1,065 research outputs found

    Standards Column -- Augmented Reality: An Opportunity for Content Creators to Extend their Reach

    Get PDF

    Baseline analysis of a conventional and virtual reality lifelog retrieval system

    Get PDF
    Continuous media capture via a wearable devices is currently one of the most popular methods to establish a comprehensive record of the entirety of an individual's life experience, referred to in the research community as a lifelog. These vast multimodal corpora include visual and other sensor data and are enriched by content analysis, to generate as extensive a record of an individual's life experience. However, interfacing with such datasets remains an active area of research, and despite the advent of new technology and a plethora of competing mediums for processing digital information, there has been little focus on newly emerging platforms such as virtual reality. In this work, we suggest that the increase in immersion and spatial dimensions provided by virtual reality could provide significant benefits to users when compared to more conventional access methodologies. Hence, we motivate virtual reality as a viable method of exploring multimedia archives (specifically lifelogs) by performing a baseline comparative analysis using a novel application prototype built for the HTC Vive and a conventional prototype built for a standard personal computer

    Mobile Augmented Reality: Applications and Spe-cific Technical Issues

    Get PDF
    DOI: 10.1007/978-3-319-04702-7 Print ISBN: 978-3-319-04701-0 Online ISBN: 978-3-319-04702-7Although human's sedentary nature over time, his wish to travel the world remains as strong as ever. This paper discusses how imagery and Augmented Reality (AR) techniques can be of great help not only when discovering a new urban environment but also when observ-ing the evolution of the natural environment. The study is applied on Smartphone which is currently our most familiar device. Smart phone is utilized in our daily lives because it is low weight, ease of communications, and other valuable applications. In this chapter, we discuss technical issues of augmented reality especially with building recognition. Our building recog-nition method is based on an efficient hybrid approach, which combines the potentials of Speeded Up Robust Features (SURF) features points and lines. Our method relies on Approxi-mate Nearest Neighbors Search approach (ANNS). Although ANNS approaches are high speed, they are less accurate than linear algorithms. To assure an optimal trade-off between speed and accuracy, the proposed method performs a filtering step on the top of the ANNS. Finally, our method calls Hausdorff measure [15] with line models

    Mobile Augmented Reality Applications to Discover New Environments

    Get PDF
    International audiencealthough man has become sedentary over time, his wish to travel the world remains as strong as ever. The aim of this paper is to show how techniques based on imagery and Augmented Reality (AR) can prove to be of great help when discovering a new urban environment and observing the evolution of the natural environment. The study's support is naturally the Smartphone which in just a few years has become our most familiar device, which we take with us practically everywhere we go in our daily lives

    Mobile Augmented Reality Applications to Discover New Environments

    Get PDF
    Although man has become sedentary over time, his wish to travel the world remains as strong as ever. The aim of this paper is to show how techniques based on imagery and Augmented Reality (AR) can prove to be of great help when discovering a new urban environment and observing the evolution of the natural environment. The study's support is naturally the Smartphone which in just a few years has become our most familiar device, which we take with us practically everywhere we go in our daily lives.Comment: Science and Information Conference 2013, France (2013

    Cognition and the Web

    No full text
    Empirical research related to the Web has typically focused on its impact to social relationships and wider society; however, the cognitive impact of the Web is also an increasing focus of scientific interest and research attention. In this paper, I attempt to provide an overview of what I see as the important issues in the debate regarding the relationship between human cognition and the Web. I argue that the Web is potentially poised to transform our cognitive and epistemic profiles, but that in order to understand the nature of this influence we need to countenance a position that factors in the available scientific evidence, the changing nature of our interaction with the Web, and the possibility that many of our everyday cognitive achievements rely on complex webs of social and technological scaffolding. I review the literature relating to the cognitive effects of current Web technology, and I attempt to anticipate the cognitive impact of next-generation technologies, such as Web-based augmented reality systems and the transition to data-centric modes of information representation. I suggest that additional work is required to more fully understand the cognitive impact of both current and future Web technologies, and I identify some of the issues for future scientific work in this area. Given that recent scientific effort around the Web has coalesced into a new scientific discipline, namely that of Web Science, I suggest that many of the issues related to cognition and the Web could form part of the emerging Web Science research agenda

    Supporting organisational learning: an overview of the ENRICH approach

    Get PDF
    Traditional training separates learning from the work context in which the newly acquired knowledge is to be applied. This requires the worker themselves to apply imparted theoretical knowledge to knowledge in practice, a process that is grossly inefficient. The ENRICH approach builds on organisational learning theory to intertwine working and learning. The ENRICH methodology incorporates theories of learning at the individual, group and organisational level. Individual level learning is supported through the provision of semantically related resources to support problem reframing and to challenge assumptions. Group learning is supported through the evolution of domain concepts through work documents and representations linked to formal models of group knowledge, and the development of group practices and perspectives through enhanced sharing and collaboration. Organisational learning is supported through exposure to customs and conventions of other groups through shared best practices and knowledge models. The approach is being investigated in a range of industrial settings and applications

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Augmented robotics dialog system for enhancing human-robot interaction

    Get PDF
    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human-robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human-robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.The authors gratefully acknowledge the funds provided by the Spanish MICINN (Ministry of Science and Innovation) through the project “Aplicaciones de los robots sociales”, DPI2011-26980 from the Spanish Ministry of Economy and Competitiveness. The research leading to these results has received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and co-funded by the Structural Funds of the EU
    • 

    corecore