551 research outputs found

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    Interacting via the Heap in the Presence of Recursion

    Full text link
    Almost all modern imperative programming languages include operations for dynamically manipulating the heap, for example by allocating and deallocating objects, and by updating reference fields. In the presence of recursive procedures and local variables the interactions of a program with the heap can become rather complex, as an unbounded number of objects can be allocated either on the call stack using local variables, or, anonymously, on the heap using reference fields. As such a static analysis is, in general, undecidable. In this paper we study the verification of recursive programs with unbounded allocation of objects, in a simple imperative language for heap manipulation. We present an improved semantics for this language, using an abstraction that is precise. For any program with a bounded visible heap, meaning that the number of objects reachable from variables at any point of execution is bounded, this abstraction is a finitary representation of its behaviour, even though an unbounded number of objects can appear in the state. As a consequence, for such programs model checking is decidable. Finally we introduce a specification language for temporal properties of the heap, and discuss model checking these properties against heap-manipulating programs.Comment: In Proceedings ICE 2012, arXiv:1212.345

    Beyond Language Equivalence on Visibly Pushdown Automata

    Full text link
    We study (bi)simulation-like preorder/equivalence checking on the class of visibly pushdown automata and its natural subclasses visibly BPA (Basic Process Algebra) and visibly one-counter automata. We describe generic methods for proving complexity upper and lower bounds for a number of studied preorders and equivalences like simulation, completed simulation, ready simulation, 2-nested simulation preorders/equivalences and bisimulation equivalence. Our main results are that all the mentioned equivalences and preorders are EXPTIME-complete on visibly pushdown automata, PSPACE-complete on visibly one-counter automata and P-complete on visibly BPA. Our PSPACE lower bound for visibly one-counter automata improves also the previously known DP-hardness results for ordinary one-counter automata and one-counter nets. Finally, we study regularity checking problems for visibly pushdown automata and show that they can be decided in polynomial time.Comment: Final version of paper, accepted by LMC

    Towards a Uniform Theory of Effectful State Machines

    Full text link
    Using recent developments in coalgebraic and monad-based semantics, we present a uniform study of various notions of machines, e.g. finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata. They are instances of Jacobs' notion of a T-automaton, where T is a monad. We show that the generic language semantics for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages, including regular, context-free, recursively-enumerable and various subclasses of context free languages (e.g. deterministic and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various machine-based models.Comment: final version accepted by TOC

    A Complete Axiomatization of Quantified Differential Dynamic Logic for Distributed Hybrid Systems

    Full text link
    We address a fundamental mismatch between the combinations of dynamics that occur in cyber-physical systems and the limited kinds of dynamics supported in analysis. Modern applications combine communication, computation, and control. They may even form dynamic distributed networks, where neither structure nor dimension stay the same while the system follows hybrid dynamics, i.e., mixed discrete and continuous dynamics. We provide the logical foundations for closing this analytic gap. We develop a formal model for distributed hybrid systems. It combines quantified differential equations with quantified assignments and dynamic dimensionality-changes. We introduce a dynamic logic for verifying distributed hybrid systems and present a proof calculus for this logic. This is the first formal verification approach for distributed hybrid systems. We prove that our calculus is a sound and complete axiomatization of the behavior of distributed hybrid systems relative to quantified differential equations. In our calculus we have proven collision freedom in distributed car control even when an unbounded number of new cars may appear dynamically on the road

    Proving the power of postselection

    Full text link
    It is a widely believed, though unproven, conjecture that the capability of postselection increases the language recognition power of both probabilistic and quantum polynomial-time computers. It is also unknown whether polynomial-time quantum machines with postselection are more powerful than their probabilistic counterparts with the same resource restrictions. We approach these problems by imposing additional constraints on the resources to be used by the computer, and are able to prove for the first time that postselection does augment the computational power of both classical and quantum computers, and that quantum does outperform probabilistic in this context, under simultaneous time and space bounds in a certain range. We also look at postselected versions of space-bounded classes, as well as those corresponding to error-free and one-sided error recognition, and provide classical characterizations. It is shown that NL\mathsf{NL} would equal RL\mathsf{RL} if the randomized machines had the postselection capability.Comment: 26 pages. This is a heavily improved version of arXiv:1102.066

    Conformance Testing with Labelled Transition Systems: Implementation Relations and Test Generation

    Get PDF
    This paper studies testing based on labelled transition systems, presenting two test generation algorithms with their corresponding implementation relations. The first algorithm assumes that implementations communicate with their environment via symmetric, synchronous interactions. It is based on the theory of testing equivalence and preorder, as is most of the testing theory for labelled transition systems, and it is found in the literature in some slightly different variations. The second algorithm is based on the assumption that implementations communicate with their environment via inputs and outputs. Such implementations are formalized by restricting the class of labelled transition systems to those systems that can always accept input actions. For these implementations a testing theory is developed, analogous to the theory of testing equivalence and preorder. It consists of implementation relations formalizing the notion of conformance of these implementations with respect to labelled transition system specifications, test cases and test suites, test execution, the notion of passing a test suite, and the test generation algorithm, which is proved to produce sound test suites for one of the implementation relations

    Communication in concurrent dynamic logic

    Get PDF
    AbstractCommunication mechanisms are introduced into the program schemes of Concurrent Dynamic Logic, on both the propositional and the first-order levels. The effects of these mechanisms (particularly, channels, shared variables, and “message collectors”) on issues of expressiveness and decidability are investigated. In general, we find that both respects are dominated by the extent to which the capabilities of synchronization and (unbounded counting are enabled in the communication scheme
    • 

    corecore