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Abstract

We propose a framework which extends Antitonic Logic Programs [Damásio and Pereira, in
6th Int. Conf. on Logic Programming and Nonmonotonic Reasoning, Springer, 2001, p. 748
arbitrary complete bilattice of truth-values, where belief and doubt are explicitly represente
spired by Ginsberg and Fitting’s bilattice approaches, this framework allows a precise defini
important operators found in logic programming, such as explicit and default negation. In part
it leads to a natural semantical integration of explicit and default negation through the Coh
Principle [Pereira and Alferes, in: European Conference on Artificial Intelligence, 1992, p. 102
cording to which explicit negation entails default negation. We then define Coherent Answe
and the Paraconsistent Well-founded Model semantics, generalizing many paraconsistent se
for logic programs. In particular, Paraconsistent Well-Founded Semantics with eXplicit ne
(WFSXp) [Alferes et al., J. Automated Reas. 14 (1) (1995) 93–147; Damásio, PhD thesis,
The framework is an extension of Antitonic Logic Programs for most cases, and is general e
to capture Probabilistic Deductive Databases, Possibilistic Logic Programming, Hybrid Proba
Logic Programs, and Fuzzy Logic Programming. Thus, we have a powerful mathematical f
ism for dealing simultaneously with default, paraconsistency, and uncertainty reasoning. Res
provided about how our semantical framework deals with inconsistent information and with its
agation by the rules of the program.
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1. Introduction

The development of efficient tools to solve problems in knowledge representation
a careful balance between their computational performance in carrying out some s
inference task and the attempt to find a precise formalization of the problem.

In virtue of their mathematical power, bilattices are strong enough to provide a un
treatment of existing procedural systems, whilst keeping attractive computational p
ties. Introduced by Ginsberg[5], they have been used in the effort to implement knowle
representation tools. Furthermore, using bilattices in logic programming formalisms
ting attested (see[6–8]) that they are particularly adequate to represent knowledg
situations where we can find uncertainty, incompleteness, and inconsistency. The us
lattices for supporting paraconsistent reasoning in logic programming has been sup
by others, namely[9,10].

Fitting’s results appeared at almost the same time as a diversity of frameworks fo
nipulating data and knowledge were proposed in the form of extensions to logic pro
ming and deductive databases[8,11–14]. Usually, the authors characterize their progra
with a model theoretical semantics, where a minimum model is guaranteed to exist
corresponding monotonic fixed point operator too (whether continuous or not).

The underlying uncertainty formalism in the proposed logic programming framew
includes probability theory[15,16], fuzzy set theory[17,18], many-valued logic[7,14,19],
and possibilistic logic[11]. Different ways of dealing with uncertainty may be required
any given application[20]. All such logic programming based frameworks are monoto
and so none allows default negation.

Following an algebraic approach to both the language and the semantics of log
grams, Damásio and Pereira define in[21] a rather general framework of Monoton
Logic Programs, where the rules are constituted by arbitrary isotonic body function
by propositional symbols in the head. These programs extend definite logic pro
ming (i.e. those without non-monotonic default negation) to arbitrary complete la
of truth-values, via an appropriate notion of implication. It is shown that Monotonic L
Programs are general enough to capture several distinct logic programming semant
as the uncertainty formalisms above. In[1], the same authors generalize the framewor
cater for rules with arbitrary antitonic bodies over general complete lattices, and sh
standard logic programming theoretical results carry over to such Antitonic Logic
grams, defining them for Stable[22,23]and Well-founded Model[24] semantics alike.

Notwithstanding, a specific treatment for explicit negation in Antitonic Logic Progr
is not provided. In the present work we extend the previous framework to an arb
complete bilattice of truth-values with appropriate negation and conflation operator
resultant framework is hereby dubbed Paraconsistent Logic Programs. In its prese
we are motivated by Ginsberg’s bilattices[5], and by Lakshmanan and Sadri’s work
probabilistic deductive databases[15]. Ginsberg’s bilattices support an elegant framew
for logic programming involving belief and doubt[7]. In particular, they lead to a precis
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definition of explicit negation operators. We further employ these results to properly
acterize default negation, and ensure obedience to the coherence principle, to the ef
explicit negation entails default negation (i.e. whatever is explicitly false must neces
be false by default as well). In[15], the authors argue about the convenience of exp
itly representing both belief and doubt when dealing with incomplete knowledge, w
diverse evidence may contradict one another.

Considering that various degrees of contradictory information can be found in Pa
sistent Logic Programs, besides satisfying the coherence principle, a semantics fo
programs must be able to deal with both contradiction and uncertain information. M
over, it is important not just to reason paraconsistently when facing an inconsisten
also to keep track of which part of the knowledge base is itself inconsistent, which
merely depends on the inconsistent part and, of course, to detect too which par
consistency free. In order to define a semantics with these requirements, we gen
the paraconsistent well-founded semantics for extended logic programsWFSXp [3,4]. As
we do not impose any specific characterization of explicit negation, we can introdu
our framework any negation operator supported by Ginsberg’s bilattice. In the sequ
present as well a semantics based on Coherent Answer Sets.

The paper is structured as follows: in Section2 we present bilattices[5,7], and empowe
the framework to characterize the default negation operator. Sections3 and 4present the
core of our work: there we introduce respectively syntax and semantics of Paracon
Logic Programs. In Section5, we produce an illustrative example where the framewor
utilized to encode a rather complex decision table. In the subsequent section, we d
strate results concerning how to identify inconsistent propositional symbols or w
depend on the inconsistency of other propositional symbols. Finally, we draw ou
clusions, refer related work, and mention future developments. An extended version
paper with the full proofs of all results is available at[25].

2. Bilattices

With the aim of characterizing uncertainty, several varieties of fixed point sema
for logic programming have been proposed. In common they require a suitable mac
ensuring the existence of fixed points of the particular operator associated with a pro
For the machinery to work smoothly there must be an appropriate interaction be
the logical operations allowed in the programming language and the underlying p
order of truth-values. It is claimed by Fitting[7] that the notion of bilattice, as presented
Ginsberg[5], can be applied to most kinds of fixed point semantics, providing an accou
the intended partial order for each of the truth-functional connectives and their interac

By employing bilattices, we avail ourselves of a powerful tool to uniformly desc
these truth-values, which can not only depict classical bivalued systems, but basica
any multivalued approach whose underlying truth-values have some intuitive charac
a matter of fact, in its most general presentation, bilattices can furthermore describe
non-intuitive truth-values[5].

Definition 1 (Bilattice). A bilattice is a structureB = 〈B,�t ,�k〉 whereB is a nonempty
set, and〈B,�k〉 and〈B,�t 〉 are both bounded lattices, i.e. with a bottom and a top elem
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We shall use⊗k and⊕k respectively for denote the meet and join operations that
respond to�k , and⊗t and⊕t for those that correspond to�t .

The partial order�k is intended to represent the knowledge or information order,
�t , the truth order. In other words, we can say the knowledge order reports on how
information we have about a particular statementp, while the truth order reports on ho
confident we are in thatp is true or otherwise false. Interpretingx �t y, we simply thereby
meany is truer thanx; in turn, we interpretx �k y as meaning the evidence underlyingx

is subsumed by the evidence underlyingy.
The bilatticeB will be (infinitary) k-distributive if the lattice 〈B,�k〉 is (infinitary)

distributive; it will be (infinitary) t-distributive if 〈B,�t 〉 is (infinitary) distributive; we
will say B is cross distributiveif each of⊗t and⊕t distributes with respect to both⊗k

and⊕k . If B is k-distributive, t-distributive and cross distributive, we will simply say
is distributive. If both 〈B,�k〉 and〈B,�t 〉 are complete lattices, i.e. their respective le
upper bound and greatest lower bound exist for arbitrary subsets of the lattice (not o
finite subsets), we say that the bilattice iscomplete.

We may sometimes refer to a bilattice asB(C,D) whenever we wish to emphasize
domain is the Cartesian productC × D, where〈C,�1〉 and〈D,�2〉 give us the structure
of complete lattices, and for any〈c1, d1〉 and〈c2, d2〉 elements ofC × D:

• 〈c1, d1〉 �k 〈c2, d2〉 iff c1 �1 c2 andd1 �2 d2,
• 〈c1, d1〉 �t 〈c2, d2〉 iff c1 �1 c2 andd2 �2 d1.

We shall use⊥1 and�1 in order to denote, respectively, the bottom and top elemen
〈C,�1〉; similarly ⊥2 and�2 will denote, respectively, the bottom and top elements
〈D,�2〉. When�1 and�2 are the same, we simply designate these elements by⊥ and�.
In a bilatticeB(C,C) with �1 = �2, 〈⊥,⊥〉 and〈�,�〉 are respectively the bottom an
top elements of the bilattice with respect to�k ; likewise, 〈⊥,�〉 and〈�,⊥〉 are respec
tively the bottom and top elements of the bilattice with respect to�t .

We can imagine the pair〈c, d〉 in B(C,D) represents two independent judgements c
cerning the truth of some statement:c represents our degree of evidencefor the statement
d represents our degree of evidenceagainstit. SinceC andD can be the domain of dif
ferent lattices, expressions of belief in and against need not be measured in the sam
In this sense, by〈c1, d1〉 �k 〈c2, d2〉 we mean〈c2, d2〉 embodies more “knowledge” tha
〈c1, d1〉, which is reflected by an increased degree of both belief in and against. On
hand, by〈c1, d1〉 �t 〈c2, d2〉 we mean〈c2, d2〉 embodies more “truth” than〈c1, d1〉, which
is reflected in an increased degree of evidence for, and a decreased degree of e
against it.

The simplest example of a non-trivial bilattice can be obtained by resorting to the l
constituted by the set{0,1} with 0� 1 representing, respectively, the classical truth va
true and false. The bilatticeB({0,1}, {0,1}), depicted inFig. 1, gives us an isomorphi
copy of the well-known four-logic, due to Belnap[26], where〈0,0〉 indicates we have n
evidence either for or against, and〈1,1〉 indicates we are in an inconsistent situation
having full evidence both for and against. Likewise,〈0,1〉 stands for false and〈1,0〉 for
true.
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Fig. 1. The smallest non-trivial bilattice.

Analyzing the bilatticeB({0,1}, {0,1}) in terms of�k , we can conclude that〈0,0〉
and 〈1,1〉 are respectively the least and the greatest element, and〈0,1〉 and 〈1,0〉 are
incomparable. Considering the relation�t , 〈0,1〉 and〈1,0〉 are respectively the least an
the greatest element, and〈0,0〉 and〈1,1〉 are incomparable.

Another well-known example is based on the real unit interval[0,1]. TakingC andD

as[0,1], we can think of a member of the resulting bilatticeB([0,1], [0,1]) as expressing
a degreeof evidence for and against. For more expressive useful bilattices, the rea
invited to take a look in[5–7,27].

Observe the only difference between our bilattice definition and Ginsberg’s is tha
Fitting [7], we do not consider negation as granted. Thus we may have bilattices w
a negation operator. In order to introduce it, Ginsberg[5] requires that negation mesh we
with the partial orders and satisfy the double negation property:

Definition 2 (Negation). A bilatticeB = 〈B,�t ,�k〉 has a negation operation if there is
mapping¬ :B → B such that:

(1) a �k b ⇒ ¬a �k ¬b;
(2) a �t b ⇒ ¬b �t ¬a;
(3) ¬¬a = a.

Due to the way negation is contemplated in a bilattice, we can argue this opera
tablishes a connection between the knowledge and truth orders in a reasonable w
expects negation to invert the notion of truth, whilst negation would preserve the k
edge order, that is, one would know as much about¬p as one would know aboutp.

Suppose we have combined two identical latticesC = 〈C,�〉 in order to create a bilat
tice B(C,C). A reasonable candidate then for the negation operator is¬〈a, b〉 = 〈b, a〉.
Intuitively, in a bilatticeB(C,C), we are assuming evidence for and against are meas
in the same way. It being so, in passing from〈a, b〉 to ¬〈b, a〉, we are just counting now
“for” what was counted “against” before, and conversely.
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Then, in the bilatticeB({0,1}, {0,1}) of Fig. 1, we can define the negation operator
reversing evidence for and against. This is equivalent to “flipping” the diagram left to
by interchanging〈0,1〉 and〈1,0〉 while keeping fixed〈0,0〉 and〈1,1〉.

Fitting [7] introduced one more basic operator in bilattices: conflation (see[7] for de-
tails). This operator is defined in the same manner as negation, but with the roles of�k and
�t interchanged:

Definition 3 (Conflation). A bilattice B = 〈B,�t ,�k〉 enjoys a conflation operation
there is a mapping− :B → B such that:

(1) a �k b ⇒ −b �k −a;
(2) a �t b ⇒ −a �t −b;
(3) −−a = a.

If ¬¬a = a (respectively−−a = a) is not verified, the negation (respectively confl
tion) operator is said to be weak. In[7], Fitting further states the conflation operator res
in moving to “default” evidence. This signifies that givenL ∈ B, whereB = 〈B,�t ,�k〉
is a bilattice with a conflation operator, in−L we are to count now as “for” whatever d
not count as “against” before, and “against” what did not count as “for”.

Then suppose again we combine two identical latticesC = 〈C,�〉 in order to create a
bilatticeB(C,C); if C has an order reversing involution (we denote the involute ofx by
−x), a reasonable candidate for the conflation operator is−〈a, b〉 = 〈−b,−a〉 [27]. The
operator – is called ade Morgan complement. Recalling the bilatticeB({0,1}, {0,1}), we
can introduce conflation by defining an operation which “flips” the bilattice inFig. 1 from
top to bottom, interchanging〈0,0〉 and〈1,1〉 while keeping fixed〈0,1〉 and〈1,0〉.

Under these circumstances, the notion of conflation is used by Fitting[7] to define
important relations over the bilattice:

Definition 4. In a bilatticeB = 〈B,�t ,�k〉 with conflation, forL ∈ B

1. L is exact ifL = −L;
2. L is consistent ifL �k −L.

Additionally, we will sayL is inconsistent ifL �k −L.

Regarding bilattices of the kindB(C,D), we can think of the evidence for−L as the
complement of the evidence againstL. Then we can sayL is exactwhenever evidence fo
and against complement each other in some reasonable sense. IfL is exact or the evidenc
for (respectively evidence against)L has less knowledge than the complement of evide
against (respectively evidence for)L, we have thatL is consistent. Otherwise, if there is
a conflict of knowledge between evidence for and evidence against, i.e. the eviden
(respectively evidence against)L has more knowledge than the complement of evide
against (respectively evidence for)L, we have thatL is inconsistent.

In the bilatticeB([0,1], [0,1]), for instance, we can define conflation as follow
−〈a, b〉 = 〈1 − b,1 − a〉. Considering this case, an element〈α,β〉 which belongs to
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[0,1] × [0,1] is exact ifα + β = 1; it is consistent ifα + β � 1, and it is inconsisten
if α + β > 1.

Assuming the existence of conflation, associated to each negation operator w
define a default operator. In the same way, conflation represents a movement to
evidence, such a default operator, denoted bynotL, would represent a move to defau
negation evidence. This means that givenL ∈ B, whereB = 〈B,�t ,�k〉 is a bilattice with
conflation and negation operators, innotL we are to count as “for” whatever did not cou
as “for” before, and “against” what did not count before as “against”.

Assuming bilatticeB with both¬ and−, we say¬ and− commuteif ¬−A = −¬A

for all A. Taking such considerations into account we may generalize this notion of d
negation as follows:

Definition 5 (Default negation). LetB = 〈B,�t ,�k〉 be a bilattice. Consider that¬ and−,
respectively, a negation and a conflation operator, that commute inB. We definenot:B →
B as the default negation operator where

notL =def −¬L.

In the bilatticeB({0,1}, {0,1}) (the crisp case), we can introduce default negation
defining an operation which “flips” the bilattice inFig. 1 both top to bottom and left to
right. This is equivalent to interchanging〈0,0〉 and 〈1,1〉 as well as〈0,1〉 and 〈1,0〉.
As for the bilatticeB([0,1], [0,1]), we can define the default negation operator ea
not〈α,β〉 = 〈1 − α,1 − β〉. A different definition can be found in[10]. Default negation
is antitonic1 with respect to both orders, and thus preserves neither the knowledge
nor the truth order. In addition, this definition ofnot can be related to that of epistem
logic in [28], wherenotL is equated withB ∼ L, that is belief in∼L where∼ is classical
negation. There,B∼L is given the semantics that∼ L is true in all minimal models. To se
the relationship, letL in notL above be represented by〈α,β〉, and let the bilattice be exac
that is−¬L = ¬L. So〈1− α,1− β〉 = 〈β,α〉, i.e.α andβ are the exact complements
one another, and consequently¬L can be interpreted as∼L. It follows that in this case
the conflation operator coincides indeed with the belief operatorB, sincenotL = −¬L =
−∼L = B ∼ L. Thus one may conclude that conflation, as introduced in conjunction
not, further generalizes the notion of belief to bilatices.

The default negation operator plays a central role in our framework. In Section3, fol-
lowing ideas expressed in[2], we will relate it to the explicit negation operator throu
thecoherence principle. In its original concept, the coherence principle was introduce
Extended Logic Programs interpreted byWFSXp.

The rationale ofWFSXp is to non-trivially extract the maximum number of conclusio
from contradictory information. This provides the user with the information necessa
decide what to do, since all possible scenarios are taken into account. The user is
about some potential problems, and is up to him to take the right decision. In this wo
will generalize to some extent this property involving the detection of information sup

1 A function is isotonic (antitonic) iff the value of the function increases (decreases) when we increa
argument while the remaining arguments are kept fixed.
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on inconsistency, in order to make it applicable in complete bilattices of truth-value
a recent characterization ofWFSXp in terms of argumentation semantics, the reade
referred to[29].

As we have seen, bilattices provide a truth-value mechanism suitable for u
tain/inconsistent information. In Fitting’s words[6], a logic programming fixed poin
semantics can be developed relative to any bilattice. That means that under the b
umbrella we can develop a framework general enough to capture a huge number
tant formalisms involving uncertain and/or inconsistent reasoning. In the next sectio
presentation and motivation for this framework will be the central topic of our concer

3. Paraconsistent Logic Programs

In the framework of Monotonic Logic Programs[21], rules are constituted by arbitra
isotonic body functions, and by propositional symbols in the head. In[1], Damásio and
Pereira extend the syntax of Monotonic Logic Programs allowing for rules with anti
bodies (Antitonic Logic Programs), of which normal logic programs are a special
The authors also show that all the standard logic programming theoretical results
over to such Antitonic Logic Programs through both Stable[22,23]and Well-founded[24]
semantics alike. Because of their arbitrary monotonic and antitonic operators over a
plete lattice, these programs pave the way to combine and integrate into a single fram
several forms of reasoning, such as fuzzy, probabilistic, uncertain, and paraconsiste

Many works (e.g.,[2,23,30,31]) have argued for the convenience of introducing i
logic programming a way to distinguish what can be shown to be false from what is
by default because it cannot be proven true. So-called Extended Logic Programs[10,23,
32,33]add explicit negation to normal programs. In[2], it is claimed that explicit negatio
should entail default negation, theCoherence Principlealready mentioned before. Unfo
tunately, antitonic logic programs as they stand are not suited to characterize this pri
as discussed below.

Following another path, Lakshmanan and Sadri[15] proposed a framework for mode
ing uncertainty, where both belief and doubt are explicitly incorporated. Motivated by
two formalisms, that is, extended logic programs and Lakshmanan and Sadri’s fram
we shall extend the syntax of antitonic logic programs to bodies constructed from c
nations of functions isotonic or antitonic in each argument over a complete bilattice,
more general head formulas. Then we employ the characterization of the default ne
operator presented in Section2 to impose coherence on it.

In the remainder of this work, we assume that every bilattice is complete, admits
flation and negation, and that these two operators commute. For the sake of comple
we start by defining an algebraic characterization of the syntax of paraconsistent log
grams. The following presentation is rather standard and more detailed accounts
found, for instance, in[34,35]. Since the language of our programs is single sorted
resort to a simplified version of signature in specifying paraconsistent logic program

Definition 6 (PLP signature). A signatureΣ is a set of pairs〈f,n〉 such that no function
symbolf occurs in two distinct pairs and its arity or rankn is a natural number(n � 0).
The setΣn denotes the set of function symbols of arityn.
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A paraconsistent logic program signature, PLP signature for short, is a signatur
taining at least the pairs〈¬,1〉, 〈−,1〉 and〈⊗k,2〉.

So, paraconsistent logic programs will be built using function symbols that repres
least the negation and conflation operators, and the meet under knowledge orderin
user is free to add other function symbols and constants to the language, defining a
PLP signature. The association of meaning to the symbols of a PLP signature is ca
by the definition of PLP algebra:

Definition 7 (PLP algebra). Given a PLP signatureΣ and a bilatticeB = 〈B,�t ,�k〉, a
PLP algebraAB

Σ is a pair〈B, i〉 wherei is an interpretation function assigning functio
to functions symbols as follows:

(1) Each symbolc in Σ0 (i.e., c is a constant symbol) is interpreted as an elementi(c) in

B, denoted by
•
c.

(2) Each function symbolf in Σn, n � 1, is interpreted as a functioni(f ) :Bn → B,

denoted by
•
f . Additionally,

•
f must be either isotonic or antitonic in each argum

with respect to�k .

Moreover,i(¬) andi(−) must be respectively mapped to the negation and conflation
erators ofB, andi(⊗k) to the meet operator under knowledge ordering ofB.

Note that PLP algebras are related to semantical aspects of the operators. The n
consists in defining the alphabet of symbols of our language, given a PLP signature

Definition 8 (PLP alphabet). Let Σ be a PLP signature andΦ = ⋃
i Σi (i ∈ N), the set of

function symbols inΣ . Given a setΠ of propositional symbols such thatΠ ∩ Φ = {}, the
PLP alphabetAΠ

Σ overΠ is the disjoint unionΠ ∪ Φ.

The formulae which appear in the body and heads of rules in paraconsistent log
grams are defined inductively as follows:

Definition 9 (PLP formulae). Let Σ be a signature andΠ a set of propositional symbol
The set of PLP formulaeFORMΠ

Σ is the least set of strings over the corresponding P
alphabetAΠ

Σ such that

• Every propositional symbol inΠ is a formula inFORMΠ
Σ ;

• Every constant symbolc ∈ Σ0 is a formula inFORMΠ
Σ ;

• If F1, . . . ,Fn (n � 1) are formulae inFORMΠ
Σ and f is a n-ary function symbol

(f ∈ Σn), thenf F1 . . . Fn is a formula inFORMΠ
Σ .

In order to avoid unnecessary notational overhead, in this definition we specify form
in prefix notation. It can be shown that the set of formulaeFORMΠ

Σ is freely generated
from the propositional and constant symbols, and the operations corresponding to fu
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symbols, as described above. The notion of PLP formulae mimics the definition of
order logic terms in prefix notation, with the predefined unary functions symbols¬ and
−, and the meet operator symbol⊗k . A complete formal analysis and justification of t
above definitions can be found for instance in[34].

Before introducing the syntax of paraconsistent logic programs we require the n
of reverse functions. A major motivation for this definition is the use of negation oper
in the head of rules. As we shall see, the bodies of our rules can be arbitrary formu
we have to limit the allowed functions in the heads in order to guarantee the existen
single model for every program under our Paraconsistent Well-Founded Semantics.
shall see, the notion of reverse function allows moving functions in the head to the b

Definition 10 (Reverse functions). Given an isotonic unary functionf :B → B and a par-
tial order�, we sayf has a reverse function with respect to� iff there is an isotonic
functionf :B → B with respect to�, defined as follows: for allb ∈ B, f (b) = a, where
a is the minimum element according to� such thatb � f (a), formally:

f (b) = min
{
a | b � f (a)

}
.

It is obvious that iff exists it will be unique. The pair(f, f ) is a Galois connection in
the sense of[36], then it follows thatf (b) � a iff b � f (a).

Proposition 11. Let ¬ be the negation operator of a bilattice. The reverse function o¬
with respect to the knowledge ordering is¬ itself.

As examples of operators with reverse functions we will only consider negation i
bilattice. However, with a view towards generality, we foresee from the start the poss
of introducing other operators with this property, for instance special instances of
negations. The full syntax of Paraconsistent Logic Programs can now be proffered:

Definition 12 (Paraconsistent Logic Programs). Let Σ be a PLP signature,B = 〈B,�t ,

�k〉 a bilattice andAB
Σ a PLP algebra. A paraconsistent logic programP over the set of

propositional symbolsΠ is a set of rules of the formΦ[A] ← Ψ whereΦ[A] andΨ are
formulas inFORMΠ

Σ , such that:

(1) The headΦ[A] has the formo1 o2 . . . on A (n � 0), i.e. a possible empty sequence
unary function symbols applied to propositional symbolA.

(2) Eachoi occurring inΦ[A] is an isotonic unary operator symbol inΣ1 for which there

is aqi ∈ Σ1 such that
•
qi is a reverse function of

•
oi with respect to�k in B.

(3) The bodyΨ is an arbitrary formula ofFORMΠ
Σ .

If Φ[A] = o1 o2 . . . on A occurs in the head of a rule andF is an arbitrary formula o
FORMΠ

Σ , we denote byΦ[F ] the formulaqn . . . q2 q1 F , obtained by concatenatin
qn . . . q2 q1 with F . Mark that ifΦ[A] = A thenΦ[F ] = F .

Throughout this work, we reserve the symbolR to denote the PLP algebra below:
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Example 13. Let Σ be the following PLP signature:

Σ = {〈¬,1〉, 〈−,1〉〈⊗k,2〉} ∪ {〈〈a, b〉,0〉 | a, b ∈ [0,1]},
where the required function symbols of a PLP signature are extended with constan
resenting all the elements in the set[0,1]2. Notice that in the above expression〈a, b〉 is
interpreted as a single constant symbol with no internal structure. Instead, we coul
used something likenα

β , but that would compromise readability of the examples.
Consider the bilatticeB([0,1], [0,1]) constructed from the Cartesian product of the u

interval[0,1] with itself, and the usual total ordering among real numbers.
The PLP algebraR is the pair〈[0,1]2, i〉 constructed fromB([0,1], [0,1]) such that

(1) i(〈a, b〉) = 〈a, b〉, i.e. all the constant symbols are mapped to the corresponding
ments in[0,1]2.

(2) i(¬) : [0,1]2 → [0,1]2 such thati(¬)(〈α,β〉) = 〈β,α〉.
(3) i(−) : [0,1]2 → [0,1]2 such thati(−)(〈α,β〉) = 〈1− β,1− α〉.
(4) i(⊗k) : [0,1]2 × [0,1]2 → [0,1]2 such that i(⊗k)(〈α,β〉, 〈γ, δ〉) = 〈min(α, γ ),

min(β, δ)〉, where the function min :[0,1]× [0,1] → [0,1] returns the minimum of its
arguments.

Considering the knowledge ordering inB([0,1], [0,1]), the functioni(¬) is isotonic,
andi(⊗k) is isotonic in both arguments whilsti(−) is antitonic. Recall that we can use t

alternative notations
•¬,

•−, and
•⊗k for denotingi(¬), i(−), andi(⊗k), respectively.

Assuming the set of propositional symbolsΠ contains{a, b, c, d, e}, a syntactically
correct paraconsistent logic program is:

c ← ⊗k ⊗k ⊗k a ¬b a−¬b ¬a ← 〈0.8,0.6〉 e ← −¬d

b ← ⊗k ¬¬a 〈0.9,1.0〉 d ← −〈1.0,0.0〉 e ← ¬d

In order to improve readability, we shall serve our programs with rule bodies repres
in infix notation, where the operator⊗k associates to the left, and the negation and c
flation operators have higher priority than⊗k . With these usual conventions, all examp
presented in this paper are unambiguously translated to prefix notation as required
formal definitions. Thus, the above program may be exhibited as follows:

c ← a ⊗k ¬b ⊗k a ⊗k −¬b ¬a ← 〈0.8,0.6〉 e ← −¬d

b ← ¬¬a ⊗k 〈0.9,1.0〉 d ← −〈1.0,0.0〉 e ← ¬d

The following definition is tailored with the aim of ascertaining if an occurrence
propositional symbol is isotonic or antitonic:

Definition 14 (Isotonic and antitonic occurrences). Consider a set of propositional symbo
Π and letΠ± be the set of annotated propositional symbolsΠ± = {A+ | A ∈ Π} ∪ {A− |
A ∈ Π}. The functions∓ : FORMΠ

Σ → FORMΠ±
Σ and∓ : FORMΠ

Σ → FORMΠ±
Σ are de-

fined inductively by:
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• For a propositional symbolA, (A)± = A+ and(A)∓ = A−.
• For a constant symbolc, (c)± = c and(c)∓ = c.
• For every function symbolf of arity (n � 1) and for all formulaeF1, . . . ,Fn in

FORMΠ
Σ , then

(f F1 . . . Fn)
± = f G1 . . . Gn and (f F1 . . . Fn)

∓ = f H1 . . . Hn

such that for every 1� i � n, formulaGi is F±
i andHi is F∓

i if
•
f is isotonic in the

ith argument, andGi is F∓
i andHi is F±

i if
•
f is antitonic in theith argument.

A propositional symbolA annotated withA+ in Ψ ± is said to be an isotonic occurrence
A in Ψ . Similarly, if A is annotated withA− in Ψ ± then the occurrence is antitonic inΨ .

It should be clear that every occurrence of a propositional symbol inΨ appears in the
translated formulaΨ ± annotated either with+ or −, and thus will be either isotonic o
antitonic. The designations isotonic and antitonic occurrence will be fully understood
defining how a formula is “evaluated” with respect to a partial interpretation. For inst
(⊗k ⊗k ⊗k a ¬b a − ¬b)± is the formula⊗k ⊗k ⊗k a+ ¬b+ a+ − ¬b−, as expected

The expressionΨ [A1, . . . ,Am | B1, . . . ,Bn] (m,n � 0) denotes the formulaΨ , where
A1, . . . ,Am and B1, . . . ,Bn are, respectively, the isotonic and antitonic occurrences
propositional symbols inΨ in the order they appear inΨ (left to right). We usually denot
a ruleΦ[A] ← Ψ of P by Φ[A] ← Ψ [A1, . . . ,Am | B1, . . . ,Bn] in order to make clea
the isotonic and antitonic occurrences of propositional symbols in the body of the ru

A paraconsistent logic programP is a monotonic logic program if all the rules are
the formΦ[A] ← Ψ [A1, . . . ,Am | ]. We refer toP as an antitonic logic program if eac
rule is either of the kindΦ[A] ← Ψ [A1, . . . ,Am | ] or elseΦ[A] ← Ψ [ | B1, . . . ,Bn].

4. Semantics of Paraconsistent Logic Programs

Regarding the semantics, we follow a paraconsistent and paracomplete appro
spired byWFSXp [3,4], one of the well-founded based semantics proposed for exte
logic programs[37]. Furthermore, we introduce a Stable Model semantics too: theCoher-
ent Answer Sets. The well-founded based semantics will be defined via an alternating
point definition in the style of[38], and also relates to the works in[9,27].

In order to simplify the presentation, we assume in the rest of this section the exi
of a given PLP signatureΣ , a PLP algebraAB

Σ for a complete bilatticeB = 〈B,�t ,�k〉
with conflation and negation commuting inB, and a set of propositional symbolsΠ .

The first difficulty in defining the semantics for paraconsistent logic programs con
the evaluation of body formulae with antitonic occurrences of propositional symbo
particular for defining default negation. A simple fixed point definition of the semanti
hampered because the bodies of rules have no more an isotonic (or monotonic) b
with respect to an uniform assignment of elements in the bilattice to propositional sy
(an interpretation). A technique used in logic programming literature resorts to the n
of partial interpretation, requiring first the usual notion of interpretation.
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Definition 15 (Interpretation). Let B = 〈B,�t ,�k〉 be a complete bilattice andΠ a set
of propositional symbols. An interpretation ofΠ is a mappingI :Π → B. The set of all
interpretations of the propositional symbols with respect toB is denoted byIB.

The pointwise ordering extends the knowledge ordering�k on the truth-values inB to
the set of interpretations as follows.

Definition 16 (Lattice of interpretations). ConsiderIB the set of all interpretations of a s
of propositional symbolsΠ with respect to a complete bilatticeB, and two interpretation
I1, I2 ∈ IB. Then,〈IB,�〉 is the complete lattice whereI1 � I2 iff ∀p∈Π I1(p) �k I2(p).
The least interpretation� maps every propositional symbol to the least element unde�k

of B, and the greatest interpretation� maps every propositional symbol to the top elem
under�k of the same complete bilattice of truth-valuesB.

A partial interpretation is a pair of interpretations mapping propositional symbo
elements in the underlying bilattice.

Definition 17 (Partial interpretations). A partial interpretationIp of a set of propositiona
symbolsΠ is a pairIp = 〈I t , I tu〉 of interpretations ofΠ with respect to a complet
bilatticeB. The set of all partial interpretations isIp

B
.

When speaking about (partial) interpretations we usually omit the set of proposi
symbolsΠ , which is implicitly provided. Sometimes we refer toI t as the T-componen
and to theI tu as the TU-component of a partial interpretation. The T-component re
sents what certainly holds in the partial interpretation, while the TU-component con
what may hold (i.e. the “complement” of what certainly does not hold). The annota
T andT U are a remnant of theWFSXp semantics basis, since in a two-valued setting
T-component and TU-component capture, respectively, what is “true” and what is “tr
undefined” (“non-false”). It is also important to mark that (I t � I tu) is not imposed and
consequently, paraconsistency is allowed, i.e. something may certainly hold and no
(by being simultaneously “true” and not “non-false”). Two orders among partial inte
tations are useful:

Definition 18 (Standard and fitting orderings). Let Ip

1 andI
p

2 be two partial interpretations
The standard and Fitting’s orderings among partial interpretations are defined by:

Standard ordering: I
p

1 �s I
p

2 iff I t
1 � I t

2 andI tu
1 � I tu

2 .

Fitting’s ordering: I
p

1 �f I
p

2 iff I t
1 � I t

2 andI tu
2 � I tu

1 .

The set of partial interpretations ordered by�s or by�f is a complete lattice. Clearly, th
bottom and top elements of these lattice are⊥p

s = 〈�,�〉 (viz. all is false),�p
s = 〈�,�〉

(viz. all is true),⊥p
f = 〈�,�〉 (viz. all is undefined) and�p

f = 〈�,�〉 (viz. all is true and
false).

The standard ordering prefers partial interpretations maximizing what certainly
and minimizing what certainly does not hold. Fitting’s ordering prefers interpretations
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more information. The insight is that isotonic occurrences of propositional symbols
notated with+) should be evaluated in the T-component of the partial interpretation, w
the antitonic occurrences (annotated with−) should be evaluated in the TU-compone
resulting in an element of the bilatticeB. This separation between isotonic and antito
occurrences of propositional symbols is fundamental to allow for the specification o
verging operators in order to obtain fixed point semantics for every paraconsisten
program[9,22,27,38]. A precise inductive definition of the evaluation of formula in a p
tial interpretation can now be provided:

Definition 19 (Valuation). For a given partial interpretationIp = 〈I t , I tu〉 define induc-
tively the functionvalIp : FORMΠ±

Σ → B as follows:

• For every propositional symbolA, valIp (A+) = I t (A).
• For every propositional symbolA, valIp (A−) = I tu(A).

• For every constant symbolc, valIp (c) = •
c.

• For every function symbolf of arity (n � 1) and for all formulaeF1, . . . ,Fn in

FORMΠ±
Σ , thenvalIp (f F1 . . . Fn) = •

f (valIp (F1), . . . ,valIp (F1)).

The valuation function̂Ip : FORMΠ
Σ → B is defined bŷIp(Ψ ) = valIp (Ψ ±). If the for-

mulaΨ is of the formΨ [A1, . . . ,Am | B1, . . . ,Bn] by the expression̂Ψ [I (A1), . . . , I (Am) |
J (B1), . . . , J (Bn)] we mean〈̂I, J 〉(Ψ ), where 〈I, J 〉 is the partial interpretation con
structed from the interpretationsI andJ .

The main property of the valuation function is captured in the following proposi
explaining why we designated isotonic and antitonic occurrences of propositional sy
those annotated with+ and−, respectively:

Proposition 20. Consider the partial interpretationsIp andJp with Ip �f J p, then for
every formulaΨ in FORMΠ

Σ :

valIp (Ψ ±) �k valJp (Ψ ±) and valIp (Ψ ∓) �k valJp (Ψ ∓).

Therefore,̂Ip(Ψ ) �k Ĵ p(Ψ ).

An increase in the values assigned to propositional symbols in the T-component a
crease of the values in the TU-component of a partial interpretation maintains or inc
the value of a formula with respect to that partial interpretation. The notion of mode
program is now straightforward:

Definition 21 (Model). A partial interpretationIp satisfies a ruleΦ[A] ← Ψ of a paracon-
sistent logic programP iff Î p(Ψ ) �k Î p(Φ[A]). A partial interpretationIp is a model of
P iff Ip satisfies all rules ofP .

Notice we resort to the knowledge ordering to specify the notion of model. The i
of paraconsistent logic programs is to specify what should hold and not hold via pro
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rules, i.e. how information is extracted from program rules. This is the desired behav
logic programming over bilattices, as argued in[10,27], since�k symmetrizes evidenc
for and against. The least upper bound of the knowledge ordering can be interprete
“accept all” operator that combines knowledge, in order to record cases in which ther
evidence at the same time for and against a given proposition, and pinpoint contra
knowledge[10].

In particular, assume we state a proposition, saya, to be both true and false, via th
rulesa ← t and¬a ← t, where the constantt is mapped to the greatest element in
truth-ordering. Using the knowledge ordering,a is mapped to the greatest element in
knowledge ordering, meaning that there is some sort of inconsistency in the program
the truth-ordering instead, the rule¬a ← t would be trivially satisfied, anda would be
mapped to the greatest element in the truth-ordering, therefore losing the informatio
there is some sort of inconsistency in the program.

Proposition 22. A partial interpretation satisfies a ruleΦ[A] ← Ψ iff satisfies the rule
A ← Φ[Ψ ].

From the previous proposition we conclude that the function symbols appearing
head can be “moved” to the body of the rule. Thus, function symbols in rule head
simply “syntactic sugar” allowing the user to more naturally express his knowledge
paraconsistent logic program.

The next major definition generalizes the Gelfond–Lifschitz transformation and tΓ

operator[22]. The rationale is to extract from the program all its consequences, assu
that an interpretation is used to evaluate the antitonic occurrences of propositional sy
Technically, this is achieved by coupling together the ideas of Gelfond–Lifschitz div
operators[22] and of the immediate consequences operator of van Emden and Kow
[39], along the lines of[27].

Definition 23 (Gamma operator). Let P be a paraconsistent logic program andJ a given
interpretation. The generalized immediate consequences operatorT B

P
J

:IB → IB maps

interpretations to interpretations:

T B
P
J

(I )(A) = lubk

{
Φ̂[Ψ ][I (A1), . . . , I (Am) | J (B1), . . . , J (Bn)]

such thatΦ[A] ← Ψ [A1, . . . ,Am | B1, . . . ,Bn] ∈ P
}
.

TheΓ B
P operator is defined as the least fixed point ofT B

P
J

with respect to the� ordering

between interpretations, formally:

Γ B
P (J ) = lfpT B

P
J

= T B
P
J

↑λ, for some ordinalλ.

The definition of the generalized immediate consequences operatorT B
P
J

makes use

of Proposition 22guaranteeing the semantic equivalence of the rulesA ← Φ[Ψ ] and
Φ[A] ← Ψ . TheT B

P operator determines the value assigned to each propositional sy

J
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in order to satisfy all its rules, via the least upper bound under knowledge ordering(lubk),
for an interpretation of isotonic occurrences of propositional symbols and fixed inter
tions of antitonic ones. The operator must be “iterated” from� in order to guarantee tha
all the rules for all the propositional symbols are satisfied, for the fixed interpretati
the antitonic occurrences of propositional symbols. This is attained by theΓ B

P operator.
Notwithstanding, in conformity with[2], negation and default negation are not un

lated: the Coherence Principle, when adopted, ensures that the former entails th
From an epistemic viewpoint, coherence can be seen as an instance of the Neces
Principle, which states that if something is known then it is believed, i.e. its negat
false in all minimal models[28]. Therefore, one hasA �k not¬A (Coherence Principle)
Sincenot¬A =def −A (Definition 5), it suffices to guaranteeA �k −A then. Technically,
we can define the coherence principle in the following manner:

Definition 24 (Coherence Principle). Let P be a paraconsistent logic program. The
modelMp = 〈Mt,Mtu〉 of P complies with the Coherence Principle iff for every prop
sitional symbolA appearing in the language ofP , M̂p(A) �k M̂p(−A), i.e. Mt(A) �k•− Mtu(A).

Given these arguments, and in order to enforce coherence, we will resort to the
normal gamma operator, inspired by the approach taken in the definition of the pa
sistent well-founded semantics with explicit negationWFSXp [3,4], itself inspired by the
semi-normal gamma operator ofWFSX [40], which it generalizes to the paraconsist
case. Semi-normality itself is a designation borrowed from semi-normal defaults, th
son being that the semi-normal logic program rules add to the rule’s body the default
not¬H , whereH is a propositional symbol or their explicit negation in the head. In
context,not¬H is, by definition,−H .

Definition 25 (Semi-normal Gamma operator). Let P be a paraconsistent logic progra
and J an interpretation. The semi-normal immediate consequences operatorT B

Ps
J

:IB →
IB maps interpretations to interpretations:

T B
Ps
J

(I )(A) = lubk

{
Φ̂[Ψ ][I (A1), . . . , I (Am) | J (B1), . . . , J (Bn)]

•⊗k

•−J (A)

such thatΦ[A] ← Ψ [A1, . . . ,Am | B1, . . . ,Bn] ∈ P
}
.

We also defineΓ B
Ps

(J ) = lfp T B
Ps
J

= T B
Ps
J

↑λ, for some ordinalλ.

Mark that coherence is enforced in every propositional symbolA by not letting the

value of the bodies forA surpass
•−J (A). Before proceeding, it is necessary to ensure

bothΓ B
P (J ) andΓ B

Ps
(J ) are well defined. This is immediate from Knaster–Tarski theo

[41], since both versions of the immediate consequence operators are monotonic:
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Theorem 26 (Monotonicity of T B
P
J

andT B
Ps
J

). Let P be a paraconsistent logic program

and J an interpretation. The operatorsT B
P
J

and T B
Ps
J

are monotonic with respect to th

pointwise extension� of knowledge ordering to interpretations.

The dual alternatingΓ B
P Γ B

P operator suffices to define an extension of well-foun
semantics[24,38] to bilattice based logic programs, as done in[9,27]. In particular, this
technique is followed in[1] to define semantics for Antitonic Logic Programs. Sin
Γ B

P Γ B
P does not take into account semi-normality, it cannot capture the Coherence

ciple. The solution is described in[3,4], in which an alternating fixed point definition o
WFSXp is provided, relying on the application of two anti-monotonic operators,ΓP ΓPs .
Before generalizing this result to our framework we need to ensure the next theorem

Theorem 27 (Anti-monotonicity). Consider a paraconsistent logic programP . LetJ1 and
J2 be two interpretations such thatJ1 � J2. ThenΓ B

P (J2) � Γ B
P (J1) and Γ B

Ps
(J2) �

Γ B
Ps

(J1).

Corollary 28. Consider a paraconsistent logic programP . LetJ1 andJ2 be two interpre-
tations such thatJ1 � J2. ThenΓ B

P Γ B
Ps

(J1) � Γ B
P Γ B

Ps
(J2).

From the monotonicity of theΓ B
P Γ B

Ps
operators we know, again by the Knaster–Tar

theorem[41], for any paraconsistent logic programP , thatΓ B
P Γ B

Ps
has a least fixed poin

This fixed point is affirmed to define the paraconsistent well-founded semantics:

Definition 29 (Paraconsistent well-founded semantics). Let P be a paraconsistent log
program, andMp = 〈Mt,Mtu〉 be a partial interpretation. We sayMp is a partial paracon
sistent stable model ofP iff Mt = Γ B

P (Γ B
Ps

(Mt)) andMtu = Γ B
Ps

(Mt).
The least partial paraconsistent stable model under the Fitting ordering is the pa

sistent well-founded modelWFMp(P ), and can be obtained by iteratingΓ B
P Γ B

Ps
from �.

Then, given that interpretationIw is the least fixed point ofΓ B
P Γ B

Ps
under� ordering, we

shall haveWFMp(P ) = 〈Iw,Γ B
Ps

(Iw)〉.
Given thatMp = 〈Mt,Mtu〉 is a partial paraconsistent stable model, we say a prop

tional symbolA is:

• fully definedwith respect toMp iff Mt(A) = Mtu(A);
• undefinedwith respect toMp iff Mt(A) <k Mtu(A);
• overdefinedwith respect toMp iff Mt(A) �k Mtu(A).

We also say a propositional symbolA is strictly overdefined with respect toMp iff Mtu(A)

<k Mt(A).

Alternatively, by lettingΩB
P (J ) = 〈Γ B

P (J tu),Γ B
Ps

(J t )〉, an operator mapping parti
interpretations to partial interpretations, the partial paraconsistent stable models of t
gramP can be seen as the fixed points ofΩB. SinceΩB is monotonic with respect to�f ,
P P
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the least fixed point under the Fitting ordering (the paraconsistent well-founded mo
once more guaranteed to exist, and can be obtained by iteratingΩB

P from ⊥p
f = 〈�,�〉.

The ΩB
P operator is the counterpart of the Przymusinski operator to characterize

founded semantics[42].
An important result is that every partial paraconsistent stable model is indeed a

of the program:

Theorem 30. LetP be a paraconsistent logic program. Every partial paraconsistent st
model ofP is a model ofP .

When both components of the partial interpretation coincide, then an extension
swer set semantics[23] is obtained:

Definition 31 (Coherent answer sets). Let P be a paraconsistent logic program. A coher
answer set is a fully defined partial paraconsistent stable model, i.e. of the form〈M,M〉,
whereM is an interpretation.

As usual, coherent answer sets are not guaranteed to exist. However, like paraco
well-founded models, coherent answer sets do comply with the Coherence Principle

Proposition 32. Let P be a paraconsistent logic program. Then all partial paracons
tent stable modelsMp = 〈Mt,Mtu〉 of P obey the Coherence Principle, i.e.̂Mp(A) �k

M̂p(−A) for every propositional symbolA appearing in the language ofP .

The Coherence Principle is still valid for more general classes of formulae, as des
in the following corollary:

Corollary 33. Let P be a paraconsistent logic program, andMp = 〈Mt,Mtu〉 a partial
paraconsistent stable model. For every formulaF constructed from propositional symbo
constant symbols representing consistent values in the underlying bilattice, and com
tions of⊗k and¬ thenM̂p(F ) �k M̂p(−F).

The corollary below is immediate, providing the confirmation that our semantics o
Coherence:

Corollary 34. All coherent answer sets and the paraconsistent well-founded mode
paraconsistent logic programP observe the Coherence Principle.

Naturally, the Paraconsistent Well-founded Semantics extends Well-founded Sem
[24], and its generalizationsWFSX[2,43] andWFSXp [3,4]. Similarly, Coherent Answe
Sets extend the Answer Sets Semantics of Gelfond and Lifschitz[23]. For additional de-
tails, the reader is referred to[25].

In the next section we show an example motivating the applicability of our frame
and of its two proposed semantics.
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Table 1
Decision table forflu

fever cough headache muscle_pain flu

no no no no no (in 99% of cases)
yes no no no no (in 80% of cases)
yes yes no no no (in 30% of cases)
yes yes no no yes (in 60% of cases)
yes yes yes yes yes (in 75% of cases)

5. Example

Paraconsistent Logic Programs have a large range of applications. We address
lowing example, adapted from[44], encoding a decision table based on rough relati
These are determined byRough Sets(cf. [44]), introduced to deal with imprecise info
mation. In[45,46], several logic programming languages are defined, making it pos
to describe systems using rough relations and reason about them. On some point
languages resemble our framework but they differ essentially in not enforcing cohe
and by limiting themselves to Belnap’s four valued logic.

The symptomsfever, cough, headache, andmuscle_pain are used to decide whether
patient has a flu. The diagnosis is performed according to decision table2 of Table 1.

Mark that in the 3rd and 4th lines ofTable 1we have evidence for and against t
conclusions for the same set of symptoms, and that in 10% of those cases the ph
remains undecided.

We resort to the PLP algebraR = 〈[0,1]2, i〉 exhibited inExample 13to encode the
decision table. The first case is directly representable in paraconsistent logic progra
by the rule:

(1)¬flu← 〈0.99,0.0〉 ⊗k ¬fever⊗k ¬cough⊗k ¬headache⊗k ¬muscle_pain.

Similarly, the second diagnosis case could be implemented via the next rule:

(2)¬flu← 〈0.8,0.0〉 ⊗k fever⊗k ¬cough⊗k ¬headache⊗k ¬muscle_pain.

The translation of the final case is immediate:

(3)flu← 〈0.75,0.0〉 ⊗k fever⊗k cough⊗k headache⊗k muscle_pain.

Returning to rule(1), because of the way negation was defined (Definition 2) and since
the truth-value of the head is greater or equal to that of the body in any model, on
alternatively construe it as:

flu← ¬(〈0.99,0.0〉 ⊗k ¬fever⊗k ¬cough⊗k ¬headache⊗k ¬muscle_pain)

which reduces to3

(4)flu← 〈0.0,0.99〉 ⊗k fever⊗k cough⊗k headache⊗k muscle_pain.

2 The figures are fictitious.
3 From[7], we have¬(A ⊗k B) = (¬A ⊗k ¬B).
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To continue, the reader will surely notice that the body of rule(3) is identical to that
of rule (4), with the exception of the confidence degrees in the two rules. Accordin
WFMp, the truth-value offlu is determined by the least upper bound (under�k) of the
truth-values assigned to the bodies of the rules forflu. Consequently, rules(1) (in its form
(4)) and(3) can be combined into a single one:

(5)flu← 〈0.75,0.99〉 ⊗k fever⊗k cough⊗k headache⊗k muscle_pain.

Thus, the above rule expresses both positive and negative evidence for diagnosing

• if a patient has fever, cough, headache, and muscle-pain, then flu is a correct dia
in 75% of the cases;

• if a patientdoesn’thave fever,doesn’tcough, anddoesn’thave headache nor muscl
pain either, then hedoesn’thave flu in 99% of the situations.

So, the positive evidence for the consequent is only concluded when all the propo
in the body of the rule have positive evidence for them. Symmetrically, the negativ
dence for the conclusion is only gotten when all propositions in the body supply ne
evidence.

For the remaining situation (fever, cough, no headache, and no muscle_pain) tw
tinct rules are required for concluding whether the patient might or might not have a fl
per cases(3) and(4)):

¬flu← 〈0.3,0.0〉 ⊗k fever⊗k cough⊗k ¬headache⊗k ¬muscle_pain,

flu← 〈0.6,0.0〉 ⊗k fever⊗k cough⊗k ¬headache⊗k ¬muscle_pain.

So the paraconsistent logic program rules for diagnosing flu are:

¬flu← 〈0.8,0.0〉 ⊗k fever⊗k ¬cough⊗k ¬headache⊗k ¬muscle_pain,

flu← 〈0.75,0.99〉 ⊗k fever⊗k cough⊗k headache⊗k muscle_pain,

¬flu← 〈0.3,0.0〉 ⊗k fever⊗k cough⊗k ¬headache⊗k ¬muscle_pain,

flu← 〈0.6,0.0〉 ⊗k fever⊗k cough⊗k ¬headache⊗k ¬muscle_pain.

Assume now that antibiotics are prescribed when flu is not concluded. We now co
two possible alternative translations of this statement, represented by each of the fol
rules:

(6)antibiotics← ¬flu

or

(7)antibiotics← −¬flu.

The former concludes that antibiotics should be prescribed when there is explic
ative evidence for flu. With the latter rule, antibiotics are recommended when there
evidence4 for flu.

4 Which is not the same has having negative evidence!



J. Alcântara et al. / Journal of Applied Logic 3 (2005) 67–95 87

ral sit-
very
ents its
right-

ous

ing
e

he
ws
e

a
ics are

sting
r

s. The
Table 2
Models for theflu program

fever cough headache muscle_pain flu ¬flu −¬flu

T 〈0.0,1.0〉 〈0.0,1.0〉 〈0.0,1.0〉 〈0.0,1.0〉 〈0.0,0.99〉 〈0.99,0.0〉 〈1.0,0.01〉
TU 〈0.0,1.0〉 〈0.0,1.0〉 〈0.0,1.0〉 〈0.0,1.0〉 〈0.0,0.99〉 〈0.99,0.0〉 〈1.0,0.01〉
T 〈1.0,0.0〉 〈0.0,1.0〉 〈0.0,1.0〉 〈0.0,1.0〉 〈0.0,0.8〉 〈0.8,0.0〉 〈1.0,0.2〉
TU 〈1.0,0.0〉 〈0.0,1.0〉 〈0.0,1.0〉 〈0.0,1.0〉 〈0.0,0.8〉 〈0.8,0.0〉 〈1.0,0.2〉
T 〈1.0,0.0〉 〈1.0,0.0〉 〈0.0,1.0〉 〈0.0,1.0〉 〈0.6,0.3〉 〈0.3,0.6〉 〈0.4,0.7〉
TU 〈1.0,0.0〉 〈1.0,0.0〉 〈0.0,1.0〉 〈0.0,1.0〉 〈0.6,0.3〉 〈0.3,0.6〉 〈0.4,0.7〉
T 〈1.0,0.0〉 〈1.0,0.0〉 〈1.0,0.0〉 〈1.0,0.0〉 〈0.75,0.0〉 〈0.0,0.75〉 〈0.25,1.0〉
TU 〈1.0,0.0〉 〈1.0,0.0〉 〈1.0,0.0〉 〈1.0,0.0〉 〈0.75,0.0〉 〈0.0,0.75〉 〈0.25,1.0〉
T 〈0.4,0.6〉 〈0.7,0.3〉 〈0.1,0.9〉 〈0.2,0.7〉 〈0.4,0.3〉 〈0.3,0.4〉 〈0.6,0.7〉
TU 〈0.4,0.6〉 〈0.7,0.3〉 〈0.1,0.9〉 〈0.2,0.7〉 〈0.4,0.3〉 〈0.3,0.4〉 〈0.6,0.7〉
T 〈0.4,0.6〉 〈0.7,0.3〉 〈0.7,0.9〉 〈0.2,0.7〉 〈0.4,0.3〉 〈0.3,0.4〉 〈0.7,0.7〉
TU 〈0.4,0.6〉 〈0.7,0.3〉 〈0.1,0.3〉 〈0.2,0.7〉 〈0.3,0.3〉 〈0.3,0.3〉 〈0.6,0.7〉

We illustrate next the behavior of paraconsistent well-founded semantics in seve
uations.Table 2contains six different models of the above program. The first row of e
model corresponds to the T component of the model, while the second row repres
TU component. The five leftmost columns represent the interpretation, and the two
most columns the confidence degrees of explicit and default negations.

The first model inTable 2is obtained by adding the set of facts below to the previ
rules, where the confidence degrees are extracted from the T component of theWFMp

model of the program:

fever← 〈0.0,1.0〉 cough← 〈0.0,1.0〉
headache← 〈0.0,1.0〉 muscle_pain← 〈0.0,1.0〉

The first four models correspond to the(4) previously identified cases about diagnos
flu. As the reader can easily check, the column forflu is in accordance with the evidenc
expressed inTable 1.

The distinctive effect of the rulesantibiotics← ¬flu andantibiotics← −¬flu can be
observed in the columns for¬flu and−¬flu. By the Coherence Principle, it is always t
case that, for every model,̂Mp(¬flu) �k M̂p(−¬flu), as the reader can check in the T-ro
of each model. For instance, in the second model we have¬flu with degree of evidenc
〈0.8,0.0〉 and −¬flu with evidence〈1.0,0.2〉, and as expected〈0.8,0.0〉 �k 〈1.0,0.2〉.
Sincef lu has value〈0.0,0.8〉, and−¬flu has value〈1.0,0.2〉, antibiotics should definitely
be prescribed according to rule(7), confirming there is no positive evidence for having
flu. The situation where flu is diagnosed appears in the fourth model, and so antibiot
not then prescribed.

In the fifth model the physician is uncertain regarding each symptom. The intere
aspect of this case is that the degree of evidence forflu is obtained by combining togethe
the degrees of evidence of several rules.

Finally, the last model illustrates how paraconsistency is handled by our semantic
fact headache← 〈0.7,0.9〉 is inconsistent in Fitting’s sense (and thus in theWFMp). In
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the well-founded model of the program,flu has degree〈0.3,0.3〉 in the TU-component
which is less (in the�k sense) than its degree of truth(〈0.4,0.3〉). As we shall observe in
the next section, this is indicative thatflu is dependent on some inconsistent value: in
example, on the value assigned toheadache. All the other previous models are consiste
and fully-defined, i.e. they are coherent answer sets.

6. Capturing inconsistency and its dependencies

This section is devoted to the presentation of material and theorems related to inc
tencies and their propagation by the rules of a paraconsistent logic program. Spec
we will provide a necessary and sufficient condition for inconsistency of a paraco
tent logic program; a necessary condition for dependence on inconsistency of a pa
propositional symbol, and a counterexample of why this last condition is not also suffi

In order to motivate our results, note that in last model ofTable 2, for two propositional
symbols we have values whose TU-component�k T-component:

headache flu

T 〈0.7,0.9〉 〈0.4,0.3〉
TU 〈0.1,0.3〉 〈0.3,0.3〉

As we have mentioned, the T-component forheadacheis inconsistent in Fitting’s sens
(cf. Definition 4). The inconsistency of a propositional symbol is reflected in the p
consistent well-founded model by forcing (via semi-normality) its TU-component t
less than its T-component according to knowledge order. However, although the T
〈0.4,0.3〉 assigned toflu is not in itself inconsistent, even so,flu, with its TU-value of
〈0.3,0.3〉, preserves this apparently bizarre behavior. In the sequel, we show such
tions happen just when a propositional symbol depends on some inconsistency.

Before showing these results, we adopt some conventions motivated by the ex
forthwith:

Example 35. Given the PLP algebraR = 〈[0,1]2, i〉, consider the programsP1 andP2:

P1 =
{

a ← b ⊗k c,

b ← 〈0.6,0.8〉,
c ← 〈1.0,0.0〉,

P2 = a ← 〈0.6,0.8〉 ⊗k 〈1.0,0.0〉
whose respective paraconsistent well-founded models,M

p

1 andM
p

2 , indicate

Mt
1(a) = 〈0.6,0.0〉 and Mtu

1 (a) = 〈0.4,0.0〉,
Mt

2(a) = 〈0.6,0.0〉 and Mtu
2 (a) = 〈0.6,0.0〉.

We can explain whyMp

1 andM
p

2 disagree regarding “a” by noting that inP1 we have an
inconsistent constant being assigned to “b” through the ruleb ← 〈0.6,0.8〉, whilst in P2,

we have no inconsistent value being assigned to a rule head since〈0.6,0.8〉 •⊗k 〈1.0,0.0〉 =



J. Alcântara et al. / Journal of Applied Logic 3 (2005) 67–95 89

t

e
nt of

onsis-
have as
treat

odel
al

t

tent.
〈0.6,0.0〉. As consequence, inP1, Mt
1(b) differs from Mtu

1 (b), resulting therefore tha
Mt

1(a) also differs fromMtu
1 (a). In contrast, inP2, Mt

2(a) = Mtu
2 (a).

When proving the results below, the bilattice of truth-values are supposed to beinfini-
tary k-distributive. We also assume a constantγ is only allowed to appear in rules of th
form Φ[A] ← γ . It is just a semantical restriction, because from a syntactical poi
view, and without loss of generality, in a ruleΦ[A] ← Ψ we can replace any constantγ

appearing inΨ by a new propositional symbol (sayc′), and add the rulec′ ← γ to P . The
purpose is to keep a tighter control on the propagation, via the program rules, of inc
tency generated by constants. Acting this way, we force inconsistent constants to be
ordinary inconsistent propositional symbols. In the remaining part of this section, we
constants and propositional symbols indistinctly.

We make use ofTheorem 36to ensure that, given a paraconsistent well-founded m
Mp = 〈Mt,Mtu〉 for a programP , Mt � Mtu is equivalent to saying every proposition
symbol in the language ofP is consistent.

Theorem 36. LetMp = 〈Mt,Mtu〉 be the least fixed point ofΓ B
P Γ B

Ps
for a paraconsisten

logic programP . ThenMt � Γ B
s Mt iff for every propositional symbolA in P language,

Mt(A) �k

•−Mt(A).

Obviously, as it can be checked in the example below, ifMt(A) �k Mtu(A) there is
some propositional symbolB inconsistent inMp .

Example 37. Consider the paraconsistent logic programP showed inExample 35:

¬flu← 〈0.8,0.0〉 ⊗k fever⊗k ¬cough⊗k ¬headache⊗k ¬muscle_pain,

flu← 〈0.75,0.99〉 ⊗k fever⊗k cough⊗k headache⊗k muscle_pain,

¬flu← 〈0.3,0.0〉 ⊗k fever⊗k cough⊗k ¬headache⊗k ¬muscle_pain,

flu← 〈0.6,0.0〉 ⊗k fever⊗k cough⊗k ¬headache⊗k ¬muscle_pain.

Besides these rules,P contains the set of facts:

F1 =
{

fever← 〈0.4,0.6〉, cough← 〈0.7,0.3〉,
headache← 〈0.7,0.9〉, muscle_pain← 〈0.2,0.7〉.

The WFMp = 〈Mt,Mtu〉 for P corresponds to the fifth model ofTable 2, where we
concludeMtu(flu) = 〈0.3,0.3〉 <k Mt(flu) = 〈0.4,0.3〉. Accordingly, as ensured byThe-
orem 36, there is some propositional symbol (in this case,headache) inconsistent in the

language ofP , since〈0.7,0.9〉 �k 〈0.1,0.3〉 = •−〈0.7,0.9〉.

Underpinned byTheorem 36, corollary below is immediate:

Corollary 38. All coherent answer sets of a Paraconsistent Logic Program are consis
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In the next proposition we find out a bit more: wheneverMt(A) �k Mtu(A), eitherA
is itself inconsistent orA depends on some inconsistency. However, before introducin
let us motivate the notion of dependence:

Example 39. Let P be the program obtained by replacing the set of factsF1 in Example
37with the setF2 below:

F2 =
{

fever← 〈1,0〉, cough← 〈1,0〉,
headache← 〈0,1〉, muscle_pain← 〈0,1〉.

The resultantWFMp = 〈Mt,Mtu〉 for P corresponds to the third model ofTable 2, where
we concludeMt(flu) = Mtu(flu) = 〈0.6,0.3〉. In the programP above, we have four rule
for flu, but not all effectively contribute to the final value assigned toflu according to
WFMp. ClearlyMt(flu) andMtu(flu) are obtained by combining the values assigned
the bodies of the rules

¬flu← 〈0.3,0.0〉 ⊗k fever⊗k cough⊗k ¬headache⊗k ¬muscle_pain,

flu← 〈0.6,0.0〉 ⊗k fever⊗k cough⊗k ¬headache⊗k ¬muscle_pain

present in the program ofExample 37. When calculating the paraconsistent well-found
model forP , the values assigned by the first two rules are completely absorbed by th
ues assigned by the other two rules forflu mentioned in the example above. Consequen
without affecting the final result, we can eliminate the two first rules forflu.

In the proposition below, we just define the setUA in order to gather all rules forΦ[A]
which contribute to the value established forA according toWFMp. The objective is to
guarantee that ifA is consistent, and for all rulesr which effectively contribute toA (r ∈
UA), if we have for all propositional symbolsA′ in the body ofr , Mt(A′) �k Mtu(A′),
thenMt(A) �k Mtu(A):

Proposition 40. Let P be a paraconsistent logic program,A a propositional symbol of its
language. LetMp = 〈Mt,Mtu〉 be the paraconsistent well-founded model ofP , and define

BodyA = {
M̂p(Φ[Ψ ]) | Φ[A] ← Ψ ∈ P

}
and

UA = {
Φ[A] ← Ψ | M̂p(Φ[Ψ ]) is an upper bound of BodyA

}
.

If the following conditions hold:

• Mt(A) �k

•−Mt(A),
• For every rule of the formΦ[A] ← γ in UA, whereγ is a constant symbol, we hav

•
γ �k

•− •
γ ,

• For every rule Φ[A] ← Ψ [B1, . . . ,Bm|C1, . . . ,Cn] in UA, we haveMt(Bi) �k

Mtu(Bi) andMt(Cj ) �k Mtu(Cj ),

thenMt(A) �k Mtu(A).
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In other words, ifMt(A) �k Mtu(A), thenA is either inconsistent or there is some ru
r for A such that for at least a propositional symbol (or constant)A′ in the body ofr ,
Mt(A′) �k Mtu(A′). RecallingExample 37, we have

Mtu(headache) = 〈0.1,0.3〉 <k Mt(headache) = 〈0.7,0.9〉,
and

Mtu(flu) = 〈0.3,0.3〉 <k Mt(flu) = 〈0.4,0.3〉.
Just by taking a look at theWFMp for the programP we conclude, fromProposition 40,
thatheadacheis inconsistent andflu depends on an inconsistency (in this case,headache).

Because of the generality of the bilattice structure, we do not have the converse
for Proposition 40:

Example 41. Given the PLP algebraR = 〈[0,1]2, i〉, let P be the paraconsistent log
program below:

P =


a ← b ⊗k d ⊗k −¬a, b ← 〈0.7,0.3〉,
c ← −¬c, d ← 〈0.8,0.3〉,
c ← e ⊗k f, e ← 〈0.7,0.6〉,
f ← 〈0.6,0.2〉, g ← 〈0.7,0.7〉,
h ← g ⊗k c, i ← a ⊗k h.

After evaluating the paraconsistent well-founded modelMp = 〈Mt,Mtu〉 for P , we obtain

Mt(i) = 〈0.3,0.2〉, Mtu(i) = 〈0.3,0.2〉,
Mt (a) = 〈0.3,0.3〉, Mtu(a) = 〈0.7,0.2〉,
Mt (h) = 〈0.6,0.2〉, Mtu(h) = 〈0.3,0.3〉.

Based onProposition 40, both the propositional symbols “a” and “h” depended on in-
consistency. In addition, given that the only rule for “i” in P is i ← a ⊗k h, we can
undoubtedly say “i” is also dependent syntactically on an inconsistency. Howeve
Mt(a) ⊗k Mt (h) = Mtu(a) ⊗k Mtu(h), we haveMt(i) = Mtu(i), and our clue for “i” de-
pending on an inconsistency is lost! However, we note that “i” does not in this case actual
depend on the inconsistent values for “a” and “h” to the point where these matter, for th
value of “i” could be exactly the same for non-inconsistent values of the former. The
question is how to characterize and identify in a declarative and simple way such c
stances. We can still have the desired result in specific situations, when, for instan
assume for every propositional symbol “a” in the program’s language,Mtu(a) �k Mt (a)

(a is strictly overdefined inMp). As we can see in[47], this is enough to apply the conver
result in Extended Logic Programs.

7. Conclusions, related work, and open issues

In this work we have fine-tuned some issues and explored new ones, arising fro[47]
in which we introduced Paraconsistent Logic Programs. These generalize Antitonic
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Programs[1] by ushering into an encompassing framework, of an appropriate kind,
cepts to cope with explicit and default negation, and certifying that the latter complies
the Coherence Principle. Program rules are rather complex: heads are constituted
plications of unary functions to a propositional symbol admitting a reverse function
respect to�k , whilst bodies correspond to compositions of arbitrary monotonic and
tonic operators, in each argument, over a complete bilattice in the sense of Ginsbe[5].
In order to define the semantics we then resort to a program division in the spirit of[22],
which transforms paraconsistent logic programs into monotonic ones. Forthwith, w
similarly apply an immediate consequences operator, guaranteeing the existence o
imum paraconsistent well-founded modelWFMp.

To motivate the use of Paraconsistent Logic Programs, and in order to map de
tables based on rough relations, we examine how our semantics manipulates incons
Establishing some new results, we show how the semantics allows for paraconsist
the same time it keeps, to some extent, a monitoring eye on the inconsistent informat
its propagation through the program rules. As regards a complexity analysis of theWFMp,
at a first glance, it sounds expensive in terms of computational time, notwithstandin
specific instances, that we can have inference methods based on polynomial algorit
in the implementation ofWFSXp [4].

Indeed, in[47] we have provided a simple translation of Extended Logic Program
derWFSXp into Paraconsistent Logic Programs. Furthermore, other frameworks are
embeddable into ours, such as Probabilistic Logic Programs[15], Possibilistic Logic Pro-
gramming[11], Hybrid Probabilistic Logic Programs[13], Generalized Annotated Log
Programs[14], and Fuzzy Logic Programs[12]. On the one hand, these translations p
mit to simultaneously deal with negation, paraconsistency, and non-monotonic reas
within the uncertain formalisms above. On the other, we may now study the behav
WFSXp, and of other important paraconsistent semantics for Extended Logic Pro
when uncertain reasoning, otherwise absent, is introduced into them.

Like Antitonic Logic Programs, we may envisage Paraconsistent Logic Program
natural extension of Fitting’s works[7,27]. Particularly, our framework enables us to ma
a distinction between explicit negation and default negation, and to explore the coh
principle. In contradistinction to Fitting, we do not restrain our framework to interla
bilattices. We should mention as well that the central point in these works is the
programming syntax, instead of considering arbitrary isotonic and antitonic functio
the bodies. To be absolutely fair, the publication[27] introduces the notions ofattenuation
operators, which can be viewed as arbitrary monotonic operators over bilattices. In
related work[10], Arielli defines a semantics for extended logic programs also base
bilattices, but with a restricted syntax. The author too advocates the coherence pr
in some specific situations, but it is not clear whether this is a general property
semantics. We intend to explore the connections to this work in the future. In a s
direction, it is the work by Denecker et al.[9], but its focus is on the properties of th
operators to guarantee the existence of a well-founded and stable model like sem
while ours is in the definition of a language permitting the construction of such oper
Moreover, we rely on the combination of two related but distinct anti-monotonic opera

The generality of our framework propels us to many possible future avenues of res
we may next generalize our structure to consider rules with more complex heads,
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stance, with disjunctions. In an opposite direction, we may explore particular instan
our framework, so as to improve the understanding of properties of concrete instanc
to compare them to existing work. Focusing on more theoretical results, we have de
promising links between our semantics and substructural logics[48,49], to be exposed in
subsequent work. Based on these results, we shall define a model theory for our
tics in a style similar to that of Cabalar[50] and Pearce[51]. Given the close relationshi
between our semantics andWFSXp, it is possible, by introducing a suitable operator
capture consistency, to obtain a model theory satisfying theGentle Principle of Explosion
[52]. Consequently, the resulting logic can be classified as aLogic of Formal Inconsistenc
(LFI) [52]. Another interesting line of research is the study of the various types of neg
specially if we allow for weak negation operators as well. This offers the opportunit
examining how the Coherence Principle functions in such cases. The definition of
derivation procedures is also envisaged, for some specific instances of the framewo
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