rj(cj)e Hk,

VjE[l...p], 31<i<k/Pj(aj)EHi,

Vjtjj~[l..-q], 31<i<k/Qj(bj)~Hj.

(ii) For each ground instance, P,(al) A . . . A P,(a,) +
R,(c,) v ... v R,(c,) of a clause in W, there exists k 2 1 such that:

Vje [l . ..r]. Rj(c,)e H,,

Vje[l...p], 31<i6k/Pi(aj)~Hi.

Clearly, stratifiability entails local stratifiability. Indeed, given
S = Pred, , Pred,, a stratification for A, it is easy to construct from S a
Herbrand stratification SH = H,, H, for A. It suffices to consider for
i= 1 . . . s, Li to be the first-order language over Const u Fun u Var u Pred,
and to take Hi equal to the Herbrand base of Lj. In general, local
stratification does not imply stratification.

At the end of this section, we develop a short and informal discussion on
the advantages and the weaknesses of local stratiliability. Example 4.1.3
presents a logic program that is locally stratifiable but not stratiliable. For
the sake of the presentation, we now pursue the generalization of the
results obtained in the preceding sections.

It is clear that given a stratifiable database A and a stratification S for
A, S induces a partition of A. As in Definition 3.5, we can make use of this
partition in order to give an alternative definition of the semantics of A. In
order to define the notion of “extension with respect to a stratification” in
the case where the Herbrand stratification may be an infinite sequence, it
suffices to take for E the union of the extensions obtained for each stratum,
i.e., in Definition 3.5, (i) is replaced by E = IJ I =O.. ou Ei. We give below the
generalization of Theorem 3.8, Theorem 3.6 and Corollary 3.7:

GENERAL LOGICALDATABASESANDPROGRAMS 35

THEOREM 3.11. Let A be a locally stratifiable positivist default theory.
Then :

(i) There exists a set E of formulae in L such that E is an extension
oj-d.

Assume now that A is stratifiable and that S and S’ are two distinct
stratifications for A.

(ii) E is an extension of A with respect to S iff E is an extension of
A with respect to S’, and

(iii) E is an extension of A with respect to S iff E is an extension of
A (with respect to Reiter’s definition).

Sketch of Proof: Let A = (0, W) and consider the positivist default
theory A’ = (D’, W’), w h ere D’ (resp., W’) is the ground instance of D
(resp., W). It is easy to show: (*) given a set E of ground formulae in L,
Th(Wu E) is an extension of A iff E is an extension of A’. By definition of
local stratifiability; (**) A is locally stratiliable entails that A’ is locally
stratifiable.

Now let us view the Herbrand base H of L as a set of propositions. Let
us denote L,, the propositional language over H. Of course, A’ can be
viewed as a positivist propositional default theory. (**) directly implies
that the propositional default theory A’ is stratifiable.

(i) Using Corollary 3.7, we deduce that there exists a set E of for-
mulae in L, such that E is an extension of the propositional default theory
A’. It is clear that an extension E of the propositional default theory A’ can
be viewed as an extension of the first-order default theory A and thus by
(*), we have that there exists a set E of formulae in L such that E is an
extension of A.

The proof of (ii) and (iii) is done in the same way, using the fact that
stratifiability implies local stratifiability, using the Herbrand stratifications
induced respectively by S and S’, and using Theorems 3.5 and 3.6. [

4. COMPARATIVE STUDIES

This section is devoted to a comparative study of several formalizations
of the intended meaning of logical databases/logic programs.

The main part of the discussion focuses on a comparison between the
default logic approach and the perfect model approach. The comparison
leads to two main results. First, for (locally) stratifiable databases, these

36 BIDOIT AND FROIDEVAUX

two approaches are equivalent. Second, in general, that is, for some non-
stratiliable logical databases, default logic and perfect model do not behave
in the same way. As a matter of fact, the perfect model approach fails to
capture the intended meaning of simple and useful logic programs (that are
not locally stratifiable) while the default logic approach behave satisfac-
torily for these programs.

The iterative fixed point approach (Apt et al., 1988), the autoepistemic
approach (Gelfond, 1987) and the stable model approach (Gelfond and
Lifschitz, 1988) are also examined versus the default logic approach.

4.1. Default Logic versus Perfect Model

For the class of locally stratifiable databases, we are going to show the
equivalence between the default logic approach and the perfect model
approach (Przymusinski, 1988). This latter approach is based on a
preference relation among minimal models.

In order to establish the equivalence between the default semantics and
the perfect semantics for the class of stratiliable logical databases, we
proceed to the following intermediate steps. First, we show that default
models of stratifiable databases have an alternative definition strictly based
on the pure notion of minimal model of Bossu and Siegel (1985) (a model
A4 is less than a model N iff A4 is included in N) while making an explicit
use of the stratification. Second, we use that perfect models of stratifiable
databases have also an alternative definition based on the notion of mini-
mal model while making an explicit use of the stratification. Note here that
this last result has been conjectured without proof in Bidoit and Hull
(1989) and is also embedded in the proof of the main result of
Przymusinski (1988, Theorem 4).

Besides serving the equivalence proof between default and perfect
models, these intermediate results lead to the following remark that, we
claim, is not stated clearly in the literature:

Once it is known that a logical database is stratiliable, then the notion
of minimal model defined in terms of inclusion between models is totally
sufficient to dehne the intended meaning of the database. This implies that
concepts such as extension of default theories, supported models, and
preference relation (among minimal models) are unnecessarily added to the
notion of minimal model. Of course, we do not claim that these concepts
are inadequate for nonstratifiable logical databases nor do we claim that
logical databases outside the class of stratifiable databases do not make
sense. These last points are briefly discussed later in this section.

For the purpose of discussion, we first need to proceed to a minor syn-
tactical harmonization. In the default logic framework, logical databases
and logic programs are syntactically expressed by default theories. In the

GENERAL LOGICAL DATABASES AND PROGRAMS 37

perfect model framework, they are expressed by sets of rules called
P-clauses.

The notion of P-clause has been first introduced in (Bidoit and Hull,
1986) to syntactically distinguish deductive rules of the form A A 1 B -+ C
from deductive rules of the form A + B v C which are equivalent from the
first-order logic point of view but not from the deductive database or logic
programming points of view.

DEFINITION 4.1.1. A positivist clause (P-clause) over L is an expression
of the form:

P,A ..’ AP,ATQ,A . . . A-lQ,-,R,v . . . vR,,

where p >, 0, q 3 0, and r >, 1, P, , P,, Q, , Q4, R, , R, are
propositions of L. We will denote by Prem(a) = (P,, P,, Q,, Q,},
NPrem(a) = {Q,, ..,, Q,}, and Cons(o) = {R,, R,}.

The correspondence between positivist default theories and sets of
P-clauses is straightforward to establish. In the following, the default
theory associated with the set of P-clauses Z (resp. the set of P-clauses
associated with the positivist default theory A) is denoted by
A, = (D,, W,) (resp. C,). In the following, the term “logical database”
designates a positivist default theory or its associated set of P-clauses
depending on the framework.

Now, we provide a semantics of stratifiable databases that is expressed
exclusively in terms of minimal model. Variants of the following definition
can be found in (Apt et al., 1988; Gelfond, 1987; Przymusinski, 1989; Van
Gelder, 1988). (Definition 4.1.2 is slightly different from these variants
because it is a non-“procedural” definition in the sense that it is not based
on propagation strata after strata of minimals models.)

DEFINITION 4.1.2. Let Z be a stratiliable set of P-clauses over the
propositional language L. Let S = Prop I . . . Prop, be a stratification for C
and let M be an interpretation of L. Then M is a minimal model of C with
respect to the stratljkation S iff

Vie [l . ..s]. Mi=M 1 L,i is a minimal model of Z,i, where

A4 1 L,i denotes the restriction of M to the language L,,, and

Ci = (0 1 cr E Z and Cons(o) E Li}.

We now show that default models of stratitiabie databases are minimal
models with respect to any stratification.

38 BIDOIT AND FROIDEVAUX

LEMMA 41.1. Let DB be a stratifiable logical database over the proposi-
tional language L. Let S be a stratification for DB. Then:

M is a default model for DB ifs M is a minimal model of DB

with respect to S.

Proof: Let A, = (D, W) and S= Prop, ... Prop,Y be a stratification for
A ,lZ.

CLAIM 4.1.1. Let M, . ..M. such that Vie [l . ..s]. Mi is an inter-
pretation of L,,.. Then: Vie [l . ..s]. Mi is a minimal model of C,i iff
Vie [l ‘. . s], Mi is a minimal model of Ui where:

ui= u (w,uu;)
j= 1 . ..i

and

17; = {g + y) de Dj, prer(d) = GI, cons(d) = y, and

V 1 Qejust(d), -iQeM,-,}

assuming M,, = $3.

The proof of the claim can be found in Appendix C.

(+) Let M be a minimal model of Z with respect to the stratification S.
Claim 4.1.1 directly implies that Vi E [1 . . . s], Mi is a minimal model of iJi.

Let E= Th((((r o EL and M ,l= c}). To show that E is an extension of
A, = (D, W), by Theorem 3.6, it suffices to show that E is an extension
of A, with respect to S. Thus using Corollary 3.4, it remains to prove
that Ei=E (L,i= Th({a (aeLdi and Mi k c}) is an extension of
(CWAAi, Vi), where Vi=Uj=l...i(Wju W,!) and W,!= {a-*~ I dEDjr
prer(d)=a, cons(d)=y, and V 1 Q~just(d), ~QEE~~~}. Clearly,
Vies [l . ..s]. Vi=Ui.ThusVi~[l~~~s],MiisaminimalmodelofVi=Ui.
By Theorem 3.2, we conclude that Vig [1 . . . s], E, is an extension of
(CWA,i, vi).

(-=) Exactly the same way. 1

Now we review the concept of perfect model introduced in Przymusinski
(1988). Given a set Z of P-clauses, Przymusinski’s approach (op. cit.)
consists in deducing from the syntax of C a relation, called a priority
relation, on the propositions of the language. Then, this relation is used to
characterize the “good” models of Z, called preferable models. Intuitively,
the definition of the priority relation associated with ,Z is based on the
three following principles :

GENERAL LOGICAL DATABASES AND PROGRAMS 39

(a) consequents of a P-clause should have lower priority (for mini-
mization) than negative premises of this P-clause,

(b) consequents of a P-clause should have priority not higher than
positive premises of this P-clause, and

(c) propositions occurring in a consequence of a P-clause should
have the same priority.

Formally, a directed graph is associated with a set C of P-clauses (Apt
et al., 1988). The vertices of the graph are the propositions of the language
L and the directed edges are pairs [X, Y] of propositions such that:
30 E 2, XE Prem(a) and YE Cons(o). If XE NPrem(e), then the edge is
called a negative edge. Using this graph, the relation of higher priority
(Przymusinski, 1988), denoted >r, induced by C, is defined on Prop x
Prop as follows: X>, Y iff there exists a path in the directed graph
associated with Z from X to Y going through a negative edge. As
previously indicated, this relation of higher priority >Z is then used to
“compare” the models of Z. Among the possible minimal models of C, we
prefer the ones which minimize higher priority propositions even at the
price of enlarging the truth of propositions of lower priority. This leads to
the following notion of preferability:

DEFINITION 4.1.3 (Przymusinski, 1988). Let C be a set of P-clauses
over the language L. Let M and N be two models of Z. M is preferable to
N, denoted M Gprel N, iff:

VXEM-N, ~YEN-M/Y>~X.

M is a perfect model of C iff there exists no model distinct from &f and
preferable to M.

Every perfect model is minimal (Przymusinski, 1988).

EXAMPLE 4.1.1. We specify below the logical database of Example 3.1
using a set of P-clauses:

c = {WEEK-DAY, WEEK-DAY A 1 SICKJOHN + WORKJOHN,

WORK-JOHN -+ TEACHJOHN V MEETING-JOHN}.

This set of P-clauses induces the following priority relation:

(i) SICKJOHN >= WORK-JOHN,

(ii) SICK-JOHN >Z TEACH-JOHN.

(iii) SICKJOHN >z. MEETING-JOHN.

40 BIDOIT AND FROIDEVAUX

Here are the three minimal models of 2:

M= {WEEK-DAY, WORK-JOHN, TEACH-IOHN}

M'= {WEEKJAY, WORK-JOHN, MEETING-JOHN}

M" = {WEEK-DAY, SICK-JOHN}.

From (i), (ii), and (iii), we deduce that M cprer M” and M’ cprer M”. In
conclusion, M and M’ are the only perfect models of Z.

Let us now consider the logic program Z = { 1.4 + B, 1 B + A >. It
induces that B >Z A, A >Z B and that the minimal models {A >, {B} of C
are preferable one to each other ({A} <prer {B} gprer {A}). In other words,
C is inconsistent in the sense that it has no preferable model. In fact, for
sets of P-clauses, recursion on negation leads to problems similar to the
ones discussed in Section 3 for positivist default theories. Thus recursion on
negation is eliminated by considering stratifiable sets of P-clauses. A set
of P-clauses is stratiliable iff its associated positivist default theory is
stratiliable.

EXAMPLE 4.1.2. Let d be the positivist default theory of Example 3.1
and C be the set of P-clauses of Example 4.1.1. Obviously d = d, and
C = C, and, since A is stratiliable, so is 2. Note that the perfect models ii4
and M’ of Z are respectively the first-order models of the extensions E and
E’ of A. In this case, the perfect model semantics and the default logic
semantics coincide.

Now we state that for stratifiable databases, minimal models with respect
to a stratification coincide with perfect models. Recall that this result is
conjectured in Bidoit and Hull (1989) and indirectly stated in Przymusinski
(1988).

LEMMA 4.1.2. Let DB be a strat$able logical database over the proposi-
tional language L. Let S be a stratlyication for DB. Then:

M is a perfect model forDB iff M is a minimal model

of DB with respect to S.

A complete proof of Lemma 4.1.2 can be found in Bidoit and Froidevaux
(1988b). We just sketch the proof below.

Sketch of Proof: (==-) Let M be a model of C such that for i E [1 . . . s 1,
Mi = M 1 LAi is a minimal model of Z+,. To show that M is a perfect
model of Z, we prove by induction on i that M, is a perfect model of C,;.

GENERAL LOGICAL DATABASES AND PROGRAMS 41

In the induction step, given that for i < p, Mi is a perfect model of Z,;,
assuming that there exists a model N of Z+, + i such that N cpref M, + ,
leads to a contradiction.

(e) Let M be a perfect model of Z. To show that for i E [1 . . . s],
Mi = M 1 L+ is a minimal model of Cqi, we proceed by induction on the
number s of strata of the stratification S.

Induction step. We assume that each stratiliable set C of P-clauses
whose stratification S has s strata, s <p, satisfies: (*) M is a perfect model
of C implies that for i E [1 . . . s], Mi = h4 (L+ is a minimal model of Cei.

Let us consider a set Z of P-clauses with a stratification S = L, . . . L, + , . To
show that C satisfies (*), note that, given M a perfect model of C, because
perfect models are minimal models, M = M,, i is a minimal model of
2 =c,,,I. Thus, by induction hypothesis, it remains to show that
M) L,, = M, is a perfect model of C,,. At that point, we assume that
there exists N’ model of E+, such that N’ cprerMP and we construct a
model N of C,,, i such that N’ = N) L,, (the construction starts with N’,
model of C,,, which is “augmented” with propositions of LP+ I in order
to obtain a model that satisfies Z,,, I =C,,u C,, 1) and such that
N< prelM (the propositions added to N’ are carefully chosen). This leads
to a contradiction. 1

From the two preceding lemma, the equivalence of the default model
semantics and the perfect model semantics for stratiliable databases is
immediate :

THEOREM 4.1.3. Let DB be a stratifiable logical database over the
propositional language L. Then:

M is a default model for DB i f f M is a perfect model for DB.

Note that this equivalence is modular in the sense of Imielinski (1985).
It is easy to check that updates (insertions of facts) performed on a set of
P-clauses Z and on its corresponding default theory A, produce a set Z+
of P-clauses and a default theory (A,) + semantically equivalent in the
sense that M is a perfect model of C+ iff M is the model of an extension
E of (AZ) + . In fact this result is straightforward, noticing that in the case
of simple updates like insertion of facts, (A,) + = A=+.

A syntactical correspondence between sets of (first-order) P-clauses and
positivist (first-order) default theories is easy to establish. Definition 4.1.2 is
generalized to the first order case (Przymusinski, 1988) by assuming M and
N to be Herbrand models. The generalization of Lemma 4.1.2 is immediate
and thus:

42 BIDOIT AND FROIDEVAUX

THEOREM 4.1.4. Let .Z be a set of P-clauses. If Z is locally strati&able,
then A4 is a perfect model of .?I iff M is a default model of the positivist
default theory At.

The proof of the above result is obvious using the generalization of
Lemma 4.1.2 and proceeding as in the proof of Theorem 3.11.

The last part of the comparison between the perfect model approach and
the default approach is devoted to an informal discussion on the advan-
tages and the weaknesses of local stratifiability and also on the inadequacy
of the perfect model approach.

We start by presenting an example of a nonstratitiable program which is
locally stratitiable. This example due to V. Lifschitz has also been presented
in Przymusinski (1988).

EXAMPLE 4.1.3. The following progam gives a definition of even natural
numbers. Using the default logic approach, we have:

PROGRAM 4.3

:kf lEVEN(.~)[lEV!iN(X)

:b'f lEVEN(X) 1 EVEN(SUC(X)) EVEN(O)

D W

The function symbol sue denotes the successor function. (D, W) is not
stratitiable but it is locally stratitiable. The Herbrand stratification for
(0, W) is S= (Hi)iaO9 with Hi = {EVEN(SUC?(~))} and sue’(0) = 0, sue’(0) =
suc(suc’-‘(0)). Note here that the Herbrand stratification S for (D, W) is
an infinite sequence.

We now propose a second example of a nonstratifiable program which
is not, this time, locally stratifiable. However, the following program is, in
its spirit, very similar to the one given in Example 4.1.3.

EXAMPLE 4.1.4. The following program describes a branch of a
genealogical tree, having only three individuals a, 6, and c. These
individuals inherit of the property P every other generation (starting from
a). Using the default logic approach, this program is given by:

PROGRAM 4.4

:kf lFATHER(X,.J')(lFATHER(X,J')

:A4 lP(X) 1 lP(X)

FATHER(X,J'):MlP(X)(P(y) &z),FATHER(a,b),FATHER(b,C)

D W

GENERALLOGICALDATABASESAND PROGRAMS 43

First note that the language used to write the Program 4.4 does not
contain any function symbols. It is easy to establish a correspondence
between Program 4.3 and Program 4.4: the predicate FATHER (resp., the
predicate P) of Example 4.1.4 plays the same role as the function sue (resp.,
the predicate EVEN) of Example 4.1.3.

Because the unquestionable similarities of Programs 4.3 and 4.4:

(1) there is no reason to reject Program 4.4. Unfortunately, it is
straightforward to check that Program 4.4 is not stratiliable. Neither it is
locally stratifiable.

(2) it is beyond argument that the semantics of Program 4.4 is as
clear as the semantics of Program 4.3. Unfortunately, the set of P-clauses
specifying Program 4.4 has no perfect model. On the other hand, the default
theory specifying Program 4.4 and given above has the following expected
unique extension :

E = Th(WV {FATHER(U,~), FATHER&C), lFATHER(u,a)

lFATHER(LI,C), lFATHER(b,a), lFATHER(b,b),

lFATHER(c,U), lFATHER(C,b), lFATHER(c,C),

P(a), 1 P(b), P(c) I).

In conclusion, we have: (1) Program 4.4 is not locally stratifiable and
thus should be rejected, which is counter-intuitive. Moreover, (2) according
to the perfect model approach, Program 4.4 is “inconsistent.”

Conclusion (1) above implies that local stratiliability is still too restric-
tive. The refinement of stratifiability consisting in a syntactical analysis of
the “complete” instantiation of the program is too naive in general. One
could relax the stratification constraint or/and think of other reasonable
methods to check whether a program is acceptable. Further work in this
direction has been presented in (Bidoit and Froidevaux, 1988a, 1988b).

Conclusion (2) above has a more fundamental impact. Indeed, according
to the perfect model approach, in order to make Program 4.4 permissible,
it would be necessary not only to relax local stratifiability but also to
modify the definition of a perfect model (see Przymusinska and
Przymusinski, 1988). In a context where the notion of acceptable
(stratifiable) program and the notion of consistent program (program
having at least one perfect model) do not completely merge anyway, this
process of generalization reveals some imperfection of the perfect model
approach. Whereas, according to the default logic approach, in order to
make Program 4.4 permissible, it suffices to relax local stratiliability. Our
claim is that the perfect model approach is strongly dependent on a local
syntactical analysis of the program. Thus the semantics of negation induced

44 BIDOIT AND FROIDEVAUX

by this approach is locally determined for each program. As a matter of
fact, because of this, it is very likely that the generalization of stratifiability
and the generalization of perfect model could be done at the same time. On
the other hand, the default logic approach is rather based on a global inter-
pretation of negation: negation is interpreted as “negation as default” no
matter where and how it occurs in a program.

We would like to terminate the comparison by showing with a last
example that the default logic approach and the perfect model approach
diverge for nonlocally stratifiable programs and also that once again the
perfect model approach seems to have an awkward behavior with respect
to disjunction.

EXAMPLE 4.15 Consider the program specified by the positivist default
theory A = (D, W), where D = CWA, v { :A4 1 A/B, :M 1 B/C, :M 1
C/A v D} and W= 0. This program (which is not stratifiable) has one
extension, namely { 1 A, B, 1 C, D}. Note that the corresponding set C of
P-clauses has no perfect model.

Let us now split the program in two parts A, = (D,, W,) and
A, = (D2, W,), where

D, = CWA, u { :M 1 A/B, :M 1 BjC, :M 1 C/A}, WI=@,

D, = CWA, u (:M -I AfB, :M -I B/C, :M-I C/D), W,=@.

The program A, has no extension but the program A, has one extension
namely {-I A, B, 1 C, D}. Note that the set of extensions for A is the union
of the set of extensions for A, and the set of extensions for A,.

Let Z1 (resp., C,) be the set of P-clauses corresponding to A, (resp., AZ).
It is interesting to note that Z, has no perfect model but Zc2 has a unique
perfect model which is {B, D} and thus the set of perfect models for C is
not equal to but included in the union of the set of perfect models for Z1
and the set of perfect models for Z:,.

4.2. Other Comparisons

In Przymusinski (1988), it is shown that for stratifiable logic programs
(no disjunction),

(i) they have a unique perfect model;

(ii) this unique perfect model coincides with the model obtained by
the iterative fixed point method Apt et al. (1988) and by Van Gelder’s
(1988) method;

(iii) perfect models can also be characterized using the concept of
prioritized circumscription.

GENERALLOGICALDATABASESANDPROGRAMS 45

In Lifschitz (1988), the equivalence between pointwise circumscription
and iterative fixed point is emphasized. From the above-mentioned equiv-
alence and Theorem 4.1.3 stating the equivalence of the default semantics
and the perfect model semantics for stratiliable databases, we directly infer
that:

COROLLARY 4.2.1. Default logic, perfect model, iterative fixed point, and
(pointwise) circumscription associate the same meaning to stratifiable logic
programs.

(a) Iterative fixed point and minimal model. Let us briefly show how a
slightly different definition of stratification implies that the minimal model
with respect to stratification is not sufficient to define the declarative
semantics of stratifiable databases.

In Apt et al. (1988), the semantics of logic programs is defined using
iterative fixed point. An alternative definition is given that uses the notions
of minimal model and supported model. The notion of supported model,
simultaneously introduced in Bidoit and Hull (1986, 1989) and called there
the justified model, can be intuitively defined as follows: given a set of
P-clauses C and a model M of Z, a fact A true for M is supported (or
justified) by 2: iff A is the consequence of some P-clause in C whose
premises are all true for M. M is a supported (or justified) model of C iff
each positive true fact in M is supported (or justified) by C. For example,
let us consider the set C = (lq + p} of P-clauses. Viewed as a set of
clauses, C has two minimal models, namely M, = {p> and M2 = {q}. M,
is a supported model of C but M, is not a supported model of Z because
there exists no P-clause in Z with q as consequent.

Now in Apt et al. (1988) a logic program C is stratifiable iff there exists
a partition Ci, C, of C such that if P is a positive premise of a clause
in Ci then its “definition” is in C,i and if P occurs negatively in the
premises of a clause in Ci then its “definition” is in C-+- 1 (C, can be
empty). The semantics of a stratifiable logic program is then defined as
follows: M is a “good” model of C iff M = M,, where for i = 1 . . s, Mi is
a minimal and supported model of Zi u Pi _ I (where Pi is the set of positive
facts true for Mi-let us assume P, = 521). Let us go back to the logic
program Z=(iq+p}:

Apt et al. (1988) approach: C is stratifiable and C, = C is a stratifica-
tion for C. Z, has two minimal models M, = {p] and M; = {q}. M, is a
supported model of Z, = Z thus a “good” model of .Z. M’, is not. The
notion of supported model is needed in Apt et al. (1990) in order to
eliminate the minimal model M’, .

46 BIDOIT AND FROIDEVAUX

Bidoit and Froidevaux approach: C is stratiliable and Prop, = jq },
Prop, = {p} is a stratification for C. It induces the following partition of
Z: Z:, = 0 and C, = Z = { 1q +p}. C, has a unique minimal model,
namely M, = 0. M, = {p} is the unique minimal model of 2, such that its
restriction to L, is M,. (One does not need here to use the notion of sup-
ported model in order to eliminate the minimal model Mi = (p> of C2 ; we
use the minimal model M, of the preceding stratum .Z, .)

(b) Autoepistemic logic. Autoepistemic logic has been introduced by
Moore (1985) in order to formalize a type of non-monotonic reasoning,
called autoepistemic reasoning. In this framework, the language is
augmented by a modal operator L and Lcr means that the formula CI is one
of the agent’s beliefs. As in default logic, a fixed point definition is used for
describing the sets of theorems, called stable expansions, associated with an
autoepistemic theory.

DEFINITION 4.2.1. Let T be an autoepistemic theory. Then a set of
theorems E is a stable expansion for T iff E satisfies

E= Th(Tv (LP/PGE) u {lLP/P$E}).

Gelfond (1987) defines and studies a specific class of autoepistemic
theories. In particular, the relationship between logic programming and
autoepistemic logic is drawn by means of a suitable translation of logic
programs into autoepistemic theories. With the P-clause P, A ... A P,, A

Tel* ... A iQ4+R is associated the autoepistemic sentence
PI A ... A P, A lLQ, A ... A lLQ, -+ R. Gelfond is naturally driven to
consider stratitiable programs and establishes the following results.

Result (Gelfond, 1987). For any stratifiable logic program P, the
associated autoepistemic theory has a unique stable expansion E and, for
each proposition A in Prop, A E E iff A E IV, and 1 LA E E iff A # M, where
M is the canonical model defined by Apt et al. (1988).

The equivalence between autoepistemic semantics and iterative fixed
point semantics established in Gelfond (1987) for stratifiable logic
programs and the equivalence between iterative fixed point semantics and
default semantics (Corollary 4.2.1) obtained above through the perfect
model semantics lead to:

COROLLARY 4.2.2. Let P be a stratifiable logic program. Let E be the
unique extension of the positivist default theory associated with P. Let E’ be
the unique stable expansion of the autoepistemic theory associated with P.

GENERAL LOGICAL DATABASES AND PROGRAMS 47

Then :

For each proposition A in Prop, A E E ijjf A E E’, and 1 A E E iff 1 LA E E’.

The following example illustrates the notion of autoepistemic program
and stable expansion.

EXAMPLE 42.1. Let P be the stratitiable logic program specified by the
following set of P-clauses:

P= {A A lB-tC, lC+D).

The corresponding autoepistemic theory is given by

T= (A A -ILB -+C, lLC-+D);

T has a unique stable expansion E’ = Th({ 1 LA, 1 LB, 1 LC, LD, D>).
Finally, following the default approach, P is specified by the positivist
default theory A = (D, I?), where

D={:Ml AIlA, :MlB/lB, :Ml C/TC, :Ml D/lD,

A :M -I B/C, :M 1 C/D);

A has a unique extension E = Th({ 1 A, 1 B, 1 C, D }).

Although the default approach and the autoepistemic approach coincide
for the class of stratifiable programs (no disjunction), they behave dif-
ferently in general. As a matter of fact, for stratifiable logical databases
(disjunction is allowed), the two approaches are not equivalent as is shown
by the next example.

EXAMPLE 4.22. Consider the stratitiable logical database specified by
the set of P-clauses

The corresponding autoepistemic theory is given by

T={AvB,AmLC+D,B/mLC+D};

T has a unique stable expansion {A v B, L(A v B), -I LA, 1 LB, 1 LC, D,
LD}. Using the same procedure as in the result of Gelfond (1987) in order
to establish a correspondence between expansions and standard models, we
would have that, because 1LA (resp., 1LB) is in the expansion, -IA
(resp. -I B) is in the corresponding model. Let M be this model, M should
satisfy A v B, which is contradictory with A and B false for M.

613!9l:1.4

48 BIDOIT AND FROIDEVAUX

Following the default logic approach, the logical database is expressed
by the positivist default theory A = (D, {A v B}), where

D= (:M~A/~A, :MT B~IB, 1~7 c/~c, 1~7 D/~D,

A :M 7 C/D, B :M -I C/D);

A has two extensions, E, = Th({A, 1 B, 1 C, D}) and E, = Th({ 1 A, B,
1 C, 0)). Because of the already established equivalence of the perfect
model approach and the default approach, it is not surprising to note that
M, = (A, D} and M, = (B, D} are the two perfect models for DB.

The reason why the autoepistemic approach and the default approach
diverge in this case can be found in Konolige (1987), where a translation
between both logics is investigated. In fact the autoepistemic theory T
proposed by Gelfond (1987) in order to specify the database DB is not a
“good” translation of A. A translation of A into a “quasi-equivalent”
autoepistemic theory is given by

T’= {lLA-+ lA, 7LB+ lB, -ILL-+ -IC, -ILD-+ -ID,

A v B, LA A lLC-+D, LBA -ILC+D)

Now A and T’ are said to be quasi-equivalent (Konolige, 1987) because:
E is an extension of A iff E is the kernel (i.e., subset of formulae without
modal operator) of a minimal stable expansion of T’.

The autoepistemic theory T’ above has two minimal stable expansions
that are:

E; = Th((A, LA, 1 B, 1 LB, 1 C, 1 LC, D, LD}) whose kernel is

Th({A, lB, lC, D))=E,;

E; = Th({ 1 A, 1 LA, B, LB, 1 C, 1 LC, D, LD}) whose kernel is

Th({lA, B, lC, D))=&.

Note that the four first sentences of T’ resemble the CWA-default rules
of A. However, the introduction of these sentences in the specification of
DB in terms of autoepistemic theory is not essential (because the
occurrence of 1 LA was interpreted as having 1 A). On the other hand, the
introduction of the modal operator L in front of positive premises of rules
is decisive.

(c) Stabk model. Finally, we propose a quick comparison of the
default approach with the stable model approach (Gelfond and Lifschitz,
1988). Stable models have been introduced in op. cit. as a new semantics for
logic programs. Stable models date from much later than default models

GENERALLOGICALDATABASESAND PROGRAMS 49

and are nothing else than default models. In Bidoit and Froidevaux
(1988b) we prove that:

THEOREM 4.2.3. Let P be a logic program:

M is a stable model for P iff M is a default model for P.

We insist here on the fact that in this result, the logic program P is not
assumed to be stratifiable.

APPENDIX A

CLAIM 3.1. Let E,, E, be a sequence such that for i= 1 . . s, Ei is a
set of sentences of L,i. Then, E,, E, satisfies condition (ii) of Defini-
tion 3.5 iff E,, E, satisfies condition (ii) of Corollary 3.4.

Proof of Claim 3.1. We proceed by induction on i:

i = 1. D1 = CWA,, thus IV; = Qr and it directly follows that E, is an
extension of (Dl, IV,) iff it is an extension of (CWA,,, Vi).

Induction step. Assume now that for each i < k < s, Ei is an extension of
(Di, WiuEj-,) iff Ei is an extension of (CWA,i, Vi). Let Ek+, be an
extension of (Dk + 1, W, + 1 u Ek). Since S is a stratification for A, by
Lemma 3.3 : Ek + I is an extension of (Dk + , , W, + I u Ek) iff Ek+ , is an
extension of (CWA,,, 1, W,, i u WA,, u Ek) iff by Theorem 3.2b:
E k+l= Th(W,c+,u WA+,uE,u {lQ I lQ~hc+I)).

By induction hypothesis, Ek is an extension of (CWA,,, I’,), and by
Theorem 3.2b;

Ek=Th u (Q-J WJu {lQ I lQ+J .
j=l . ..k >

Since {lQ 1 -IQEE~}E {lQ 1 lQeE,+,), it follows that

E k+l=Th
(

u W’ju W,?u bQ I lQcEk+,
j=l...k+l

= WV,+, u {lQ I ~QE&+I)).

Using Theorem 3.2b once again, we conclude that Ek + i is an extension of
(D k+lv Wk+luEk) iff Ek+l is an extension of (CWA,k+,, Vk+i). 1

50 BIDOIT AND FROIDEVAUX

APPENDIX B

CLAIM 3.2. Let S= Prop, . . Prop, be a strat$cation for A and E be
an extension of A. Then Vie[l . ..a[. Vj~[l . ..s]. Th(Gj) 1 L,j=
Th(G,) L,,), where

E= u Gk with Go = W, and G, + 1 = Th(G,) u Tk and
k=lJ...m

Tk= {cons(d) (dED, prer(d)EG,, V(lQ)~just(d), ~QEE}.

Proof of Claim 3.2. 1. ViE[l...co[, Vjj’~[l....r], Gil L,j~G, and
thus ViE [l . ..co[. VIE [l . ..s]. Th(G, 1 L,,)E Th(Gi) 1 L,,.

2. It remains to show that ViE[l...co[, Vj~[l...s],
Th(GJ I L,,cTh(GiI L+). For k=O...co let Ti= {cons(d) 1 dE
D-CWA L, prer(4 E Gky V(lQ)Ejust(d), ~QEE} and T;= {~P/PE
Prop and 1 PEE}. Then Gk = Th(Wu T; u Tlk _. 2) u T;- I and Th(G,) =
Th(Wu T;u T$pl).

In the following, we show that the existence of a linear refutation
in W u TA u Tt,- I for a clause a EL,, implies the existence in
(Wu Td u T:, _ r) (L,j of a linear refutation for a.

A linear refutation r in V for a is described by a sequence
r= ((b,, cl)..-(b,, c,)), where:

i. bl = a, resolvant(b,, cp) is the empty clause,

ii. for i= 1 . ..p- 1, bi+l is the resolvant of bi and ci, and

iii. for i= 1 . ..p. either ciE V or ci= bi for some j<i.

We proceed by induction on the length jr1 of the refutation r in
(WUT~UT~~-,) for aELdj:

Irl = 1. By definition, r is a refutation in (Wu TA u Tzk- 1)) Ldj for a.

Induction step. Assume that if Y is a refutation in (W u Td u TI,_ 1) for
a E L,j and Irl 6p then there exists a refutation in (WV Td u TZk- ,) 1 L-j
for a. Consider a refutation r=((b,,c,)...(b,+,,c,+,)) in (WuTdu
T<,_ ,) for a. By definition of a refutation, c, E (Wu Td u TJlkp ,). Two
cases arise :

c1 E (Td u TZk _ ,). Then clearly because S is a stratification for A and
aEL,i,~lEL-,.Henceb,EL,,. ((b,,c,)...(b,+,,c,+,))isarefutation
in (W u TA u Tckp r) for b, E L,j and then by induction hypothesis there
exists a refutation in (W u T6 u TZ, _ ,) (Ldi for 6, and thus a refutation
in (Wu TJu T!+,-,) 1 L,, for a.

C,E W. Let a=A, A ... A A,-+B, v ... v B,..

GENERAL LOGICAL DATABASES AND PROGRAMS 51

m=O. a=(B, v .-. v B,,) and the existence of a refutation r in
(WUT~UT:~-,) for a implies that ia=(iB, A ... A
~B,.)E Th(Wu rgu T2k--l) and thus obviously VIE
Cl ... m’] 1 Bie TA and by hypothesis Bi E L,,, thus there
exists a refutation in (Wu Td u TZ,_ 1) 1 L,j for a.

m>O. Let 1~ [1 .“p+ l] be such that l=min{i/A, occurs in bi
not in b, + , >. Then clearly, c, E (W u TA u Tz, _,). Consider
r’= ((bi,c;)...(bb+,, c;+~)) defined by:

b; = a, c\ = c,,

for i=2 . ..l. c;=ci-,,

for i=l+ 1 ‘..p+ 1, c;=ci, and,

for i= 1 . ..p. b:,, =resolvant(bj, cl).

It is easy to verify that r’ is a refutation in
(W u T,j u TZk _ 1) for a. Now, because S is a stratification
for A and A, E Propdi, we deduce that C;E L+j.

Thus b; = resolvant(b;, c;) E L,, and by induction hypothesis, because
(&4b+;+,, c;+l,> is a refutation in (WV Td u T:,- 1) for b,,
there exists a refutation in (Wu Td u TEk- ,)) Ldj for b; and thus there
exists a refutation in (W u TA u Tzk _ 1)) Ldj for a. 1

APPENDIX C

CLAIM 4.1. Let A, = (D, W) and S = Prop, . .. Prop, be a stratification
for A,. Let MI . . . M, be such that Vi E [1 . . . s], Mi is an interpretation of
L,i. Then: ViE [l . ..s]. Mi is a minimal model of Cdi ijjf ViE [l . ..s]. Mi
is a minimal model of Ui, where

Ui=uj=l,..i (WjU Uj) and

U,! = {a + y) de Dj, pred(d) = a, cons(d) = y, and V 1 Q Ejust(d),
~QEM~-,} assuming M,=a.

Proof of Claim 4.1. We proceed by induction on i.

i = 1. It is clear that Z, = W, and Ui = 0. Thus M, is a minimal model
of C1 iff M, is a minimal model of U,.

Induction step. Suppose now that for i $ k <s, Mi is a minimal model
of Z-i iff Mi is a minimal model of Ui. Let us show that M, + , is a minimal
model of C,, + 1 iff Mk + 1 is a minimal model of U, + , .

52 BIDOIT AND FROIDEVAUX

We first show that a set M’ of propositions such that M’ 1 L,, = Mk is
a model of C,, + 1 iff it is a model of lJk+,. Assume M’ is a model of
c 4k+ i. By induction hypothesis, M’) L,, = M, is a minimal model of
.ZAk and of U,. Thus in order to show that M’ is a model of U,, , = Uk v
W k+l” u;+l, it remains to prove that M’ satisfies W, + , u UL + , . Since
W k+l CZ-k+l and M’ is model of Z+, + , , M’ Satisfies wk + i

Now consider u E UL,, . Then 3d~ Dk+ , such that V 1 Q E just(d),
Q$Mk (thus Q$M,+,) and a=prer(d)+cons(d). Let just(d)=
{lQ,, lQ,}. Then, a’=prer(d) A 1Q, A ... A lQ,+cons(d)E
z k + , . Since M’ is a model of .Z+k + , , M’ satisfies G’ and thus rr.

Assume now that M’ is a model of Uk+ , . By induction hypothesis,
M’ 1 L,, = M, is a minimal model of Uk and of z,,. Thus in order to
show that M’ is a model of C,, + , = C,, u C, + , , it remains to prove that
M’ satisfies

z k+l- - wk+l u {prer(d) A lQ1 A ... A lQq+cons(d)) dEDk+, and

just(d) = { 1Q,, lQ,>>.

Since wk+l z uk+i and M’ is model of U, + i, M’ satisfies W, + , . Con-
sider gEz:kfi- wk+l. Then e = prer(d) A i Q1 A . . . A 1 Qq -+ cons(d)
with dEDk+, and just(d) = { 1 Q,, 1 Q,}. Assume M’ satisfies
prer(d) A iQ, A ... A lQ, then VI’e[l . ..q]. Qi#Mk and prer(d)-+
cons(d) E Uk+ 1. Since M’ is model of Uk + i, M’ satisfies prer(d) -+ cons(d)
and thus cr.

Assuming that Mk+ I is a minimal model of C,,, , , let us show that
M k + i is a minimal model of Uk + , . In order to do this, assume that there
exists a model M’ of Vk + i such that M’ < Mk + i. Then by definition, there
exists PE L+k+l such that P# M’ and PE Mk+ L. Since M’ 1 L,, is a
model of Vk and by induction hypothesis, Mk is a minimal model of uk,
M’ 1 L-+/c<Mk+, 1 Ldk = Mk implies M’ 1 L,, = Mk. We can deduce now
that M’ is a model of .Z,, + , and M’ < Mk + i, a contradiction.

Assuming that M,, , is a minimal model of U,, i, let us show that
M k + i is a minimal model of Z-k + , . In order to do this, assume that there
exists a model M’ of Z+k+1 such that M’< Mk+ ,. Then by definition,
there exists P E Prop +k + 1 such that P$M’ and PEM~+(. Since M’ 1 L,,
is a model of Z:,, and by induction hypothesis, M, is a minimal model of
z -tk, M’ 1 L,,< M,, , 1 L,k= Mk implies M’ 1 L+k=Mk. We can now
deduce that M’ is a model of V, + I and M’ <: M, + i, a contradiction. [

RECEIVED October 19, 1987; FINAL MANUSCRIPT RECEIVED September 14, 1989

GENERAL LOGICAL DATABASES AND PROGRAMS 53

REFERENCES

APT, R. K., BLAIR, H., AND WALKER, A. (1988), Towards a theory of declarative knowledge,
in “Foundations of Deductive Databases and Logic Programming” (J. Minker, Ed.).
pp. 89-148, Morgan Kaufmann, Los Altos, CA.

APT, R. K., AND PUGIN, J.-M. (1987). Maintenance of stratified databases viewed as a belief
revision system, in, “Proceedings, ACM SIGACT-SIGMOD Symposium on Principles of
Database System.”

BIDOI~, N., AND FROIDEVAUX, C. (1987a), Minimalism subsumes default logic and circum-
scription in stratified logic programming, in “Proceedings. Logic in Computer Science
(LICS-87), IEEE, New York,” pp. 89-97.

BIDOIT, N., AND FROIDEVAUX, C. (1987b), “Minimalism Subsumes Default Logic and
Circumscription in Stratified Logic Programming,” Internal Report LRI No. 350.

BIDOIT, N., AND FROIDEVAUX, C. (1988a), More on stratified theories, in “Proceedings,
European Conf. on Artificial Intelligence, Munich, August l-5,” pp. 492494.

BIDOIT, N., AND FROIDEVAUX. C. (1988b), “Negation by Default and Non-stratiliable Logic
Programs,” Internal Report No. 437. To appear in a special issue of TCS on Research in
Deductive Databases.

BIDOIT, N., AND HULL, R. (1986), Positivism vs. minimalism in deductive databases, in
“Proceedings, ACM SIGACT-SIGMOD Symposium on Principles of Database System,”
pp. 123-132.

BIDOI~, N., AND HULL, R. (1989), Minimalism, justification and non-monotonicity in deduc-
tive databases, J. Comput. 5+sfem Sci. 38, No. 2, 290--325; L.R.I. Research Report 304,
1986.

BOSSU, G., AND SIEGEL, P. (1985). Saturation, nonmonotonic reasoning and the closed world
assumption, Artif: Intell. 25, 13-63.

CLARK, K. L. (1978), Negation as failure, in “Logic and Databases” (H. Gallaire and
J. Minker, Eds.), pp. 293-322, Plenum, New York.

CHANDRA, A. K., AND HAREL, D. (1985), Horn clause queries and generalizations, J. Logic

Programming 2, No. 1, l-15.
CLARK, K. L., AND TARNLUND. S. A. (Ed%), (1982), “Logic Programming,” Academic Press,

New York.
ETHERINGTON, D. W., AND REITER, R. (1983), On inheritance hierarchies with exceptions, in

“Proceedings, AAAI-83,” pp. 104-108.
FROIDEVAUX, C. (1986), Taxonomic default theory, in “Proceedings, European Conference on

Artificial Intelligence, Brighton.” pp. 123-129.
GELFOND, M. (1987). On stratified autoepistemic theories, in “Proceedings, AAAI-87, Seattle,”

pp. 207-211.
GELFOND. M., AND LIFSCHITZ, V. (1988), The stable model semantics for logic programming,

in “Proceedings, Logic Programming Conf., Seattle,” pp. 1070-1080.
GABBAY. D. M., AND SERGOT, H. J. (1986), Negation as inconsistency I*, J. Logic Programm-

ing 1, l-35.
IMIELINSKI, T. (1985). Results on translating defaults to circumscription, in “Proceedings, 9th

Int. Joint Conf. on Artificial Intelligence, Los Angeles,” pp. 114-120.
KONOLIGE, K. (1987), On the relationship between default theories and autoepistemic logic,

in “Proceedings, 10th Int. Joint Conf. on Artificial Intelligence, Milano,” pp. 394-401.
LIFSCHITZ, V. (1988), On the declarative semantics of logic programs with negation, in “Foun-

dations of Deductive Databases and Logic Programming (J. Minker, Ed.), pp. 177-192,
Morgan Kaufmann, Los Altos, CA.

LLOYD, J. W. (1987), “Foundations of Logic Programming,” 2nd ed., Springer-Verlag,
New York.

54 BIDOIT AND FROIDEVAUX

LUKASZEWICZ, W. (1985), Two results on default logic, in “Proceedings, 9th Int. Joint Conf.
on Artificial Intelligence, Los Angeles,” pp. 459461.

LUKASZEWICZ, W. (1988), Considerations on default logic: An alternative approach, Comput.

Intell. 4, l-16.
MOORE, R. C. (1985), Semantical considerations on non-monotonic logic, Artif: Intell. 25,

75-94.

MCCARTHY, J. (1980), Circumscription-A form of nonmonotonic reasoning, Artij Zntell. 13,
No. 1, 27-39.

MCDERMOTT, D., AND DOYLE, J. (1980), Nonmonotonic logic I, Artif: Intell. 13, No. 1, 41-72.
NAQVI, S. A. (1986), A logic for negation in database systems, in “Workshop on Foundations

of Deductive Databases and Logic Programming,” pp, 378-387.
PRZYMUSINSKI, T. C. (1988), On the declarative semantics of stratified deductive databases, in

“Foundations of Deductive Databases and Logic Programming” (J. Minker, Ed.),
pp. 1193-216, Morgan Kaufmann, Los Altos, CA.

PF~ZYMUSINSKI, T. C., (1989), On the declarative and precedural semantics of logic programs,
J. Automat. Reason. 5, 167-205.

PRZYMUSINSKA, H., AND PRZYMUSINSKI, T. C. (1988), Weakly perfect model semantics for
logic programs, in “Proceedings, Logic Programming Conf., Seattle,” pp. 1106-l 120.

REITER, R. (1980), A logic for default reasoning, Artif: Inteli. 13, No. 1, 81-132.
REITER, R., AND CRISCUOLO, G. (1981), On interacting defaults, in “Proceedings, Int. Joint

Conf. on Artificial Intelligence, Vancouver,” pp. 27&276.
VAN GELDER, A. (1988), Negation as failure using tight derivations for general logic programs,

in “Foundations of Deductive Databases and Logic Programming” (J. Minker, Ed.),
pp. 149-176, Morgan Kaufmann, Los Altos, CA.

VAN GELDER, A., ROTH, K., AND SCHLIPF, J. S. (1988), Unfounded sets and well founded
semantics for general logic programs, in “Proceedings ACM SIGACT-SIGMOD Symp. on
Principles of Database System,” pp. 221-230.

