-
-

etadata, citation and similar papers at core.ac.uk brought to you by 4. COR

provided by Elsevier - Publisher Connect

Available online at www.sciencedirect.com

ScIENcE@DIREcT" JOURNAL OF
APPLIED LOGIC

el
ELSEVIER Journal of Applied Logic 3 (2005) 67-95

www.elsevier.com/locate/jal

An encompassing framework for
Paraconsistent Logic Programs

Jodo Alcantarg, Carlos Viegas Damasio, Luis Moniz Pereira

Centro de Inteligéncia Artificial (CENTRIA), Departamento de Informética, Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

Available online 2 September 2004

Abstract

We propose a framework which extends Antitonic Logic Programs [Damasio and Pereira, in: Proc.
6th Int. Conf. on Logic Programming and Nonmonotonic Reasoning, Springer, 2001, p. 748] to an
arbitrary complete bilattice of truth-values, where belief and doubt are explicitly represented. In-
spired by Ginsberg and Fitting’s bilattice approaches, this framework allows a precise definition of
important operators found in logic programming, such as explicit and default negation. In particular,
it leads to a natural semantical integration of explicit and default negation through the Coherence
Principle [Pereira and Alferes, in: European Conference on Atrtificial Intelligence, 1992, p. 102], ac-
cording to which explicit negation entails default negation. We then define Coherent Answer Sets,
and the Paraconsistent Well-founded Model semantics, generalizing many paraconsistent semantics
for logic programs. In particular, Paraconsistent Well-Founded Semantics with eXplicit negation
(WFSX,) [Alferes et al., J. Automated Reas. 14 (1) (1995) 93-147; Damasio, PhD thesis, 1996].
The framework is an extension of Antitonic Logic Programs for most cases, and is general enough
to capture Probabilistic Deductive Databases, Possibilistic Logic Programming, Hybrid Probabilistic
Logic Programs, and Fuzzy Logic Programming. Thus, we have a powerful mathematical formal-
ism for dealing simultaneously with default, paraconsistency, and uncertainty reasoning. Results are
provided about how our semantical framework deals with inconsistent information and with its prop-
agation by the rules of the program.

0 2004 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addressegfla@di.fct.unl.pt(J. Alcantara)cd@di.fct.unl.p{C.V. Damasio)lmp@di.fct.unl.pt
(L.M. Pereira).

1570-8683/$ — see front mattét 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2004.07.012

https://core.ac.uk/display/82793709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jal
mailto:jfla@di.fct.unl.pt
mailto:cd@di.fct.unl.pt
mailto:lmp@di.fct.unl.pt

68 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

Keywords:Paraconsistent reasoning; Logic programming; Multivalued logics; Bilattices; Knowledge
representation

1. Introduction

The development of efficient tools to solve problems in knowledge representation urges
a careful balance between their computational performance in carrying out some specific
inference task and the attempt to find a precise formalization of the problem.

In virtue of their mathematical power, bilattices are strong enough to provide a uniform
treatment of existing procedural systems, whilst keeping attractive computational proper-
ties. Introduced by Ginsbef§], they have been used in the effort to implement knowledge
representation tools. Furthermore, using bilattices in logic programming formalisms, Fit-
ting attested (seg—8]) that they are particularly adequate to represent knowledge in
situations where we can find uncertainty, incompleteness, and inconsistency. The use of bi-
lattices for supporting paraconsistent reasoning in logic programming has been supported
by others, nameli9,10].

Fitting's results appeared at almost the same time as a diversity of frameworks for ma-
nipulating data and knowledge were proposed in the form of extensions to logic program-
ming and deductive databad@s11-14] Usually, the authors characterize their programs
with a model theoretical semantics, where a minimum model is guaranteed to exist, and a
corresponding monotonic fixed point operator too (whether continuous or not).

The underlying uncertainty formalism in the proposed logic programming frameworks
includes probability theor{l5,16], fuzzy set theory17,18] many-valued logi¢7,14,19]
and possibilistic logi¢11]. Different ways of dealing with uncertainty may be required for
any given applicatiofi20]. All such logic programming based frameworks are monotonic,
and so none allows default negation.

Following an algebraic approach to both the language and the semantics of logic pro-
grams, Damasio and Pereira define[21] a rather general framework of Monotonic
Logic Programs, where the rules are constituted by arbitrary isotonic body functions and
by propositional symbols in the head. These programs extend definite logic program-
ming (i.e. those without non-monotonic default negation) to arbitrary complete lattices
of truth-values, via an appropriate notion of implication. It is shown that Monotonic Logic
Programs are general enough to capture several distinct logic programming semantics such
as the uncertainty formalisms above [14, the same authors generalize the framework to
cater for rules with arbitrary antitonic bodies over general complete lattices, and show all
standard logic programming theoretical results carry over to such Antitonic Logic Pro-
grams, defining them for Stabj22,23]and Well-founded ModdP4] semantics alike.

Notwithstanding, a specific treatment for explicit negation in Antitonic Logic Programs
is not provided. In the present work we extend the previous framework to an arbitrary
complete bilattice of truth-values with appropriate negation and conflation operators. The
resultant framework is hereby dubbed Paraconsistent Logic Programs. In its presentation
we are motivated by Ginsberg’s bilatticEs, and by Lakshmanan and Sadri's work on
probabilistic deductive databagd$]. Ginsberg’s bilattices support an elegant framework
for logic programming involving belief and doufd]. In particular, they lead to a precise

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 69

definition of explicit negation operators. We further employ these results to properly char-
acterize default negation, and ensure obedience to the coherence principle, to the effect that
explicit negation entails default negation (i.e. whatever is explicitly false must necessarily
be false by default as well). I[15], the authors argue about the convenience of explic-

itly representing both belief and doubt when dealing with incomplete knowledge, where
diverse evidence may contradict one another.

Considering that various degrees of contradictory information can be found in Paracon-
sistent Logic Programs, besides satisfying the coherence principle, a semantics for these
programs must be able to deal with both contradiction and uncertain information. More-
over, it is important not just to reason paraconsistently when facing an inconsistency, but
also to keep track of which part of the knowledge base is itself inconsistent, which part
merely depends on the inconsistent part and, of course, to detect too which part is in-
consistency free. In order to define a semantics with these requirements, we generalize
the paraconsistent well-founded semantics for extended logic proghéss, [3,4]. As
we do not impose any specific characterization of explicit negation, we can introduce in
our framework any negation operator supported by Ginsberg’s bilattice. In the sequel, we
present as well a semantics based on Coherent Answer Sets.

The paper is structured as follows: in Sectfwe present bilatticel®, 7], and empower
the framework to characterize the default negation operator. Se&iand 4present the
core of our work: there we introduce respectively syntax and semantics of Paraconsistent
Logic Programs. In Sectioh, we produce an illustrative example where the framework is
utilized to encode a rather complex decision table. In the subsequent section, we demon-
strate results concerning how to identify inconsistent propositional symbols or which
depend on the inconsistency of other propositional symbols. Finally, we draw out con-
clusions, refer related work, and mention future developments. An extended version of this
paper with the full proofs of all results is available[25].

2. Bilattices

With the aim of characterizing uncertainty, several varieties of fixed point semantics
for logic programming have been proposed. In common they require a suitable machinery
ensuring the existence of fixed points of the particular operator associated with a program.
For the machinery to work smoothly there must be an appropriate interaction between
the logical operations allowed in the programming language and the underlying partial
order of truth-values. It is claimed by Fittiri@] that the notion of bilattice, as presented by
Ginsberd5], can be applied to most kinds of fixed point semantics, providing an account of
the intended partial order for each of the truth-functional connectives and their interactions.

By employing bilattices, we avail ourselves of a powerful tool to uniformly describe
these truth-values, which can not only depict classical bivalued systems, but basically also
any multivalued approach whose underlying truth-values have some intuitive character. As
a matter of fact, in its most general presentation, bilattices can furthermore describe many
non-intuitive truth-valuegs].

Definition 1 (Bilattice). A bilattice is a structur@ = (B, <;, <x) whereB is a nhonempty
set, and B, <) and(B, <;) are both bounded lattices, i.e. with a bottom and a top element.

70 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

We shall user;, and®, respectively for denote the meet and join operations that cor-
respond to<,, and®; and®;, for those that correspond &g,.

The partial ordeky is intended to represent the knowledge or information order, and
<, the truth order. In other words, we can say the knowledge order reports on how much
information we have about a particular statemgnthile the truth order reports on how
confident we are in that is true or otherwise false. Interpreting<; y, we simply thereby
meany is truer thanx; in turn, we interprek <; y as meaning the evidence underlying
is subsumed by the evidence underlying

The bilattice B will be (infinitary) k-distributiveif the lattice (B, <) is (infinitary)
distributive; it will be (infinitary) t-distributive if (B, <;) is (infinitary) distributive; we
will say B is cross distributivef each of ®, and @, distributes with respect to botRy
and@;. If B is k-distributive, z-distributive and cross distributive, we will simply say it
is distributive If both (B, <x) and(B, <;) are complete lattices, i.e. their respective least
upper bound and greatest lower bound exist for arbitrary subsets of the lattice (not only for
finite subsets), we say that the bilattice@mplete

We may sometimes refer to a bilattice 86C, D) whenever we wish to emphasize its
domain is the Cartesian productx D, where(C, <1) and(D, <) give us the structure
of complete lattices, and for any1, d1) and{cz, d2) elements ofC x D:

o (c1,d1) < (2, d2) iff c1 <1 c2 anddy <o dp,
o (c1,d1) < {c2,d) iff c1 <1cpanddy <o d;.

We shall usel 1 and T in order to denote, respectively, the bottom and top elements of
(C, <1); similarly L, and T will denote, respectively, the bottom and top elements of
(D, <2). When<; and< are the same, we simply designate these elementsdnyd T.

In a bilattice B(C, C) with <1 = <>, (L, L) and(T, T) are respectively the bottom and
top elements of the bilattice with respect4q; likewise, (L, T) and{(T, L) are respec-
tively the bottom and top elements of the bilattice with respeetto

We can imagine the pair, d) in B(C, D) represents two independent judgements con-
cerning the truth of some statementepresents our degree of eviderfioethe statement;

d represents our degree of evideragminstit. SinceC and D can be the domain of dif-

ferent lattices, expressions of belief in and against need not be measured in the same way.
In this sense, byci1, d1) <k {(c2, d2) we mean(cz, d2) embodies more “knowledge” than
{c1,d1), which is reflected by an increased degree of both belief in and against. On other
hand, by(c1, d1) <; {c2, d2) we mean{c,, d2) embodies more “truth” thatr1, d1), which

is reflected in an increased degree of evidence for, and a decreased degree of evidence
against it.

The simplest example of a non-trivial bilattice can be obtained by resorting to the lattice
constituted by the sd0, 1} with 0 < 1 representing, respectively, the classical truth values
true andfalse The bilattice5({0, 1}, {0, 1}), depicted inFig. 1, gives us an isomorphic
copy of the well-known four-logic, due to Beln&p6], where(0, 0) indicates we have no
evidence either for or against, afitl 1) indicates we are in an inconsistent situation of
having full evidence both for and against. Likewig$8, 1) stands for false andlL, 0) for
true.

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 71

B

0,1

1,0)

Fig. 1. The smallest non-trivial bilattice.

Analyzing the bilattice3({0, 1}, {0, 1}) in terms of <, we can conclude thal, 0)
and (1, 1) are respectively the least and the greatest element{@rig and (1, 0) are
incomparable. Considering the relatief, (0, 1) and(1, 0) are respectively the least and
the greatest element, a@ 0) and(1, 1) are incomparable.

Another well-known example is based on the real unit intef®al]. TakingC and D
as[0, 1], we can think of a member of the resulting bilatti8g0, 1], [0, 1]) as expressing
a degreeof evidence for and against. For more expressive useful bilattices, the reader is
invited to take a look if5—7,27]

Observe the only difference between our bilattice definition and Ginsberg’s is that, like
Fitting [7], we do not consider negation as granted. Thus we may have bilattices without
a negation operator. In order to introduce it, Ginsliétgequires that negation mesh well
with the partial orders and satisfy the double negation property:

Definition 2 (Negatior). A bilattice B = (B, <;, <) has a negation operation if there is a
mapping—: B — B such that:

(1) a <k b= —a < —b;
(2 a<ib=—b < —a;
(3) ——a=a.

Due to the way negation is contemplated in a bilattice, we can argue this operator es-
tablishes a connection between the knowledge and truth orders in a reasonable way: one
expects negation to invert the notion of truth, whilst negation would preserve the knowl-
edge order, that is, one would know as much absptas one would know about.

Suppose we have combined two identical latti€es (C, <) in order to create a bilat-
tice B(C, C). A reasonable candidate then for the negation operaterdsb) = (b, a).
Intuitively, in a bilatticeB(C, C), we are assuming evidence for and against are measured
in the same way. It being so, in passing frém b) to —(b, a), we are just counting now
“for” what was counted “against” before, and conversely.

72 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

Then, in the bilatticeB({0, 1}, {0, 1}) of Fig. 1, we can define the negation operator by
reversing evidence for and against. This is equivalent to “flipping” the diagram left to right
by interchangingO, 1) and(1, 0) while keeping fixed0, 0) and(1, 1).

Fitting [7] introduced one more basic operator in bilattices: conflation [[Befr de-
tails). This operator is defined in the same manner as negation, but with the relgsuodl
<, interchanged:

Definition 3 (Conflatior). A bilattice B = (B, <;, <x) enjoys a conflation operation if
there is a mapping : B — B such that:

Q) aib=> —b<y —a;
(2) a<1b=>—a <1 _b,
3) ——a=a.

If ——a = a (respectively——a = a) is not verified, the negation (respectively confla-
tion) operator is said to be weak.[lA], Fitting further states the conflation operator results
in moving to “default” evidence. This signifies that givére B, where® = (B, <;, <z)
is a bilattice with a conflation operator, inL we are to count now as “for” whatever did
not count as “against” before, and “against” what did not count as “for”.

Then suppose again we combine two identical lattiCes (C, <) in order to create a
bilattice B(C, C); if C has an order reversing involution (we denote the involutz by
—x), a reasonable candidate for the conflation operater(ig b) = (—b, —a) [27]. The
operator — is called de Morgan complemenRecalling the bilatticé3({0, 1}, {0, 1}), we
can introduce conflation by defining an operation which “flips” the bilatticeign 1 from
top to bottom, interchanging, 0) and(1, 1) while keeping fixed0, 1) and(1, 0).

Under these circumstances, the notion of conflation is used by Fiffintp define
important relations over the bilattice:

Definition 4. In a bilattice®s = (B, <;, <) with conflation, forL € B

1. LisexactifL=—L;
2. L isconsistentifL <; —L.

Additionally, we will sayL is inconsistent ifL. £, —L.

Regarding bilattices of the kin8(C, D), we can think of the evidence ferL as the
complement of the evidence agaiistThen we can say. is exactwhenever evidence for
and against complement each other in some reasonable sehsg eifact or the evidence
for (respectively evidence againgt)has less knowledge than the complement of evidence
against (respectively evidence fdr) we have that. is consistentOtherwise, if there is
a conflict of knowledge between evidence for and evidence against, i.e. the evidence for
(respectively evidence againdt)has more knowledge than the complement of evidence
against (respectively evidence fdr) we have thaL is inconsistent

In the bilattice B([0, 1], [0, 1]), for instance, we can define conflation as follows:
—({a,b) = (1 — b,1 — a). Considering this case, an elemgnt 8) which belongs to

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 73

[0,1] x [0, 1] is exact ifa + B = 1; it is consistent ife + 8 < 1, and it is inconsistent
if «+ 8> 1.

Assuming the existence of conflation, associated to each negation operator we can
define a default operator. In the same way, conflation represents a movement to default
evidence, such a default operator, denotechbyZ, would represent a move to default
negation evidence. This means that givea B, where = (B, <,, <) is a bilattice with
conflation and negation operatorsnatL we are to count as “for” whatever did not count
as “for” before, and “against” what did not count before as “against”.

Assuming bilattice3 with both — and —, we say— and — commutdf ——A = ——A
for all A. Taking such considerations into account we may generalize this notion of default
negation as follows:

Definition 5 (Default negatioh Let 5 = (B, <, <) be abilattice. Consider thatand—,
respectively, a negation and a conflation operator, that commueWe definenot: B —
B as the default negation operator where

NnotL =gef —— L.

In the bilattice5({0, 1}, {0, 1}) (the crisp case), we can introduce default negation by
defining an operation which “flips” the bilattice Fig. 1 both top to bottom and left to
right. This is equivalent to interchangin@, 0) and (1, 1) as well as(0, 1) and (1, 0).

As for the bilattice5([0, 1], [0, 1]), we can define the default negation operator easily:
not{e, B) = (1 — o, 1 — B). A different definition can be found ifiL0]. Default negation

is antitonict with respect to both orders, and thus preserves neither the knowledge order
nor the truth order. In addition, this definition obt can be related to that of epistemic
logic in [28], wherenotL is equated wittB ~ L, that is belief in~L where~ is classical
negation. ThereB~L is given the semantics that L is true in all minimal models. To see
the relationship, leL in notL above be represented hy, 8), and let the bilattice be exact,
thatis——L =-L.So(l—«a,1— B) = (B, a), i.e.a andp are the exact complements of
one another, and consequently. can be interpreted asL. It follows that in this case
the conflation operator coincides indeed with the belief opeBtsincenotL = ——L =

—~L =B~ L. Thus one may conclude that conflation, as introduced in conjunction with
not, further generalizes the notion of belief to bilatices.

The default negation operator plays a central role in our framework. In Sek;tioh
lowing ideas expressed 2], we will relate it to the explicit negation operator through
thecoherence principleln its original concept, the coherence principle was introduced in
Extended Logic Programs interpreted WFSX, .

The rationale ofNFSX, is to non-trivially extract the maximum number of conclusions
from contradictory information. This provides the user with the information necessary to
decide what to do, since all possible scenarios are taken into account. The user is warned
about some potential problems, and is up to him to take the right decision. In this work, we
will generalize to some extent this property involving the detection of information support

1 A function is isotonic (antitonic) iff the value of the function increases (decreases) when we increase any
argument while the remaining arguments are kept fixed.

74 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

on inconsistency, in order to make it applicable in complete bilattices of truth-values. For
a recent characterization §¥YFSX, in terms of argumentation semantics, the reader is
referred tq29].

As we have seen, bilattices provide a truth-value mechanism suitable for uncer-
tain/inconsistent information. In Fitting’s word$], a logic programming fixed point
semantics can be developed relative to any bilattice. That means that under the bilattice
umbrella we can develop a framework general enough to capture a huge number of ex-
tant formalisms involving uncertain and/or inconsistent reasoning. In the next sections the
presentation and motivation for this framework will be the central topic of our concern.

3. Paraconsistent L ogic Programs

In the framework of Monotonic Logic Prograrfl], rules are constituted by arbitrary
isotonic body functions, and by propositional symbols in the heagtl]lnDamasio and
Pereira extend the syntax of Monotonic Logic Programs allowing for rules with antitonic
bodies (Antitonic Logic Programs), of which normal logic programs are a special case.
The authors also show that all the standard logic programming theoretical results carry
over to such Antitonic Logic Programs through both Stgp&23]and Well-founded24]
semantics alike. Because of their arbitrary monotonic and antitonic operators over a com-
plete lattice, these programs pave the way to combine and integrate into a single framework
several forms of reasoning, such as fuzzy, probabilistic, uncertain, and paraconsistent ones.

Many works (e.g.[2,23,30,31] have argued for the convenience of introducing into
logic programming a way to distinguish what can be shown to be false from what is false
by default because it cannot be proven true. So-called Extended Logic Prodi@ 23,
32,33]add explicit negation to normal programs.[B}, it is claimed that explicit negation
should entail default negation, tl@oherence Principlalready mentioned before. Unfor-
tunately, antitonic logic programs as they stand are not suited to characterize this principle,
as discussed below.

Following another path, Lakshmanan and St proposed a framework for model-
ing uncertainty, where both belief and doubt are explicitly incorporated. Motivated by these
two formalisms, that is, extended logic programs and Lakshmanan and Sadri’s framework,
we shall extend the syntax of antitonic logic programs to bodies constructed from combi-
nations of functions isotonic or antitonic in each argument over a complete bilattice, and to
more general head formulas. Then we employ the characterization of the default negation
operator presented in Secti@iio impose coherence on it.

In the remainder of this work, we assume that every bilattice is complete, admits con-
flation and negation, and that these two operators commute. For the sake of completeness,
we start by defining an algebraic characterization of the syntax of paraconsistent logic pro-
grams. The following presentation is rather standard and more detailed accounts can be
found, for instance, if34,35] Since the language of our programs is single sorted, we
resort to a simplified version of signature in specifying paraconsistent logic programs.

Definition 6 (PLP signaturg. A signatureX’ is a set of pairg f, n) such that no function
symbol f occurs in two distinct pairs and its arity or rankis a natural numbegn > 0).
The setX,, denotes the set of function symbols of arity

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 75

A paraconsistent logic program signature, PLP signature for short, is a signature con-
taining at least the pairs-, 1), (—, 1) and{(®y, 2).

So, paraconsistent logic programs will be built using function symbols that represent at
least the negation and conflation operators, and the meet under knowledge ordering. The
user is free to add other function symbols and constants to the language, defining a specific
PLP signature. The association of meaning to the symbols of a PLP signature is captured
by the definition of PLP algebra:

Definition 7 (PLP algebrg. Given a PLP signatur& and a bilattice’ = (B, <;, <), a
PLP algebrr—ﬂ? is a pair(B, i) wherei is an interpretation function assigning functions
to functions symbols as follows:

(1) Each symbot in X (i.e., c is a constant symbol) is interpreted as an elementin

B, denoted b)Z*.
(2) Each function symbok in X,, n > 1, is interpreted as a functioi{ f): B" — B,

denoted byf. Additionally, f must be either isotonic or antitonic in each argument
with respect togy.

Moreover,i(—) andi(—) must be respectively mapped to the negation and conflation op-
erators ofB, andi (®;) to the meet operator under knowledge orderingof

Note that PLP algebras are related to semantical aspects of the operators. The next step
consists in defining the alphabet of symbols of our language, given a PLP signature.

Definition 8 (PLP alphabe} Let X be a PLP signature antl = J; X; (i € N), the set of
function symbols in¥. Given a sefT of propositional symbols such that N @ = {}, the
PLP alphabet4!! overI7 is the disjoint union'7 U @.

The formulae which appear in the body and heads of rules in paraconsistent logic pro-
grams are defined inductively as follows:

Definition 9 (PLP formulag. Let X' be a signature anfi a set of propositional symbols.
The set of PLP formuIaEORM’E7 is the least set of strings over the corresponding PLP
alphabet4f such that

e Every propositional symbol ifi7 is a formula inFORM;

e Every constant symbele Xy is a formula inFORM ;

o If F,...,F, (n>1) are formulae inFORMg and f is an-ary function symbol
(f € Z,),thenf Fy ... F, is a formula inFORM.

In order to avoid unnecessary notational overhead, in this definition we specify formulae
in prefix notation. It can be shown that the set of formUFafﬁRMg is freely generated
from the propositional and constant symbols, and the operations corresponding to function

76 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

symbols, as described above. The notion of PLP formulae mimics the definition of first-
order logic terms in prefix notation, with the predefined unary functions symbalad

—, and the meet operator symh®}.. A complete formal analysis and justification of the
above definitions can be found for instancg3d].

Before introducing the syntax of paraconsistent logic programs we require the notion
of reverse functions. A major motivation for this definition is the use of negation operators
in the head of rules. As we shall see, the bodies of our rules can be arbitrary formulae but
we have to limit the allowed functions in the heads in order to guarantee the existence of a
single model for every program under our Paraconsistent Well-Founded Semantics. As we
shall see, the notion of reverse function allows moving functions in the head to the body.

Definition 10 (Reverse functionsGiven an isotonic unary functiofi: B — B and a par-
tial order <, we say f has a reverse function with respect<oiff there is an isotonic
function f : B — B with respect to<, defined as follows: for alb € B, f(b) = a, where
a is the minimum element according fosuch that < f(a), formally:

fb)=min{a |b< f@)}.

It is obvious that iff exists it will be unique. The paitf, f) is a Galois connection in
the sense df36], then it follows thatf (b) < a iff b < f(a).

Proposition 11. Let — be the negation operator of a bilattice. The reverse functiof of
with respect to the knowledge ordering-dtself.

As examples of operators with reverse functions we will only consider negation in the
bilattice. However, with a view towards generality, we foresee from the start the possibility
of introducing other operators with this property, for instance special instances of weak
negations. The full syntax of Paraconsistent Logic Programs can now be proffered:

Definition 12 (Paraconsistent Logic Programd_et > be a PLP signaturé = (B, <,,
<) a bilattice andz%* a PLP algebra. A paraconsistent logic progr&nover the set of
propositional symbolg7 is a set of rules of the fornd[A] <~ ¥ where®[A] and¥ are
formulas inFORM{, such that:

(1) The headp[A] has the formv1 02 ... 0, A (n > 0), i.e. a possible empty sequence of
unary function symbols applied to propositional symhol
(2) Eacho; occurring in@[A] is an isotonic unary operator symbol 3y for which there

is ag; € X1 such tha‘q',- is a reverse function ai- with respect to<, in 8.
(3) The bodyw is an arbitrary formula oFORMY.

If ®[A]l=0102 ... 0, A occurs in the head of a rule arfdis an arbitrary formula of
FORMI;, we denote by®d[F] the formulag, ... g2 q1 F, obtained by concatenating
qn ... g2 g1 With F. Mark thatif@[A] = A then®[F]=F.

Throughout this work, we reserve the symBbto denote the PLP algebra below:

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 77

Example 13. Let X be the following PLP signature:

S ={(=1, (- 1% 2} U{{{a,b),0) |a,bel0,1]},

where the required function symbols of a PLP signature are extended with constants rep-
resenting all the elements in the $611]2. Notice that in the above expression b) is
interpreted as a single constant symbol with no internal structure. Instead, we could have
used something like%, but that would compromise readability of the examples.

Consider the bilattic#([0, 1], [0, 1]) constructed from the Cartesian product of the unit
interval [0, 1] with itself, and the usual total ordering among real numbers.

The PLP algebr#i is the pair([0, 1]2, i) constructed fronB([0, 1], [0, 1]) such that

(1) i({a, b)) = (a, b), i.e. all the constant symbols are mapped to the corresponding ele-
ments in[0, 1]2.

(2) i(—):[0, 1]2 — [0, 1]? such that (=) ((a, B)) = (B,).

(3) i(—):[0, 112 — [0, 112 such thai (=) (&, B)) = (1 — B, 1 —).

(4) i(®1):[0,1]% x [0,1]2 — [0,1]% such thati(®:)((a, B), (y,8)) = (min(e, y),
min(g8, 8)), where the function min0, 1] x [0, 1] — [0, 1] returns the minimum of its
arguments.

Considering the knowledge ordering B{([0, 1], [0, 1]), the functioni(—) is isotonic,
andi (®y) is isotonic in both arguments whilst—) is antitonic. Recall that we can use the

alternative notations.1, :, andék for denotingi (—), i (—), andi (®x), respectively.
Assuming the set of propositional symbdls contains{a, b, ¢, d, e}, a syntactically
correct paraconsistent logic program is:

c<— Q®r Qr Qra—-ba——b —a < (0.8, 0.6) e <+~ ——d
b < ®; ——a (0.9, 1.0) d < —(1.0,0.0) e < —d

In order to improve readability, we shall serve our programs with rule bodies represented
in infix notation, where the operat@; associates to the left, and the negation and con-
flation operators have higher priority thay . With these usual conventions, all examples
presented in this paper are unambiguously translated to prefix notation as required by our
formal definitions. Thus, the above program may be exhibited as follows:

c<a Qr b ® a ® ——b —a < (0.8, 0.6) e < ——d
b <~ ——a Q; (0.9,1.0) d < —(1.0,0.0) e <« —d

The following definition is tailored with the aim of ascertaining if an occurrence of a
propositional symbol is isotonic or antitonic:

Definition 14 (Isotonic and antitonic occurrence€onsider a set of propositional symbols
IT and letIT* be the set of annotated propositional symhiais = {A* | A e [T} U {A™ |

A € IT}. The functions™ : FORMZ — FORMZ " and ¥ :FORMY — FORM{" are de-
fined inductively by:

78 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

e For a propositional symbal, (4)* = At and(A)T = A~.

e For a constant symbel (¢)* = c and(c)¥ =c.

e For every function symbolf of arity (n > 1) and for all formulaeF,..., F, in
FORMY, then

(fFr...F)*=fG1...G, and (fF1... F)T=fHi ... H,

[]
such that for every X i < n, formulaG; is Fl.jE and H; is Ff if f isisotonic in the

ith argument, an@; is F;* and H; is FijE if f is antitonic in the'th argument.

A propositional symboHA annotated withA* in ¥* is said to be an isotonic occurrence of
A in . Similarly, if A is annotated witlA~ in ¥* then the occurrence is antitonicdn.

It should be clear that every occurrence of a propositional symbél appears in the
translated formular* annotated either with or —, and thus will be either isotonic or
antitonic. The designations isotonic and antitonic occurrence will be fully understood after
defining how a formula is “evaluated” with respect to a partial interpretation. For instance,
(Qk Qk ®ra—ba ——b)Tisthe formula®; ®r Qr at —bt a™ ——b~, as expected.

The expressioWw|[A1,..., Ay | Bi,..., B,] (m,n > 0) denotes the formula&, where
A4,..., A, and By, ..., B, are, respectively, the isotonic and antitonic occurrences, of
propositional symbols iw in the order they appear i (left to right). We usually denote
arule®[A] < ¥ of P by ®[A] < V[A4,..., Ay | B1,..., B,] in order to make clear
the isotonic and antitonic occurrences of propositional symbols in the body of the rule.

A paraconsistent logic prograth is a monotonic logic program if all the rules are of
the form®[A] < W [A4,..., A, | 1. We refer toP as an antitonic logic program if each
rule is either of the kindb[A] < W [A1,..., Ay |] Orelse®@[A] < W[| By, ..., B,].

4. Semantics of Paraconsistent L ogic Programs

Regarding the semantics, we follow a paraconsistent and paracomplete approach in-
spired byWFSX, [3,4], one of the well-founded based semantics proposed for extended
logic programg37]. Furthermore, we introduce a Stable Model semantics todCtheer-
ent Answer Set3 he well-founded based semantics will be defined via an alternating fixed
point definition in the style of38], and also relates to the works[@27].

In order to simplify the presentation, we assume in the rest of this section the existence
of a given PLP signatur&’, a PLP algebr&l"? for a complete bilattic& = (B, <;, <)
with conflation and negation commuting®, and a set of propositional symbdis.

The first difficulty in defining the semantics for paraconsistent logic programs concerns
the evaluation of body formulae with antitonic occurrences of propositional symbols, in
particular for defining default negation. A simple fixed point definition of the semantics is
hampered because the bodies of rules have no more an isotonic (or monotonic) behavior
with respect to an uniform assignment of elements in the bilattice to propositional symbols
(an interpretation). A technique used in logic programming literature resorts to the notion
of partial interpretation, requiring first the usual notion of interpretation.

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 79

Definition 15 (Interpretatior). Let 8 = (B, <;, <x) be a complete bilattice and a set
of propositional symbols. An interpretation 6f is a mapping/ : IT — B. The set of all
interpretations of the propositional symbols with respeébtis denoted by

The pointwise ordering extends the knowledge ordegngn the truth-values if8 to
the set of interpretations as follows.

Definition 16 (Lattice of interpretations ConsiderZg the set of all interpretations of a set
of propositional symbolgI with respect to a complete bilatti®®, and two interpretations
I, I, € Is3. Then,(Zg, E) is the complete lattice whetg C I iff V,e7 I1(p) <k I2(p).
The least interpretation maps every propositional symbol to the least element ugger
of 98, and the greatest interpretatiormaps every propositional symbol to the top element

under<, of the same complete bilattice of truth-valuBs

A partial interpretation is a pair of interpretations mapping propositional symbols to
elements in the underlying bilattice.

Definition 17 (Partial interpretation3. A partial interpretation’” of a set of propositional
symbolsT is a pairI? = (I', I'*) of interpretations off7 with respect to a complete
bilattice 8. The set of all partial interpretations:(%.

When speaking about (partial) interpretations we usually omit the set of propositional
symbolsI7, which is implicitly provided. Sometimes we refer 16 as the T-component
and to thel/™ as the TU-component of a partial interpretation. The T-component repre-
sents what certainly holds in the partial interpretation, while the TU-component contains
what may hold (i.e. the “complement” of what certainly does not hold). The annotations
T andT U are a remnant of th&/FSX, semantics basis, since in a two-valued setting the
T-component and TU-component capture, respectively, what is “true” and what is “true or
undefined” (“non-false”). It is also important to mark that € 7'*) is not imposed and,
consequently, paraconsistency is allowed, i.e. something may certainly hold and not hold
(by being simultaneously “true” and not “non-false”). Two orders among partial interpre-
tations are useful:

Definition 18 (Standard and fitting orderingslLet Il” andlf be two partial interpretations.
The standard and Fitting’s orderings among partial interpretations are defined by:

Standard ordering I C, 1) iff I C I and/j" C I},

Fitting’s ordering 17 =, 1} iff I CI5andsy cI;".
The set of partial interpretations orderedy or by E ¢ is a complete lattice. Clearly, the
bottom and top elements of these lattice afe= (A, A) (viz. all is false), TY = (v, v)

(viz. all is true), LY. = (A, V) (viz. all is undefined) and™”. = (v, A) (viz. all is true and
false). ' ‘

The standard ordering prefers partial interpretations maximizing what certainly holds
and minimizing what certainly does not hold. Fitting’s ordering prefers interpretations with

80 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

more information. The insight is that isotonic occurrences of propositional symbols (an-
notated with") should be evaluated in the T-component of the partial interpretation, while
the antitonic occurrences (annotated withshould be evaluated in the TU-component,
resulting in an element of the bilatti®d. This separation between isotonic and antitonic
occurrences of propositional symbols is fundamental to allow for the specification of con-
verging operators in order to obtain fixed point semantics for every paraconsistent logic
program[9,22,27,38] A precise inductive definition of the evaluation of formula in a par-
tial interpretation can now be provided:

Definition 19 (Valuatior). For a given partial interpretatiof’ = (I’, I'*) define induc-
tively the functionval;» : FORM’LZi — B as follows:

o For every propositional symbal, val;» (A7) = I’ (A).

o For every propositional symbal, val;» (A7) = I (A).

e For every constant symbe] val;» (c) = ¢

e For every function symbolf of arity (n > 1) and for all formulaeF, ..., F, in

FORMgi, thenval;»(f F1 ... F,) = }(vaIIp(Fl),...,val,p(Fl)).

The valuation function’? : FORMY — B is defined byl?(¥) = val;»(¥*). If the for-
mulay is of the form¥[A4,..., A, | B1, ..., B,] bythe expressio@[l(Al), o T(AR)
J(By),...,J(Bp)] we meanﬁ(lll), where (I, J) is the partial interpretation con-
structed from the interpretatiorisandJ.

The main property of the valuation function is captured in the following proposition,
explaining why we designated isotonic and antitonic occurrences of propositional symbols
those annotated with and—, respectively:

Proposition 20. Consider the partial interpretations” and J” with 17 C ¢ J?, then for
every formula? in FORM:

val; (WF) <gvalyy (WF) and val, (W) > valy» (@F).

Therefore,ﬁ(tl/) <k ﬁ(!ﬂ).

An increase in the values assigned to propositional symbols in the T-component and de-
crease of the values in the TU-component of a partial interpretation maintains or increases
the value of a formula with respect to that partial interpretation. The notion of model of a
program is now straightforward:

Definition 21 (Mode). A partial interpretation ” satisfies a rul@[A] <— ¥ of a paracon-
sistent logic progran® iff 17(W) <, IP(P[A]). A partial interpretation ” is a model of
P iff 17 satisfies all rules oP.

Notice we resort to the knowledge ordering to specify the notion of model. The intent
of paraconsistent logic programs is to specify what should hold and not hold via program

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 81

rules, i.e. how information is extracted from program rules. This is the desired behavior in
logic programming over bilattices, as argued10,27], since<; symmetrizes evidence

for and against. The least upper bound of the knowledge ordering can be interpreted as an
“accept all” operator that combines knowledge, in order to record cases in which there is an
evidence at the same time for and against a given proposition, and pinpoint contradictory
knowledg€[10].

In particular, assume we state a proposition, gajo be both true and false, via the
rulesa <t and—a <« t, where the constaritis mapped to the greatest element in the
truth-ordering. Using the knowledge orderirgis mapped to the greatest element in the
knowledge ordering, meaning that there is some sort of inconsistency in the program. Using
the truth-ordering instead, the ruten < t would be trivially satisfied, and would be
mapped to the greatest element in the truth-ordering, therefore losing the information that
there is some sort of inconsistency in the program.

Proposition 22. A partial interpretation satisfies a rul@[A] < ¥ iff satisfies the rule
A < @[¥].

From the previous proposition we conclude that the function symbols appearing in the
head can be “moved” to the body of the rule. Thus, function symbols in rule heads are
simply “syntactic sugar” allowing the user to more naturally express his knowledge in a
paraconsistent logic program.

The next major definition generalizes the Gelfond—Lifschitz transformation anfl the
operatof22]. The rationale is to extract from the program all its consequences, assuming
that an interpretation is used to evaluate the antitonic occurrences of propositional symbols.
Technically, this is achieved by coupling together the ideas of Gelfond-Lifschitz division
operatord22] and of the immediate consequences operator of van Emden and Kowalski
[39], along the lines of27].

Definition 23 (Gamma operator Let P be a paraconsistent logic program aha given
interpretation. The generalized immediate consequences opé@iatafs — Zgs maps
T

interpretations to interpretations:

Tg%(l)(A) = lub {P[W¥1[1 (A1), [(An) | J(BY), ..., J(By)]
such thatp[A] <~ W[A1,..., Ay | B1,..., Byl € P}.

The FP% operator is defined as the least fixed poinT@f with respect to the ordering
T
between interpretations, formally:

rru)= prT? = T? 1*, for some ordinak.

The definition of the generalized immediate consequences opdi’%'tomakes use

] —_—
of Proposition 22guaranteeing the semantic equivalence of the rdles- ®[¥] and
®[A] < ¥. TheT P operator determines the value assigned to each propositional symbol
T

82 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

in order to satisfy all its rules, via the least upper bound under knowledge ord&ringy,

for an interpretation of isotonic occurrences of propositional symbols and fixed interpreta-

tions of antitonic ones. The operator must be “iterated” frorim order to guarantee that

all the rules for all the propositional symbols are satisfied, for the fixed interpretation of

the antitonic occurrences of propositional symbols. This is attained byﬁ]eperator.
Notwithstanding, in conformity witl§2], negation and default negation are not unre-

lated: the Coherence Principle, when adopted, ensures that the former entails the latter.

From an epistemic viewpoint, coherence can be seen as an instance of the Necessitation

Principle, which states that if something is known then it is believed, i.e. its negation is

false in all minimal model$28]. Therefore, one hag <; not—A (Coherence Principle).

Sincenot—A =gef —A (Definition 5), it suffices to guaranteg <; —A then. Technically,

we can define the coherence principle in the following manner:

Definition 24 (Coherence Principle Let P be a paraconsistent logic program. Then a
modelMP = (M', M™) of P complies with the Co/h\erence Pﬂﬂciple iff for every propo-
sitional symbolA appearing in the language &, M?(A) <; MP(—A), i.e. M'(A) <i

2 Ma.

Given these arguments, and in order to enforce coherence, we will resort to the semi-
normal gamma operator, inspired by the approach taken in the definition of the paracon-
sistent well-founded semantics with explicit negatitirSX, [3,4], itself inspired by the
semi-normal gamma operator @f{FSX[40], which it generalizes to the paraconsistent
case. Semi-normality itself is a designation borrowed from semi-normal defaults, the rea-
son being that the semi-normal logic program rules add to the rule’s body the default literal
not—H, whereH is a propositional symbol or their explicit negation in the head. In our
context,not—H is, by definition,— H.

Definition 25 (Semi-normal Gamma operajoiLet P be a paraconsistent logic program
and J an interpretation. The semi-normal immediate consequences oﬂefaiﬁ% —
A

I maps interpretations to interpretations:

L —

T?(I)(A) = b {@[¥][1(A1), ..., [(An) | J(B1), ..., J(By)] Ok ~J(A)

such thatb[A] < ¥[A1,..., Ay | B1,..., Byl € P}.

We also defind > (J) =Ifp T2 = T2 1*, for some ordinak.
: T T

Mark that coherence is enforced in every propositional symbdly not letting the

value of the bodies foA surpass.—J(A). Before proceeding, it is necessary to ensure that
both F}? J) andF}f (J) are well defined. This is immediate from Knaster—Tarski theorem
[41], since both versions of the immediate consequence operators are monotonic:

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 83

Theorem 26 (Monotonicity of 72 and TE?). Let P be a paraconsistent logic program
T T

and J an interpretation. The operatorg? and TP? are monotonic with respect to the
T ra
pointwise extensiolr of knowledge ordering to interpretations.

The dual alternatmg“%l“% operator suffices to define an extension of well-founded
semanticq24,38] to bilattice based logic programs, as dond9r27]. In particular, this
technique is followed inM1l] to define semantics for Antitonic Logic Programs. Since
P I does not take into account semi-normality, it cannot capture the Coherence Prin-
ciple. The solution is described [8,4], in which an alternating fixed point definition of
WEFSX, is provided, relying on the application of two anti-monotonic operatbfs] s, .
Before generalizing this result to our framework we need to ensure the next theorem:

Theorem 27 (Anti-monotonicity) Consider a paraconsistent logic prograf LetJ; and
J» be two interpretations such thak C J,. ThenI';° (J2) T 'Y (J1) and F,f(]z) C

e).

Corollary 28. Consider a paraconsistent logic prograf Let J; and J> be two interpre-
tations such thatiy T Jo. ThenI' P I (J1) T IR IR (J2).

From the monotonicity of thé“‘BF% operators we know, again by the Knaster—Tarski

theorem41], for any paraconsistent Iog|c prograPn that]“%l“‘B has a least fixed point.
This fixed point is affirmed to define the paraconsistent weII founded semantics:

Definition 29 (Paraconsistent well-founded semanfidset P be a paraconsistent logic
program, and? = (M', M'*) be a partial interpretation. We sa§? is a partial paracon-
sistent stable model @ iff M’ = ' (' (M")) andM™ = I'p> (M").

The least partial paraconsistent stable model under the F|tt|ng ordering is the paracon-
sistent well-founded mod&/FM? (P), and can be obtained by |terat|riil;‘,B F? from A.

Then, given that interpretatioky, is the least fixed point oFP% Fg underC ordering, we
shall haveWFM? (P) = (I,,, I'p> (L))

Given thatM? = (M', M™) is a partial paraconsistent stable model, we say a proposi-
tional symbolA is:

o fully definedwith respect tav? iff M'(A) = M"™(A);
o undefinedwith respect tav? iff M'(A) <x M™(A);
o overdefinedvith respect ta\? iff M'(A) £x M"™(A).

We also say a propositional symbwlis strictly overdefined with respect i ? iff M (A)
<i M'(A).

Alternatively, by letting2}* (/) = (I'} (J™), I'? (J')), an operator mapping partial
interpretations to partial interpretations, the partlal paraconsistent stable models of the pro-
gramP can be seen as the fixed pomtsm?. Slncefz% is monotonic with respecttg ¢,

84 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

the least fixed point under the Fitting ordering (the paraconsistent well-founded model) is
once more guaranteed to exist, and can be obtained by iterﬁﬁ]grom 12 =(a, V).

The 9,‘? operator is the counterpart of the Przymusinski operator to characterize well-
founded semantidgl2].

An important result is that every partial paraconsistent stable model is indeed a model
of the program:

Theorem 30. Let P be a paraconsistent logic program. Every partial paraconsistent stable
model of P is a model ofP.

When both components of the partial interpretation coincide, then an extension of an-
swer set semantid&3] is obtained:

Definition 31 (Coherent answer sgtd et P be a paraconsistent logic program. A coherent
answer set is a fully defined partial paraconsistent stable model, i.e. of the #6yi7),
whereM is an interpretation.

As usual, coherent answer sets are not guaranteed to exist. However, like paraconsistent
well-founded models, coherent answer sets do comply with the Coherence Principle:

Proposition 32. Let P be a paraconsistent logic program. Then all partigl\paraconsis-
tent stable model3/” = (M"', M) of P obey the Coherence Principle, i#7(A) <
MP(—A) for every propositional symbal appearing in the language df.

The Coherence Principle is still valid for more general classes of formulae, as described
in the following corollary:

Corollary 33. Let P be a paraconsistent logic program, and? = (M, M'") a partial
paraconsistent stable model. For every formalaonstructed from propositional symbols,
constant symbols representing consistent values in the underlying bilattice, and combina-
tions of®; and— thenM? (F) < MP(—F).

The corollary below is immediate, providing the confirmation that our semantics obeys
Coherence:

Corollary 34. All coherent answer sets and the paraconsistent well-founded model of a
paraconsistent logic program® observe the Coherence Principle.

Naturally, the Paraconsistent Well-founded Semantics extends Well-founded Semantics
[24], and its generalizationd/FSX[2,43] andWFSX, [3,4]. Similarly, Coherent Answer
Sets extend the Answer Sets Semantics of Gelfond and Lifsi@#}zFor additional de-
tails, the reader is referred [B5].

In the next section we show an example motivating the applicability of our framework
and of its two proposed semantics.

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 85

Table 1
Decision table foflu

fever cough headache musagbain flu

no no no no no (in 99% of cases)
yes no no no no (in 80% of cases)
yes yes no no no (in 30% of cases)
yes yes no no yes (in 60% of cases)
yes yes yes yes yes (in 75% of cases)

5. Example

Paraconsistent Logic Programs have a large range of applications. We address the fol-
lowing example, adapted frofd4], encoding a decision table based on rough relations.
These are determined ough Setécf. [44]), introduced to deal with imprecise infor-
mation. In[45,46], several logic programming languages are defined, making it possible
to describe systems using rough relations and reason about them. On some points, these
languages resemble our framework but they differ essentially in not enforcing coherence,
and by limiting themselves to Belnap’s four valued logic.

The symptomdgever, cough headacheandmuscle pain are used to decide whether a
patient has a flu. The diagnosis is performed according to decisiorf filable 1

Mark that in the 3rd and 4th lines dfable 1we have evidence for and against the
conclusions for the same set of symptoms, and that in 10% of those cases the physician
remains undecided.

We resort to the PLP algebfd = ([0, 1]2, i) exhibited inExample 13to encode the
decision table. The first case is directly representable in paraconsistent logic programming
by the rule:

—flu < (0.99, 0.0) ®; —fever®; —cough®,; —headache; —muscle pain. Q)
Similarly, the second diagnosis case could be implemented via the next rule:

—flu < (0.8, 0.0) ®; fever®; —cough®; —headache; —muscle pain. 2
The translation of the final case is immediate:

flu < (0.75, 0.0) ®; fever®, cough® headache&y; muscle pain. 3)

Returning to rulg1), because of the way negation was defin@dfinition 2) and since
the truth-value of the head is greater or equal to that of the body in any model, one may
alternatively construe it as:

flu < —((0.99, 0.0) ®; —~fever®,; ~cough®; —headach&; —muscle pain)
which reduces tb

flu < (0.0, 0.99) ®; fever®; cough®; headache&; muscle pain. (4)

2 The figures are fictitious.
3 From[7], we have—(A ®; B) = (—A ®; —B).

86 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

To continue, the reader will surely notice that the body of (@eis identical to that
of rule (4), with the exception of the confidence degrees in the two rules. According to
WEFMP, the truth-value oflu is determined by the least upper bound (undg) of the
truth-values assigned to the bodies of the ruledlforConsequently, rule@) (in its form
(4)) and(3) can be combined into a single one:
flu < (0.75, 0.99) ®; fever®; cough®; headachey; muscle pain. (5)

Thus, the above rule expresses both positive and negative evidence for diagnosing a flu:

o if a patient has fever, cough, headache, and muscle-pain, then flu is a correct diagnosis
in 75% of the cases;

o if a patientdoesn’thave feverdoesn’tcough, andloesn’thave headache nor muscle-
pain either, then hdoesn’thave flu in 99% of the situations.

So, the positive evidence for the consequent is only concluded when all the propositions
in the body of the rule have positive evidence for them. Symmetrically, the negative evi-
dence for the conclusion is only gotten when all propositions in the body supply negative
evidence.

For the remaining situation (fever, cough, no headache, and no muscle_pain) two dis-
tinct rules are required for concluding whether the patient might or might not have a flu (as
per case$3) and(4)):

—flu < (0.3, 0.0) ®; fever®; cough®; —headache&;, —muscle pain,
flu < (0.6, 0.0) ®; fever®, coughr; —headache&; —muscle pain.

So the paraconsistent logic program rules for diagnosing flu are:
—flu < (0.8, 0.0) ® fever®; —cough®; —headache; —muscle pain,
flu < (0.75, 0.99) ®; fever®, cough®; headachey; muscle pain,
—flu - (0.3, 0.0) ®; fever®, cough®; —headache&; —muscle pain,
flu < (0.6, 0.0) ®; fever®, cough®; —headache&; —muscle pain.

Assume now that antibiotics are prescribed when flu is not concluded. We now compare
two possible alternative translations of this statement, represented by each of the following
rules:

antibiotics<« —flu (6)
or
antibiotics<« ——flu. @)

The former concludes that antibiotics should be prescribed when there is explicit neg-
ative evidence for flu. With the latter rule, antibiotics are recommended when there is no
evidencé for flu.

4 Which is not the same has having negative evidence!

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 87

Table 2
Models for theflu program

fever cough headache musgbain flu —flu —=flu
T (0.0, 1.0) (0.0, 1.0 (0.0, 1.0) (0.0, 1.0 (0.0,0.99 (0.99,0.0) (1.0,0.01
TU (0.0, 1.0 (0.0, 1.0 (0.0, 1.0 (0.0, 1.0 (0.0,0.99 (0.99,0.0) (1.0,0.01
T (1.0,0.0) (0.0, 1.0 (0.0, 1.0 (0.0, 1.0 (0.0,0.8) (0.8,0.0) (1.0,0.2)
TU (1.0,0.0) (0.0, 1.0 (0.0, 1.0) (0.0, 1.0 (0.0,0.8) (0.8,0.0) (1.0,0.2)
T (1.0,0.0) (1.0,0.0) (0.0, 1.0) (0.0, 1.0 (0.6,0.3) (0.3,0.6) (0.4,0.7)
TU (1.0,0.0) (1.0,0.0) (0.0, 1.0 (0.0, 1.0 (0.6,0.3) (0.3,0.6) (0.4,0.7)
T (1.0,0.0) (1.0,0.0) (1.0,0.0) (1.0,0.0 (0.75,0.0) (0.0,0.75) (0.25,1.0)
TU (1.0,0.0) (1.0,0.0) (1.0,0.0) (1.0,0.0) (0.75,0.0) (0.0,0.75) (0.25,1.0)
T (0.4,0.6) (0.7,0.3) (0.1,0.9) (0.2,0.7) (0.4,0.3) (0.3,0.4) (0.6,0.7)
TU (0.4,0.6) (0.7,0.3) (0.1,0.9) (0.2,0.7) (0.4,0.3) (0.3,0.4) (0.6,0.7)
T (0.4,0.6) (0.7,0.3) (0.7,0.9) (0.2,0.7) (0.4,0.3) (0.3,0.4) (0.7,0.7)
TU (0.4,0.6) (0.7,0.3) (0.1,0.3) (0.2,0.7) (0.3,0.3) (0.3,0.3) (0.6,0.7)

We illustrate next the behavior of paraconsistent well-founded semantics in several sit-
uations.Table 2contains six different models of the above program. The first row of every
model corresponds to the T component of the model, while the second row represents its
TU component. The five leftmost columns represent the interpretation, and the two right-
most columns the confidence degrees of explicit and default negations.

The first model inTable 2is obtained by adding the set of facts below to the previous
rules, where the confidence degrees are extracted from the T component\uf-Mé
model of the program:

fever< (0.0, 1.0) cough< (0.0, 1.0
headache— (0.0, 1.0) muscle pain < (0.0, 1.0)

The first four models correspond to tf@) previously identified cases about diagnosing
flu. As the reader can easily check, the columnffoiis in accordance with the evidence
expressed iffable 1

The distinctive effect of the ruleantibiotics <— —flu and antibiotics <~ ——flu can be
observed in the columns fefflu and——flu. By the Coherence Principle, it is always the
case that, for every mod@(—-ﬂu) <k IT/I\P(—ﬁqu), as the reader can check in the T-rows
of each model. For instance, in the second model we hdltewith degree of evidence
(0.8,0.0) and ——flu with evidence(1.0,0.2), and as expecte¢D.8, 0.0) <, (1.0,0.2).
Since flu has valug0.0, 0.8), and——flu has valug1.0, 0.2), antibiotics should definitely
be prescribed according to ruf@), confirming there is no positive evidence for having a
flu. The situation where flu is diagnosed appears in the fourth model, and so antibiotics are
not then prescribed.

In the fifth model the physician is uncertain regarding each symptom. The interesting
aspect of this case is that the degree of evidenc#ids obtained by combining together
the degrees of evidence of several rules.

Finally, the last model illustrates how paraconsistency is handled by our semantics. The
fact headache— (0.7, 0.9) is inconsistent in Fitting’s sense (and thus in WNEM?). In

88 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

the well-founded model of the prograrity has degre€0.3, 0.3) in the TU-component,
which is less (in the<; sense) than its degree of truitd.4, 0.3)). As we shall observe in
the next section, this is indicative thidt is dependent on some inconsistent value: in our
example, on the value assignedieadacheAll the other previous models are consistent
and fully-defined, i.e. they are coherent answer sets.

6. Capturinginconsistency and its dependencies

This section is devoted to the presentation of material and theorems related to inconsis-
tencies and their propagation by the rules of a paraconsistent logic program. Specifically,
we will provide a necessary and sufficient condition for inconsistency of a paraconsis-
tent logic program; a necessary condition for dependence on inconsistency of a particular
propositional symbol, and a counterexample of why this last condition is not also sufficient.

In order to motivate our results, note that in last modélatfle 2 for two propositional
symbols we have values whose TU-compongpfl-component:

headache flu

T (07,09 (04,03
TU (01,03 (0.3,0.3)

As we have mentioned, the T-componentHieadachés inconsistent in Fitting’s sense
(cf. Definition 4). The inconsistency of a propositional symbol is reflected in the para-
consistent well-founded model by forcing (via semi-normality) its TU-component to be
less than its T-component according to knowledge order. However, although the T-value
(0.4, 0.3) assigned tdlu is not in itself inconsistent, even sy, with its TU-value of
(0.3,0.3), preserves this apparently bizarre behavior. In the sequel, we show such situa-
tions happen just when a propositional symbol depends on some inconsistency.

Before showing these results, we adopt some conventions motivated by the example
forthwith:

Example 35. Given the PLP algebrgt = ([0, 1)2, i), consider the program® and P»:

a < b®yc,
P = { b < (0.6,0.8),
c <« (1.0,0.0),
P2 =a < (0.6,0.8) ® (1.0,0.0)
whose respective paraconsistent well-founded modéfsand M7, indicate

M!(a)=(0.6,0.0) and M}{“(a)=(0.4,0.0),

M}(a) =(0.6,0.0) and M%*(a)=(0.6,0.0).
We can explain Why\/[f and Mé’ disagree regarding:” by noting that in P; we have an
inconsistent constant being assigned#bthrough the ruleb < (0.6, 0.8), whilst in P»,
we have no inconsistent value being assigned to a rule head(6i6¢8.8) @.)k (1.0,0.0) =

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 89

(0.6,0.0). As consequence, i1, M;(b) differs from M;"(b), resulting therefore that
Mj(a) also differs fromM}“(a). In contrast, inP2, M5(a) = M5 (a).

When proving the results below, the bilattice of truth-values are supposeditfiriie
tary k-distributive We also assume a constanis only allowed to appear in rules of the
form @[A] < y. It is just a semantical restriction, because from a syntactical point of
view, and without loss of generality, in a rB[A] <— ¥ we can replace any constant
appearing in¥ by a new propositional symbol (sa$), and add the rule’ < y to P. The
purpose is to keep a tighter control on the propagation, via the program rules, of inconsis-
tency generated by constants. Acting this way, we force inconsistent constants to behave as
ordinary inconsistent propositional symbols. In the remaining part of this section, we treat
constants and propositional symbols indistinctly.

We make use ofheorem 360 ensure that, given a paraconsistent well-founded model
MP = (M", M™) for a programP, M' = M" is equivalent to saying every propositional
symbol in the language @? is consistent.

Theorem 36. Let MP = (M', M) be the least fixed point (11’133 F,%‘ for a paraconsistent
logic programP. ThenM' C FS% M iff for every propositional symbal in P language,
M!(A) <t ~M'(A).

Obviously, as it can be checked in the example below/i{A) £, M™(A) there is
some propositional symba@ inconsistent il ”.

Example 37. Consider the paraconsistent logic progr&showed inExample 35

—flu < (0.8, 0.0) ® fever®; —cough®; —headache; —muscle pain,
flu < (0.75, 0.99) ®; fever®, cough®; headache&y; muscle pain,

—flu < (0.3, 0.0) ®; fever®, cough®; —headache&; —muscle pain,
flu < (0.6, 0.0) ®; fever®, cough®; —headach&; —muscle pain.

Besides these rule®, contains the set of facts:

Fr fever< (0.4, 0.6), cough<« (0.7, 0.3),
1=] headache— (0.7,0.9), musclepain < (0.2, 0.7).

The WFMP = (M', M) for P corresponds to the fifth model dfable 2 where we
concludeM’™ (fluy = (0.3, 0.3) <; M'(flu) = (0.4, 0.3). Accordingly, as ensured byhe-
orem 36 there is some propositional symbol (in this caseadachginconsistent in the

language of?, since(0.7,0.9) % (0.1,0.3) = 1(O.7, 0.9).
Underpinned byrheorem 36corollary below is immediate:

Corollary 38. All coherent answer sets of a Paraconsistent Logic Program are consistent.

90 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

In the next proposition we find out a bit more: wheneMr(A) £, M™(A), eitherA
is itself inconsistent oA depends on some inconsistency. However, before introducing it,
let us motivate the notion of dependence:

Example 39. Let P be the program obtained by replacing the set of fagtin Example
37 with the setF» below:

P fever< (1, 0), cough<« (1, 0),
2~ | headache— (0, 1), musclepain < (0, 1).

The resultanWFMP = (M', M™) for P corresponds to the third model ®able 2 where

we concludeM’ (fluy = M"“ (flu) = (0.6, 0.3). In the programP above, we have four rules
for flu, but not all effectively contribute to the final value assigneditioaccording to
WFMP, Clearly M’ (flu) and M (flu) are obtained by combining the values assigned by
the bodies of the rules

—flu «<- (0.3, 0.0) ®; fever®, cough®; —headach&; —muscle pain,
flu < (0.6, 0.0) ®; fever®, coughk; —headach&; —muscle pain

present in the program @&xample 37 When calculating the paraconsistent well-founded
model for P, the values assigned by the first two rules are completely absorbed by the val-
ues assigned by the other two rulesflormentioned in the example above. Consequently,
without affecting the final result, we can eliminate the two first ruledltor

In the proposition below, we just define the &t in order to gather all rules fap[A]
which contribute to the value established fbraccording toWFM?”. The objective is to
guarantee that il is consistent, and for all ruleswhich effectively contribute tot (r €
Uy), if we have for all propositional symbols’ in the body ofr, M'(A") < M'™(A"),
thenM’(A) < M™(A):

Proposition 40. Let P be a paraconsistent logic program, a propositional symbol of its
language. LeM? = (M", M) be the paraconsistent well-founded modePofind define

Body, = |MP(®[¥]) | #[A] < ¥ € P} and
Us = {®@[A] < ¥ | MP(@[¥]) is an upper bound of Bogy.

If the following conditions hold

o M'(A) < ~M'(A),
e For every rule of the form®[A] < y in Ua, wherey is a constant symbol, we have

J;ék :J;,
e For every rule ®[A] < ¥[Bu,..., By|C1,...,Cy] in Ua, we haveM'(B;) <k
M™(B;) and M'(C;) <x M™(C)),

thenM! (A) <k M"(A).

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 91

In other words, ifM(A) £x M™(A), thenA is either inconsistent or there is some rule
r for A such that for at least a propositional symbol (or constantin the body ofr,
M'(A") £ M"™(A"). RecallingExample 37we have

M" (headachg= (0.1, 0.3) <; M'(headachg= (0.7, 0.9),
and
M" (flu) = (0.3, 0.3) <x M (fluy = (0.4,0.3).

Just by taking a look at th&/FM? for the programpP we conclude, fromProposition 40
thatheadachas inconsistent anflu depends on an inconsistency (in this cdmsdachg

Because of the generality of the bilattice structure, we do not have the converse result
for Proposition 40

Example 41. Given the PLP algebr& = ([0, 1]2,), let P be the paraconsistent logic
program below:

a<b®rd®r—a, b+« (0.7,0.3),
c <~ ——c, d < (0.8,0.3),

P={c<eQf e < (0.7,0.6),
f < (0.6,0.2), g < (0.7,0.7),
h < gQ®xc, i <—aQyh.

After evaluating the paraconsistent well-founded madél= (M’, M'") for P, we obtain

M'(i) =(0.3,0.2), M™ (i) =(0.3,0.2),
M'(a) = (0.3,0.3), M"(a) =(0.7,0.2),
M'(h) = (0.6,0.2), M"™(h) = (0.3,0.3).

Based onProposition 40 both the propositional symbols:™ and “42” depended on in-
consistency. In addition, given that the only rule fof In P isi < a ®; h, we can
undoubtedly say i” is also dependent syntactically on an inconsistency. However, as
M'(a) @ M'(h) = M"(a) @ M""(h), we haveM' (i) = M" (i), and our clue for {” de-
pending on an inconsistency is lost! However, we note tHatdes not in this case actually
depend on the inconsistent values faf ‘and “A” to the point where these matter, for the
value of i” could be exactly the same for non-inconsistent values of the former. The open
question is how to characterize and identify in a declarative and simple way such circum-
stances. We can still have the desired result in specific situations, when, for instance, we
assume for every propositional symbat“in the program’s languaged* (a) <; M'(a)

(a is strictly overdefined id1?). As we can see if#7], this is enough to apply the converse
result in Extended Logic Programs.

7. Conclusions, related work, and open issues

In this work we have fine-tuned some issues and explored new ones, arisinffiffpm
in which we introduced Paraconsistent Logic Programs. These generalize Antitonic Logic

92 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

Programg1] by ushering into an encompassing framework, of an appropriate kind, con-
cepts to cope with explicit and default negation, and certifying that the latter complies with
the Coherence Principle. Program rules are rather complex: heads are constituted by ap-
plications of unary functions to a propositional symbol admitting a reverse function with
respect to<,, whilst bodies correspond to compositions of arbitrary monotonic and anti-
tonic operators, in each argument, over a complete bilattice in the sense of Gifigberg

In order to define the semantics we then resort to a program division in the sgRR]pf

which transforms paraconsistent logic programs into monotonic ones. Forthwith, we can
similarly apply an immediate consequences operator, guaranteeing the existence of a min-
imum paraconsistent well-founded modgFM”.

To motivate the use of Paraconsistent Logic Programs, and in order to map decision
tables based on rough relations, we examine how our semantics manipulates inconsistency.
Establishing some new results, we show how the semantics allows for paraconsistency at
the same time it keeps, to some extent, a monitoring eye on the inconsistent information and
its propagation through the program rules. As regards a complexity analysisWhRig,
at a first glance, it sounds expensive in terms of computational time, notwithstanding, for
specific instances, that we can have inference methods based on polynomial algorithms, as
in the implementation oiVFSX, [4].

Indeed, in[47] we have provided a simple translation of Extended Logic Programs un-
derWFSX, into Paraconsistent Logic Programs. Furthermore, other frameworks are easily
embeddable into ours, such as Probabilistic Logic Progifasis Possibilistic Logic Pro-
gramming[11], Hybrid Probabilistic Logic Program43], Generalized Annotated Logic
Programg14], and Fuzzy Logic Progranii2]. On the one hand, these translations per-
mit to simultaneously deal with negation, paraconsistency, and non-monotonic reasoning,
within the uncertain formalisms above. On the other, we may now study the behavior of
WFSX,, and of other important paraconsistent semantics for Extended Logic Programs
when uncertain reasoning, otherwise absent, is introduced into them.

Like Antitonic Logic Programs, we may envisage Paraconsistent Logic Programs as a
natural extension of Fitting’s workg,27]. Particularly, our framework enables us to make
a distinction between explicit negation and default negation, and to explore the coherence
principle. In contradistinction to Fitting, we do not restrain our framework to interlaced
bilattices. We should mention as well that the central point in these works is the logic
programming syntax, instead of considering arbitrary isotonic and antitonic functions in
the bodies. To be absolutely fair, the publicatj@fi] introduces the notions @afttenuation
operators which can be viewed as arbitrary monotonic operators over bilattices. In other
related work[10], Arielli defines a semantics for extended logic programs also based on
bilattices, but with a restricted syntax. The author too advocates the coherence principle
in some specific situations, but it is not clear whether this is a general property of the
semantics. We intend to explore the connections to this work in the future. In a similar
direction, it is the work by Denecker et 48], but its focus is on the properties of the
operators to guarantee the existence of a well-founded and stable model like semantics,
while ours is in the definition of a language permitting the construction of such operators.
Moreover, we rely on the combination of two related but distinct anti-monotonic operators.

The generality of our framework propels us to many possible future avenues of research:
we may next generalize our structure to consider rules with more complex heads, for in-

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 93

stance, with disjunctions. In an opposite direction, we may explore particular instances of
our framework, so as to improve the understanding of properties of concrete instances, and
to compare them to existing work. Focusing on more theoretical results, we have detected
promising links between our semantics and substructural 1¢g&;49] to be exposed in
subsequent work. Based on these results, we shall define a model theory for our seman-
tics in a style similar to that of Cabalf0] and Pearc¢s1]. Given the close relationship
between our semantics aWdFSX,, it is possible, by introducing a suitable operator to
capture consistency, to obtain a model theory satisfyingsietle Principle of Explosion

[52]. Consequently, the resulting logic can be classifiedlazgic of Formal Inconsistency

(LFI) [52]. Another interesting line of research is the study of the various types of negation,
specially if we allow for weak negation operators as well. This offers the opportunity for
examining how the Coherence Principle functions in such cases. The definition of tabled
derivation procedures is also envisaged, for some specific instances of the framework.

Acknowledgements

Jodo Alcantara is a PhD student at UNL supported by CAPES, Brasilia, Brazil. The
authors thank the TARDE and FLUX projects, sponsored by FCT/MCES, Portugal. We
also are grateful to Reinhard Kahle and José Alferes for helpful discussions. A specific
word of appreciation should go to the anonymous referees for their detailed comments.

References

[1] C.V. Damasio, L.M. Pereira, Antitonic logic programs, in: T. Eiter, M. Truszczynski (Eds.), Proc. 6th Int.
Conf. on Logic Programming and Nonmonotonic Reasoning, in: LNCS/LNAI, Springer, 2001, pp. 748-759.

[2] L.M. Pereira, J.J. Alferes, Well-founded semantics for logic programs with explicit negation, in: B. Neumann
(Ed.), European Conference on Artificial Intelligence, John Wiley & Sons, Wien, Austria, 1992, pp. 102—
106.

[3] J.J. Alferes, C.V. Damasio, L.M. Pereira, A logic programming system for non-monotonic reasoning, J. Au-
tomated Reas. (Special Issue) 14 (1) (1995) 93-147.

[4] C.V. Damasio, Paraconsistent extended logic programming with constraints, PhD thesis, Universidade Nova
de Lisboa, 1996.

[5] M. Ginsberg, Multivalued logics: A uniform approach to reasoning in artificial intelligence, Comput. Intel-
ligence 4 (1988) 265-316.

[6] M. Fitting, Bilattices in logic programming, in: G. Epstein (Ed.), 20th Internat. Symp. on Multiple-Valued
Logic, IEEE, 1990, pp. 238-246.

[7] M. Fitting, Bilattices and the semantics of logic programming, J. Logic Programming 11 (1991) 91-116;
URL citeseer.nj.nec.com/fitting89bilattices.html

[8] M. Fitting, Fixpoint semantics for logic programming a survey, Theoret. Comput. Sci. 278 (1-2) (2002)
25-51.

[9] M. Denecker, V. Marek, M. Truszchgki, Approximations, stable operators, well-founded fixpoints and
applications in nonmonotonic reasoning, in: J. Minker (Ed.), Logic-Based Artificial Intelligence, Kluwer
Academic Publishers, 2000, pp. 127-144.

[10] O. Arieli, Paraconsistent declarative semantics for extended logic programs, Ann. Math. Atrtificial Intelli-
gence 36 (4) (2002) 381-417.

[11] D. Dubois, J. Lang, H. Prade, Towards possibilistic logic programming, in: Proc. ICLP’91, MIT Press, 1991,
pp. 581-598.

http://citeseer.nj.nec.com/fitting89bilattices.html

94 J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95

[12] P. Vojtés, L. Paulik, Soundness and completeness of non-classical extended SLD-resolution, in: Proc. WSs.
on Extensions of Logic Programming (ELP'96), in: LNCS, vol. 1050, Springer-Verlag, 1996, pp. 289-301.

[13] A. Dekhtyar, V.S. Subrahmanian, Hybrid probabilistic programs, J. Logic Programming 43 (3) (2000) 197—
250; URL citeseer.nj.nec.com/dekhtyar00hybrid.html

[14] M. Kifer, V.S. Subrahmanian, Theory of generalized annotated logic programming and its applications,
J. Logic Programming 12 (1-4) (1992) 335-367; URIiteseer.nj.nec.com/kifer92theory.html

[15] L. Lakshmanan, F. Sadri, On a theory of probabilistic deductive databases, Theory and Practice of Logic
Programming 1 (1) (2001) 5-42.

[16] R. Ng, V.S. Subrahmanian, Probabilistic logic programming, INFCTRL: Information and Computation (for-
merly Information and Control) 101; URtiteseer.nj.nec.com/ng92probabilistic.html

[17] E. Shapiro, Logic programs with uncertainties: A tool for implementing expert systems, in: Proc. IJCAI'83,
William Kauffmann, 1983, pp. 529-532.

[18] M. van Emden, Quantitative deduction and its fixpoint theory, J. Logic Programming 3 (1) (1986) 37-53.

[19] M. Fitting, Logic programming on a topological bilattice, Fund. Math. XI (1988) 209-218.

[20] L. Lakshmanan, N. Shiri, A parametric approach to deductive databases with uncertainty, Knowledge Data
Engrg. 13 (4) (2001) 554-570; URCtiteseer.nj.nec.com/laks97parametric.html

[21] C.V. Damasio, L.M. Pereira, Monotonic and residuated logic programs, in: S. Benferhat, P. Besnard (Eds.),
6th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, in: LNAI,
vol. 2143, Springer, 2001.

[22] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. Kowalski, K.A. Bowen
(Eds.), 5th International Conference on Logic Programming, MIT Press, 1988, pp. 1070-1080.

[23] M. Gelfond, V. Lifschitz, Logic programs with classical negation, in: D.H.D. Warren, P. Szeredi (Eds.), 7th
Int. Conf. on Logic Programming, MIT Press, 1990, pp. 579-597.

[24] A. van Gelder, K. Ross, J. Schlipf, The well-founded semantics for general logic programs, J. ACM 38 (3)
(1991) 620-650.

[25] J. Alcantara, C.V. Damasio, L.M. Pereira, An encompassing framework for paraconsistent logic programs
(extended version), Available http://centria.di.fct.unl.pt/~cd/publicacoes/jalext03.ps.gz

[26] N.D. Belnap, A useful four-valued logic, in: J.M. Dunn, G. Epstein (Eds.), Modern Uses of Multiple-Valued
Logic, D. Reidel, 1977, pp. 8-37.

[27] M. Fitting, The family of stable models, J. Logic Programming 17 (1993) 197-225.

[28] J.J. Alferes, L.M. Pereira, T.C. Przymusinski, ‘Classical’ negation in nonmonotonic reasoning and logic
programming, J. Automated Reas. 20 (1998) 107-142.

[29] R. Schweimeier, M. Schroeder, A parametrised hierarchy of argumentation semantics for extended logic
programming and its application to the well-founded semantics, Theory and Practice of Logic Programming,
submitted for publication.

[30] R. Kowalski, F. Sadri, Logic programs with exceptions, in: D.H.D. Warren, P. Szeredi (Eds.), 7th Interna-
tional Conference on Logic Programming, MIT Press, 1990.

[31] G. Wagner, A database needs two kinds of negation, in: B. Thalheim, J. Demetrovics, H.-D. Gerhardt (Eds.),
Mathematical Foundations of Database Systems, in: LNCS, vol. 495, Springer-Verlag, 1991, pp. 357-371.

[32] D. Pearce, G. Wagner, Reasoning with negative information I: Strong negation in logic programs, in: L. Haa-
paranta, M. Kusch, I. Niiniluoto (Eds.), Language, Knowledge and Intentionality, in: Acta Philosophica
Fennica, vol. 49, 1990, pp. 430-453.

[33] G. Wagner, Negation in fuzzy and possibilistic logic programs, in: Logic Programming and Soft Computing,
Research Studies Press, 1998.

[34] J.H. Gallier, Logic for Computer Science, John Wiley & Sons, 1987.

[35] J.C. Mitchell, Foundations for Programing Languages, Foundations for Computing, MIT Press, 1996.

[36] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D. Scott, A Compendium of Continuous
Lattices, Springer-Verlag, 1980.

[37] C.V. Damésio, L.M. Pereira, A survey of paraconsistent semantics for logic programs, in: D. Gabbay,
P. Smets (Eds.), Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 2, Kluwer
Academic Publishers, 1998, pp. 241-320.

[38] C. Baral, V.S. Subrahmanian, Duality between alternative semantics of logic programs and nonmonotonic
formalisms, J. Automated Reas. 10 (1993) 399-420.

http://citeseer.nj.nec.com/dekhtyar00hybrid.html
http://citeseer.nj.nec.com/kifer92theory.html
http://citeseer.nj.nec.com/ng92probabilistic.html
http://citeseer.nj.nec.com/laks97parametric.html
http://centria.di.fct.unl.pt/~cd/publicacoes/jalext03.ps.gz

J. Alcantara et al. / Journal of Applied Logic 3 (2005) 67-95 95

[39] M. van Emden, R. Kowalski, The semantics of predicate logic as a programming language, J. ACM 4 (23)
(1976) 733-742.

[40] L.M. Pereira, J.J. Alferes, J.N. Aparicio, Default theory for well founded semantics with explicit negation,
in: D. Pearce, G. Wagner (Eds.), Proc. European Workshop JELIA92, in: LNAI, vol. 633, Springer-Verlag,
1992, pp. 339-356.

[41] A. Tarski, Lattice-theoretic fixpoint theorem and its applications, Pacific J. Math. 5 (1955) 285-309.

[42] H. Przymusinska, T.C. Przymusinski, Semantic issues in deductive databases and logic programs, in:
R. Banerji (Ed.), Formal Techniques in Atrtificial Intelligence, a Sourcebook, North-Holland, 1990, pp. 321—
367.

[43] J.J. Alferes, L.M. Pereira, in: Reasoning with Logic Programming, in: LNAI, vol. 1111, Springer-Verlag,
1996.

[44] z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers, Dor-
drecht, 1991.

[45] A. Vitéria, C.V. Damasio, J. Matushski, Query answering in rough knowledge bases, in: 9th International
Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC’2003), 2003,
submitted for publication.

[46] A. Vitéria, J. Matuszyiski, A logic programming framework for rough sets, in: J. Alpigini, J. Peters,

A. Skowron, N. Zhong (Eds.), Proc. of the 3rd International Conference on Rough Sets and Current Trends
in Computing, RSCTC’02, in: LNCS/LNAI, vol. 2475, Springer-Verlag, 2002, pp. 205-212.

[47] J. Alcantara, C.V. Damasio, L.M. Pereira, Paraconsistent logic programs, in: S. Flesca, S. Greco, N. Leone,
G. lanni (Eds.), 8th European Conf. on Logics in Atrtificial Intelligence, in: LNAI, vol. 2424, Springer-
Verlag, 2002, pp. 345-356.

[48] R. Routley, V. Plumwood, R.K. Meyer, R.T. Brady, Relevant Logics and their Rivals, Ridgeview, 1982.

[49] G. Restall, An Introduction to Substructural Logics, Routledge, 2002.

[50] P. Cabalar, Well founded semantics as two-dimensional here-and-there, in: Answer Set Programming, AAAI
Press, 2001, pp. 15-20 (AAAI Press, technical report SS-01-01), inside the 2001 AAAI Spring Symposium
Series.

[51] D. Pearce, From here to there: stable negation in logic programming, in: D.M. Gabbay, H. Wansing (Eds.),
What is Negation?, Kluwer Academic Publishers, 1999, pp. 161-181.

[52] W.A. Carnielli, J. Marcos, A taxonomy @-systems, in: W.A. Carnielli, M.E. Coniglio, I.M.L. D’Ottaviano
(Eds.), Paraconsistency: The Logical Way to the Inconsistent, Proceedings of the 2nd World Congress on
Paraconsistency, held in Juguehy, Brazil, May 8-12, 2000, in: Lecture Notes in Pure and Applied Mathe-
matics, vol. 228, Marcel Dekker, 2002, pp. 1-94.

	An encompassing framework for Paraconsistent Logic Programs
	Introduction
	Bilattices
	Paraconsistent Logic Programs
	Semantics of Paraconsistent Logic Programs
	Example
	Capturing inconsistency and its dependencies
	Conclusions, related work, and open issues
	Acknowledgements
	References

