
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 35, 23-58 (1987)

Communication in Concurrent Dynamic Logic

DAVID PELEG

IBM Almaden Research Center, 650 Harry Road, San Jose, Cakfornia 95120

Received March 1, 1985

Communication mechanisms are introduced into the program schemes of Concurrent
Dynamic Logic, on both the propositional and the first-order levels. The elfects of these
mechanisms (particularly, channels, shared variables, and “message collectors”) on issues of
expressiveness and decidability are investigated. In general, we find that both respects are
dominated by the extent to which the capabilities of synchronization and (unbounded)
counting are enabled in the communication scheme. ‘i? 1987 Academic Press. Inc.

PART A: INTRODUCTION AND PRELIMINARIES

1. Introduction

One of the most widely studied models of concurrent computation is that of an
and/or tree. This approach views concurrency in its purest form as the dual notion
of nondeterminism. For example, let us illustrate a process by a tree whose arcs
represent “atomic actions.” Nondeterminism is introduced by allowing a node to
split into several branches, and letting the process choose between the different
possible continuations. Analogously, concurrency is obtained by again splitting a
node into several branches, but requiring the process to execute ail possible con-
tinuations independently. This is basically the classical concept of and/or decom-
position, which occurs widely in computability, logic, game theory, etc.

Addressing the problem of appropriate programming tools for concurrency, the
described model gave raise to the concurrent goto programs appearing in the works
of Manna and Chandra [Ma, Ch]. These programs may contain such commands
as goto I, or I,, facilitating nondeterministic choice, as well as commands like goto 1,
and 12, causing a split into two parallel independent branches.

This approach to parallel computation was also introduced by Chandra et al.
[CKS] into the theory of computability, through the mechanism of Alternating
Turing Machines (ATMs); the computation tree of an ATM can be represented by
an and/or tree. ATMs have proved to be a very useful tool in complexity theory,
and have been followed by several attempts to develop programming tools incor-
porating and implementing this duality, like Harel’s And/Or Programs [H4], the

23
0022~0000/87 $3.00

Copyright 0 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved

24 DAVID PELEG

language Znd of [HK] and, in a way, the new trend of logic programming and
Prolog [K, CIM, SZ].

Concurrent Dynamic Logic (CDL) is introduced in [Pel] as an extension of
regular Dynamic Logic ([FL], cf. [HI]), which attempts to provide a framework
for reasoning about concurrent programs in the and/or model. CDL is discussed on
both the propositional and the first-order levels, and is shown to possess most of
the desirable properties of regular DL, while being capable of modeling and dis-
cussing concurrency in a satisfactory manner.

However, parallel processes in CDL are isolated, mutually oblivious, and
unsynchronized. Not only can they not communicate with one aother, but it is
impossible even to collect their “final reports” by some main process, for a global
analysis. This is, of course, quite a serious limitation; in actual concurrent program-
ming languages, much of the power is based on the ability of individual processes
to communicate with one another. This is the case in CSP [Ho], CCS [M], Con-
current And/Or programs [HN] and Concurrent Prolog [Sl], not to mention a
large variety of distributed systems, in which communication plays a vital role.

All this has motivated the present research, in which we examine some extensions
to CDL, tailored towards incorporating communication mechanisms into the
programs. The resulting logics are eventually intended to serve as a basic ground
for reasoning about concurrent programs with communication, and thus are to play
the same role as the one played by DL with respect to regular (flowchart)
programs.

Let us first characterize the roles and tasks required from communication in a
concurrent environment. The main functions of communication can be roughly
categorized as

(1) synchronization of processes,
(2) exchange of information between processes, and
(3) transmission of reports, messages and final results to some main “parent”

process.

In this paper we investigate several versions of communication schemes for CDL.
These versions vary by the mechanism used, such as channels vs. common memory,
and by the extent to which communication is allowed. We consider both the
propositional and the first-order levels of CDL. The propositional versions were
meant to provide an abstraction of the discussed notions, constructs, and
mechanisms, so as to enable an analysis of their fundamental properties and
behaviour.

In general, our results indicate that the scope of communication crucially affects
the issues of expressiveness and decidability. In particular, allowing full
propositional communication between processes (by means of either channels or
shared variables) renders the logic highly undecidable. In order to get a decidable
propositional logic it is necessary to limit the features of synchronization (hidden in

CONCURRENT DYNAMIC LOGIC 25

the “blocking” semantics of channel communication) and unbounded counting
(hidden in the ability to spawn an unbounded number of processes); either one of
these causes undecidability. We present such a decidable prototype system.

We now give a brief description of the logics considered in this paper. Com-
munication on the propositional level is based on Boolean (two valued) messages.
We begin with channel-CPDL (here P stands for propositional). This language
enables communication between two parallel processes by means of a channel. A
process may transmit the message O/l along channel C (by executing the command
C!O/C! 1, respectively), or receive O/l (by using C?O/C?l). The notation is taken
from Hoare and Milner [Ho, Ml].

These operations cannot be carried out independently by a single process; rather,
it takes a pair of processes wiling to transmit and receive the same message
simultaneously. Actually, a channel C is merely a programming construct,
representing no actual entity in the model. Thus the simultaneous execution of, say,
C!l and C?l in two parallel processes may be viewed as the verification of two
tests, or “guards,” by the processes. The fact that channel-CPDL allows full com-
munication, including complete synchronization of processes and unbounded coun-
ting, renders the validity problem of channel-CPDL undecidable (in fact, Z7:-hard),
as is shown using methods of [H3].

Defining a communication scheme based on shared variables leads to similar
behaviour. We discuss such a system named shared-CPDL, and its connections with
previous extensions proposed for PDL (shared-CPDL requires us to extend the
semantic foundations of the system to include additional auxiliary variables, cf.
[A], or to allow a program to change the truth value of propositional variables, cf.
CT]). We show that shared-CPDL is equivalent to channel-CPDL, under certain
conditions which are necessary in order to make them compatible.

The third and last mechanism considered is based on counts. This mechanism
restricts communication considerably, and allows only the transmission of messages
M, from the processes to a main control process. This control is again only an
abstract entity, represented by its semantic functioning.

There are several viable ways of defining the functions of such a main process. In
the systems proposed here these functions are quite limited. The main control
process can recognize different messages and count the number of messages arrived
of each type (either precisely or modulo some constant), but it cannot identify the
order in which the messages arrived or the source of each message (unless the num-
ber of processes is kept bounded in the program, in which case it is possible to
identify each process by giving it a special message-set). We actually consider two
versions of this system. The more powerful one is u-count-CPDL. This version is
actually equivalent to a weakened version of channel-CPDL, with a non-blocking
semantics for communication (i.e., a version in which a process may send a message
even when no other process waits to receive it, using an intermediate infinite buf-
fer). Thus the synchronization capability is eliminated. Still, u-count-CPDL allows a
comparison of the number of messages sent of two types, and the unbounded
counting hidden in this capability renders this version #-hard too. A more limited

26 DAVID PELEG

version is count-CPDL, which does not provide this facility, and therefore is strictly
less expressive than u-count-CPDL, and moreover, is elementarily decidable.

On the first-order level, communication is based on general messages, i.e., the
contents of a message is some element of the domain.

The main versions considered are channel-CQDL and shared-CQDL (here Q
stands for quantified), which are the first-order counterparts of channel-CPDL and
shared-CPDL. These two versions are equivalent in expressive power (essentially
since their program schemes are), and they lie in expressiveness between QDL with
recursive procedures with parameters and QDL with array assignments. (This last
comparison is restricted to infinite structures with a successor function.)

The third version, count-CQDL, is shown to be equivalent to CQDL, as the
main message control is simulable on the first-order level.

In addition, we consider a restriction of the program system of channel-CQDL to
programs with bounded concurrency. In the resulting system, named channel-bc-
CQDL, the number of processes in a program is pre-defined, i.e., no new processes
are allowed to be spawned. This version is shown to be equivalent in expressiveness
to regular QDL.

The rest of the article is organized as follows. There are three main parts. The
introductory Part A concludes with Section 2, in which we review CDL and define
its semantics in a slightly different way than in [Pel] (though the definitions are
equivalent). Part B concerns the propositional level. Sections 3-5 define channel-
CPDL, shared-CPDL, and count-CPDL, respectively. Section 6 contains some
expressiveness results, and Section 7 concerns decidability of the validity problem.
Part C deals with the first-order level. Section 8 presents channel-CQDL, shared-
CQDL, and count-CQDL and Section 9 includes some related expressiveness
results. Finally Section 10 contains a brief comparative discussion.

2. PRELIMINARIES

2.1. Concurrent PDL

Let us start with an overview of the syntax and semantics of CPDL. The syntax
of CPDL is just that of PDL, with the addition of a concurrency operator A on
programs. Thus, we have atomic formulas {P,}, atomic programs {a;}, and the
construction rules:

(1) every Pi is a formula,
(2) if A and B are formulas, and CI is a program, then A v B, 1 A, and (a) A

are formulas, and

(3) every ai is a program,
(4) if a, /I are programs and A is a formula, then a u B, a n /?, a; a, a* and A?

are programs.

CONCURRENT DYNAMIC LOGIC 27

The semantics interprets formulas over models (S, z,‘p), where S is a set of
states, rc attaches a subset n(P) of S to every atomic formula P, and p attaches a
subset p(a) of S x 2’ to every atomic program a. Intuitively, (s, U) E p(a) for s E S
and U 5: S if a can be executed from s, to reach all states of U in parallel. Thus, the
formula (a) A holds in a state s iff there is a set U c S s.t. (s, U) E p(a), and each
state in U satisfies A.

We extend rc and p to all formulas and programs by the rules

TC(A v B) = z(A) u n(B),

TC(-IA)=S-n(A),

-n(<a> A)= (s I ~U((S, WEda) A UE~A))},

and

PW)= {(s, @)I I s-W),

Aa u P) = p(a) u P(B),

danbY= {b, u) l3K W(s, VEp(a) A (s, W)ep(B) A U= VU W)},

da; PI = P(a). P(B),

p(a*)=min{R 1 RsSx2.’ A R=p(true?)up(a). R},

where R, . R, is defined (for any RI, R2 E S x 2’) as

(% U) I js,, u, , $2, u,,... (s, {s,, s2 ,... })E R,

A vi@,, UJE R, A u= (j u;

The definition of (a) A corresponds to the requirement that there exists a com-
putation of a such that A holds in every one of its end-states. An alternative choice
could be to make (a) A hold whenever there exists a computation of a such that A
holds in some of its end states. The approach we chose seems more appropriate for
describing global correctness conditions required from (all the branches of) a
program, and parallels the corresponding requirement on the branches of the com-
putation of an alternating Turing machine [AKS]. Nevertheless, it should be clear
that it is always possible to impose specific conditions on individual branches by
including tests in appropriate points in the program, e.g., as in ((a; q?) n /?) true.

In a subsequent paper [Pe3] we examine a more flexible approach to defining
program schemes, based on the notion of tree-regular languages. One of the by-
products of this approach is the capability of using reasonably general Boolean
combinations of end-tests in formulas of the form (a) A.

See [Pel] for a more detailed discussion of CPDL.

28 DAVID PELEG

2.2. Trees

We now give a slightly modified, yet equivalent construction for the inter-
pretation p of programs, based on the notion of a tree, or a tree-like computation.
This construction provides the technical basis for extending CDL for dealing with
communication.

A seq (cf. [MeP]) is a (deterministic) PDL program containing no appearances
of u or *, i.e., a sequence of concatenated atomic programs and tests.

The role of trees in concurrent programs is analogous to that of seq’s in regular
programs; both can be used to describe some specific, deterministic execution of a
program. (Here, the term “deterministic” refers to the control structure of the
program, and bears no implications on the interpretation of atomic programs.) A
tree, or a tree computation, is a CPDL program containing no appearances of u or
*. Thus the set of trees can be defined as the closure of atomic programs and tests
under concatenation and A.

A tree (r is said to be in tree form if it conforms to the following inductive
definition.

(1) true? is a tree,
(2) if a, /I are trees, a is an atomic program and A is a formula, then a n p, a;

CI and A?; u are trees.

A tree in tree form can be represented as a tree whose arcs are labeled by the
atomic programs and tests of the tree, and each n corresponds to a split into two
branches. The leaves of this tree correspond to the endpoints of the different parallel
processes spawned by the tree. The transformation between trees in tree form and
the trees representing them is straightforward in both directions, and we will freely
use both presentations.

Note 2.1. Every tree can be transformed into tree form. For instance, if CI and B
are in tree form, then a; /I (not necessarily in tree form by itself) can be transformed
into tree form by attaching the tree representing /I to every leaf of the tree
representing ~1. This corresponds to the repreated application of the transformation
rule (0 n y); 6 Z. 8; 6 n y; 6 to any sub-program of a; /I, whenever possible. Note
also that this rule is valid for CPDL programs in general, and also with u instead
of n. However, if the 6 is to the left of the brackets, then both transformations
(either with u or n) are invalid; hence a tree cannot be further decomposed into a
set of completely separate parallel seq’s.

It is well-known that the semantics of a (nondeterministic) sequential PDL
program c(can be defined on the basis of a set r(a) of (deterministic) seq’s, describ-
ing the possible runs of c(, so that p(a) = U BEr,arj p(B). Analogously, the semantics of
a (nondeterministic) concurrent program CI can be based on a collection of (deter-
ministic) trec’s. Every program CI is associated with a set of trees Z(U), representing
all of its possible runs.

Note that the definition of z serves merely as a transformation from one syntactic

CONCURRENT DYNAMIC LOGIC 29

object to another, and therefore gives meaning only to the compositional and struc-
tural connectives of the language (i.e., n, u, ; and *), and does not deal with the
interpretation of any primitive actions in the model.

The sets z(a) are defined by

(1) r(a,)= {a,}, for atomic programs ai,
(2) z(A?)= {A?}, for tests A?,

(3) ~(auB)=$a)um,

(4) r(anB)={yn6 I YET(~) and ~EQP)),
(5) r(a; /?) = (0 1 3y, d1 ,..., dk(y~r(a), 6 ,,..., s,~r(fl), y has k leaves, and 0 is

obtained by attaching each hi to one of the leaves of y)>,
(6) r(tx*) is the (minimal) set constructed by (precisely) the following rules:

(6.1) true? E z(u*).
(6.2) For every y, 6 and 8, if y ~z(cc*), 6 E z(a) and 0 is obtained by

attaching 6 to one of the leaves of y, then also 8 E r(c(*).

Note that z(c1) contains only trees in tree form, and, in particular, for any tree a,
z(a) contains (some) tree-form-equivalents of c(.

Finally, we give the following characterization for p(u) in CPDL, equivalent to
the original definition. First use that original definition to define p’(p) for trees /? in
tree form; then let P(U) = u PEr(a) p’(P), for every program a.

Note 2.2. In all further references to the definition of p(a) in the semantics of
CPDL, this characterization is implied.

2.3. C-goto-CPDL

We also need a different version of CPDL, defined and studied in [Pe3]. This
version, named c-goto-CPDL, is based on representing programs in the form of a
concurrent goto scheme, which is essentially a linear representation for a flowchart.
A propositional concurrent goto scheme is a program composed of a sequence of
labeled commands of the types

(ATOMIC) 1: ai,

(TEST) 1: P?,

(N-GOTO) I: got0 I’ or [,,

(PAR) 1: goto 1’ and I”,

where P is a formula in c-goto-CPDL, and ai is an atomic command.
The semantics of c-goto-CPDL is based on models similar to those of CPDL.

Informally, the semantics of the (N-GOTO) command is that of a nondeterministic
branch, and the semantics of a (TEST) is that of a guard, i.e. it can be passed only
if the formula P evaluates to true in the present state, otherwise the run aborts.

30 DAVID PELEG

When a process reaches a command of type (PAR), it splits into two parallel
processes, identical by their state. (Giving this “real life” interpretation, we may say
that the memory locations held by the original process are duplicated, and each of
the two new processes receives an identical private copy.) Now one of the processes
proceeds to execute the command labeled l’, and the other proceeds to I”, and from
now on the two processes remain separate and independent, with no connection
whatsoever.

A detailed formal definition of the semantics is given [Pe3], and will not be
repeated here. We note for future use

PROPOSITION 2.1 [Pe3 1. The validity problem for c-goto-CPDL can be decided
in nondeterministic double exponential time.

2.4. Concurrent QDL

Let us now review also the quantified (first-order) language CQDL, which relates
to QDL just as CPDL relates to PDL.

The language of CQDL is defined analogously to CPDL, on the basis of first-
order logic (with equality) (cf. [Hl]). Thus, the atomic formulas are predicates
P(0) where 5 is a tuple of terms. The programs are defined just like their
propositional counterparts, except that the atomic operations are chosen to be
simple assignments x, c r~. Programs and formulas use a tuple of variables
x = {x,)...) x,,}, and the assignments and tests refer to some fixed signature; o is a
term over the signature involving variables from X.

The semantics is based on a first-order structure d = (9, P1,...,f,,...) with a
domain 9 and a collection of predicates Pi and functions fi, corresponding to the
signature of the language. The set of states S associated with such structure is the
set of possible interpretations for the variable set X used in the scheme; every
possible assignment of values from 9 to variables in X corresponds to a state. The
structure induces an interpretation for terms c in every state, and also an inter-
pretation of the atomic formulas; the truth-value of P(5) in a state s is determined
by the value of P(6,) in the structure, where 0, is the evaluation of ~7 in the state s.

A subset n(cp) of S is attached to every formula cp, and a subset p(a) of S x 2’ to
every program ~1. The values of z(cp) are determined just as in ordinary QDL, with
the obvious modification

and p is defined just as in CPDL, with an additional rule for assignments

Ax;+ 0) = {(s, 4~sl~;l) I s E S>>

where s[a,/xi] represents a state s’ similar to s except that xi is interpreted in s’ as
os, the evaluation of the term r~ in s.

CONCURRENT DYNAMIC LOGIC 31

PARTB: THE PROPOSITIONAL LEVEL

3. Channel-CPDL

A run of a CPDL program (or tree) can be described by a tree in which there are
no connections between different branches. The run starts at a certain common
state s, but once the program splits into two or more parallel processes, these
processes advance separately, with no synchronization or connection whatsoever.

The semantic world of concurrent programs with communication can no longer
have this simple form; there must be some connection between the different
branches. Therefore it is advantageous to consider super-states, representing cuts in
the computation tree, and the semantic definitions have to refer simultaneously to
all states in the cut and all programs operating in the different branches. For exam-
ple, Fig. 3.1 shows a sequence of super-states representing a run on some com-
putation tree.

We want to allow a full nondeterminism of concurrency, in the sense that any
“timing shuflle” of the separate branches is allowed (unless it violates the syn-
chronization restrictions imposed by the communication). Communication between
two parallel processes is enabled in channel-CPDL by means of channels, as is done
in several concurrent languages. The notation we use resembles that of CCS [Ml].

We proceed to give a precise definition of the syntax and semantics of
channel-CPDL.

Syntax of channel-CPDL

The syntax is based on CPDL, with the following additions: The language has a
collection of channels { Ci}. In addition to atomic programs and tests, the following
atomic communication operations are allowed: C!O (resp. C! 1) reading “transmit 0
(resp. 1) over channel c’, and C?O (resp. C?l) reading “receive 0 (1) over
channel C’.

Semantics of channel-CPDL

Informally, communication is carried out in the following manner. When a
process reaches the command C!O, it has to wait for some parallel process to
execute C?O. These two operations happen simultaneously, and then each process
continues separately. (A similar procedure occurs for C!l and C?l.) Both processes

FIGURE 3.1

571/35/l-3

32 DAVID PELEG

remain, after executing a communication command, in the state they were in before
communication took place. Thus, actually, communicating can be viewed as the
synchronization of tests, or “guards,” in the two processes.

Nevertheless, it is clear that these commands can be used by a process in order to
transfer, for instance, the value of a predicate P in its current state (by executing
P?; C!l u (1 P)?; C!O) and another process can make a decision on the basis of
such a message (by executing C?O; au C?l; /?).

A formal definition of the semantics of channel-CPDL is rather complicated,
compared to that of CPDL, as a result of having to deal simultaneously with super-
states instead of handling each branch separately. For instance, p(a n /3) can be
defined in CPDL by defining first p(a) and p(B) separately, but in channel-CPDL
this definition cannot be split without introducing additional semantical objects. In
fact, if there are common channels between a and B, it may be that a or /3 are not
executable at all, once separated. Thus the semantic rules must also consider several
parallel processes, or a super-process.

The model provides an interpretation p(a) E Sx S for atomic programs a, thus
we limit ourselves to sequential models (cf. [Pel]). This definition now has to be
extended to super-processes.

We use the following notation. A super-state is denoted by S= [s, (. .. (s,]
(when n = 1 we identify sr with [s,], for simplicity). When S is known we may refer
to a portion of it, [si / . . 1 si+ k], as S(i, i + k). Two super-states may be combined
to form a larger super-state. This is denoted by [s,) . .. 1 s,] 1 [q, / .. . I qm] =
[s, 1 . . 1 s, lq,/ . 1 qm]. The width of S, denoted ISI, is the number n of parallel
states in S. Similarly, a super-process is denoted by 6! = [a, / ... I a,,] and we may
describe portions of it by cC(i, i+ k). Again we identify a, with [a,]. For a super-
process 5= [a, /...I a,], p(Z)cS”x(tJ,,,S’), i.e., p(E) consists of tuples (S, 3’)
with ISI = n and IS’1 3 n.

The definition of p(E) for every super-process Cr follows the lines of the
corresponding definition for CPDL in Section 2.2. In general, we retain the dis-
tinction between the compositional/structural connectives of the language and the
primitive operations. As far as the first ones go, we keep the tree-like nature of our
basic deterministic programs-the trees, and the decomposition of general
programs into trees. Hence, we still have the transformations described in Note 2.1,
including

(1) (8ny);6=0;6ny;6 and
(2) (euy);s*e;suy;s.

We first define the set of trees ~(a) associated with each program a. This
definition goes exactly as in Section 2.2, modified of course to account also for
atomic communication operations.

Next we define p(Z) for a super-process cl consisting only of trees in tree form. At
this stage, the semantic interpretation of the channel communication operations
imposes some synchronization connections between separate branches of the trees,
so these branches are no more independent and the trees lose their tree-like nature.

(1)
(2)

(3)

(4)

(5)

CONCURRENT DYNAMIC LOGIC

p(true?) = ((s, s) 1 s E S}.

If cli = a; p, (Si, S’) E p(a)
and (S(1, i- 1) (~‘1 S(i+ 1, n), F)~p(k(l, i- 1) IpI Z(i+ 1, n))
then (S, f) E p(C).
Ifai=C!1;8,,aj=C?1;pz,j>i
and (5, F)~p(i?(l, i- 1) I~,[E(i+ l,j- 1) lpzl c?(j+ 1,n)) - - then (s, r) E p(E).
Similarly whenj < i, and when the message is 0 on both sides.
If ai=A?;a,siE7c(A)
and (S, T)~~(ti(l, i- 1) I/J’I ci(i+ 1, n))
then (S, 7) E p(a).
Ifa,=j?ny
and (S(1, i- 1) Is,(s,(S(i+ 1, n), T)~p(ii(l, i- 1) lp\yl ti(i+ 1, n))
then (5, 7) E p(E).

33

- - For every CC, p(c) contains precisely those pairs (s, Y) introduced by the above
rules.

The definition of p is extended to any super-process Cr by letting

dIIal I.e.1 anI)= U dCPI I ...I PHI).
L&E r(a)
l<i<n

Finally, the interpretation of formulas has to be modified accordingly, by letting

?$(a) A)= {s’ I3S(3= [Sl (‘.*) s,], (s’, S)EP(OL)

andtli, 1 <i<n(s,~n(A)))).

Discussion. The definition of program semantics here differs from that given to
concurrent programs without communication. Actually, here we interpret a
program computation as leading from a single state to a multiset of states. This may
lead to a serious difference in the interpretation of certain programs. For example,
let tt = true? n true?, a = tt; a and p(a) = { (sO, si), (so, sz)). Then by our previous
rules p(tt)=p(true?), and p(a)= {(so, {srj), (so, {s2))j, while according to the
multiset interpretation p mult(a)= {(so, Csl I ~~11, (so, Cs, I s,l), (so, Cs2 I s,]),
(so, [s2 I s,])}, meaning that it is possible for a to split and reach two different
states.

We chose the “set” interpretation for concurrent programs without com-
munication for its simplicity and compatibility with the definitions of game logic.
When communication is involved, this does not seem to work anymore. However,
we should observe that this choice of semantics for schemes does not affect the
interpretation offormulas in the logics. The reason is that, as can be easily shown,

34 DAVID PELEG

(1) p(a) c ~,&a) for every program a (iditifying a multiset U with the set
set(U) consisting precisely of its elements), and

(2) (s, U) E pmult(a) * 3u’(U’ c set(U), (s, v’) E p(a)) for every program a.

These two observations serve to prove that for any formula A, z(A) = rr,&A).
This holds on both the propositional and first-order levels.

As for the interpretation of formulas, one should note that by this semantics, two
programs c1 and /? in separate contexts (say, in (a) A and (p) B) are still totally
disconnected and no communication is possible between them. Furthermore, even
the attached formula A has no way of referring to the channels of ~1, and the same
applies even to tests in a. This means, for instance, that valid CPDL axioms such as
(cxn/?)Ar(cr)Ar\ (B)Aand (a;j?)A-(a)(/?)Anolongerholdinchannel-
CPDL. For example, (C!O n C?O) true is always true, while (C!O) true A (C?O)
true is always false.

The following examples demonstrate the expressive power gained by the
introduction of communication.

EXAMPLE 3.1. Leaf counting. Considering models in the form of finite full binary
a/b trees, the formula even, addresses exactly those models in which there is an even
number of leaves satisfying P (see Fig. 3.2).

even, : (((anb)*;leafl; ((lP)?u(P?; C!l)))n(C?l; C?l)*) true,

where
leaf: T(aub) true.

The main program of even , splits into several parallel processes, one for each
branch of the tree. Each of these processes, upon reaching a leaf, tests P, and sends
a message if P is true. A separate process receives these messages and keeps track of
the parity of their number.

In order to account also for partial binary trees (i.e., in which a node may have
one child), replace the sub-program (an b)* with

(((a) true A (b) true)?; (anb)

u ((a) true A 1 (b) true)?; a

u (I (a) true A (b) true)?; b)*.

-lP P

FIG. 3.2. A finite full binary u/b tree satisfying men,.

CONCURRENTDYNAMIC LOGIC 35

2 3 4 5 6 7
P 1P 1P 1P 7P 1P 1P - - -

FIGURE 3.3

Applied to a finite binary a/b dug, the program counts the number of different
paths leading to leaves satisfying P. Thus, consider a model as in Fig. 3.3, where in
each state exactly one of the arcs leaving it is denoted by a, and one by b. In such a
model, rr(even,) = { 3k (k al}, since the number of different paths from a state n to
the end is exactly the n th Fibonacci number, which is even for n = 3k, k b 1.

These examples demonstrate one function of communication, namely, sending
messages and “final reports” from independent subprocesses to a main “counting”
process. However, channel-CPDL can provide for the other functions as well. The
following example demonstrates the use of synchronization.

EXAMPLE 3.2. Post correspondence problem. This example is based on the ideas
used in [HPS] to show the undecidability of PDL + (a’jy’) i 2 0}, by reducing the
Post correspondence problem (PCP) to its satisliability problem.

The models concerned here are each in the form of a finite path
pA = (s,,, s, ,..., s,) connected by an atomic program a, with an atomic predicate P
interpreted over the states of the model. Such a model ~2’ represents a word
Z&=ol...om; for each 1 < i < m, r~, = 1 if si j= P, otherwise 0; = 0.

Let X = (x1 ,..., xn), 9 = (y, ,..., y,) be a given instance of PCP. We construct a
channel-CPDL formula correspond,,, which is satisfiable in the model &! iff the
represented word zM is a solution to the given PCP instance (X, j).

The formula correspond,j employs two processes, one to “guess” and verify an
x-partition of the word, and the other for the y-partition. The processes make use of
channels Ci (1 d Ian) in order to force the simultaneous application of words xi
and yi.

The formula correspond,, is constructed as follows. For any word xi = w~,~ . . . w~,~,
construct a program c(~ = u,,~ ;. . . ; a,,,; Ci! 1, where

i

a; P?,
%= a; (1 P)?,

wiJ= 1
W,J = 0.

For any word yi = u~,~ * *. u~,~, construct a program pi = bi,l ;. . . ; bi,,#; C,?l, with b,Js
defined analogously by the oij)s.

Let

Finally define

and /I=(U /I,)*.
l<i<n

correspond,,j : (an/3) leaf.

36 DAVID PELEG

correspond,,, states that CI and /? can be executed in parallel on the path P,~, which
implies that P,~ can be decomposed into k parts corresponding to a sequence of k
words xi, and, alternatively, into k parts corresponding to k words y;, with
matching indices (as verified through the appropriate channels). This means that
the model indeed represents a solution to the given PCP instance.

4. Shared-CPDL

The second system to be discussed is shared-CPDL, in which we allow the use of
shared Boolean variables.

Syntax of shared-CPDL

In addition to the basic syntax of CPDL, the language also has a set of Boolean
variables {Xi). For any X,, the language allows Xi= 0 and Xi= 1 as atomic for-
mulas, and Xi +- 0 or Xi +- 1 are atomic programs.

These variables thus resemble the Boolean variables proposed in [A], forming
B-PDL as an extension of PDL. However, while B-PDL is shown to be essentially
no more powerful than PDL, the shared variables of shared-CPDL increase its
power considerably. Actually, it is possible to add Boolean variables to concurrent
schemes as local variables, with a private set of variables for every process [Pe3].
This yields a Boolean version of CPDL which is essentially equivalent to CPDL, in
the sense of [A].

Semantics of shared-CPDL

The evaluation of the shared variables is not a part of any state si, but an
independent part of the super-state. Thus a super-state d consists of two parts: a
vector S= [s,) ... 1 s,] of states (where each si contains a separate valuation for the
ordinary predicates), and a valuation I,: {Xi} + (0, 1 } for the shared variables.
This means that the value of X is identical in all of the sub-states si. In particular,
an assignment into a shared variable in one of the processes has to change I,.

This definition alone, coupled with the nondeterministic semantics of con-
currency in CPDL, does not allow an intelligible use of communication. We must
allow also some mechanism providing the feature of mutual exclusion. This may be
achieved, for instance, by means of a test-and-set command, 7’S(X), meaning the
indivisible execution of X= O?; X t 1 (i.e., with no interference of other processes
allowed between the two steps).

The appropriate semantic rules are:

Semantic Rule for X + 0

ifai=XcO;/?,~=(S,ZS)
and ((S, Z,[O/X]), i)~p(C((l, i- 1) [)!?I E(i+ 1, n))
then (s^,T^) E p(i).

CONCURRENT DYNAMIC LOGIC 37

(Here, by Z,[O/X] we mean an interpretation Z’ that is equivalent to Z,, except that
X is interpreted as 0. Similar notation will be used in several different contexts in
the sequel.)

Semantic Rule for TS(X)

if cli = TS(X); /$ s^ = (J;, I,), Z,(X) = 0
and ((i, Z,[l/X]), i)~p(CI(l, i- 1)]pI Cr(i+ 1, n))
then (s^, F) E p(a).

These rules replace part (3) in the definition of the semantics of channel-CPDL.
The rest of the definition remains the same.

5. count-CPDL

As will be shown later, the powerful capabilities of channel-CPDL render its
validity problem undecidable. This follows, for instance, from the capability of
synchronization, as demonstrated in Example 3.2. Such behaviour (on the
propositional level) raises the interesting question of finding a “less powerful”
version of communication, with “more desirable” properties. This motivates the
consideration of a limited version of channel-CPDL, in which communication is
non-blocking, i.e., the messages sent through channels are not synchronized, or
“time-stamped, ” in any way. When a process wishes to send a message on some
channel C, it simply does so and proceeds with its activities, without worrying
about the existence of a receiving process. Similarly, whenever a process wishes to
receive a mesage, it “accepts” it and proceeds, even if no process has sent it yet. The
only requirement is that in the end of the whole computation, there will be an
appropriate matching for “sent” and “received” messages (including from a process
to itself). This situation can be thought of also as being handled by a control
mechanism based on an (unordered) “infinite buffer,” which keeps and matches dif-
ferent “send” and “receive” requests of messages.

We present this system in a slightly cleaner form, through the notion of counts.
We define two logics named count-CPDL and u-count-CPDL. These logics do not
provide all functions of communication discussed earlier. In particular, separate
processes are independent and ignorant of each other; they are not synchronizable,
and cannot receive messages.

The only sense in which there is communication in count-CPDL and u-count-
CPDL is that processes can send reports, or messages, to an imaginary main
control process. This control process has, in principle, no means of identifying
the source of messages, or the order in which they were sent; it can only count the
number of messages it has received of each type, according to its specifications.

We distinguish between several types of counting. A particularly powerful type is
that of unbounded counting. This type appears in u-count-CDPL but not in count-

38 DAVID PELEG

CPDL. Later we see that this powerful capability renders u-count-CPDL
undecidable. (In fact, the properties of unbounded counting and synchronization
are independent of each other, and each alone causes undecidability.)

Syntax of count-CPDL
The syntax of count-CPDL is similar to that of CPDL, with the following

changes. The languages has a set of messages {Mi). Any message M, is allowed as
an atomic program (in addition to the usual atomic programs and tests). Given a
program a containing appearances of messages M, ,..., Mk, a specification spec as
described below and a formula A, (a),pec A is also a formula.

The subscript spec stands for a collection of counting specifications of the follow-
ing three types:

(Sl) modular counting: #Mi= I (mod t),

(S2) full counting: # Mi = 1,
(S3) modular comparison: # Mi = # Mj (mod t).

A fourth type of counting specifications is

(S4) full comparison: # Mi = # h4,.

The language resulting from allowing also full comparisons (S4) is u-count-
CPDL.

Semantics of count-CPDL

The intended meaning of the formula (a),,, A is that the number of messages
sent by a has to match the specification of spec. For example, if
spec = { #M, = #M, (mod 5)) u { #M, = 7}, then the formula claims that some
tree /I of a can be executed so that A holds at the end of each branch, the number of
messages M, and Mz sent in /I is equal, modulo 5, and the number of M, messages
sent in /I is 7. (Here, again, the definition of trees has to be extended to include also
messages as atomic steps.)

A formal definition of the semantics now follows. The interpretation p’(a) of a
tree a in tree form is just as in CPDL. In addition let p’(M,) = @(true?), for any
message Mi

For any tree a, let # (Mi, a) denote the number of occurrences of Mi in a.
Let spec be a given set of specifications. For every tree a, let spec, denote the set

of statements obtained from spec by replacing any appearance of #M, with
(Mi, a). Let z(spec) denote the collection of trees conforming to the specifications
of spec,

r(spec) = (a (a is a tree, all statements in spec, are true}.

Given any program a, restrict r(a) to trees satisfying the requirements of spec by
letting

$a, spec) = z(a) n z(spec).

CONCURRENT DYNAMIC LOGIC 39

For any program a let p(a, spec) = IJ BE r(a,spec) P’(B). Finally define 4 (a jspec A 1 as
in CPDL, only using p(a, Spec) instead of p(a).

The same definition applies to the semantics of u-count-CPDL too, with spec
understood to include also specifications of type (S4).

Despite its obvius limitations, count-CPDL can express several properties which
we suspect to be otherwise inexpressible in CPDL.

EXAMPLE 5.1. Leaf counting. The channel-CPDL formula eoen,, from Exam-
ple 3.1, can be written also in count-CPDL, as

evenz: ((anb)*; leaf?; ((iP)?u P?; M))(.,=,C,,,,,) true.

This formula works just as does euen 1, except that the parity counting is done
implicitly, and not by an explicitly defined process.

A slightly different formula of interest is

one-mod-three: ((anb)*;feaf?;M)(.,=,(,,d3)} true.

Referring to some state in a finite binary a/b tree (or dag), this second formula
asserts that the number of different paths leading from the state to leaves in the tree
(dag) is 1, modulo 3. In particular, in the case of a full and balanced binary tree this
means that the state is at an even height, considering leaves to be at height 0 (this
specific case can of course be handled in PDL too, by a simpler formula).

The next example is a u-count-CPDL formula demonstrating the power of
unbounded counting.

EXAMPLE 5.2. A grid. This example concerns infinite full binary a/b dags. Given
any u-count-CPDL formula I(/, the formula grid($) asserts that the model behaves
as an a/b grid (see Fig. 5.1) with respect to +. The formula grid($) holds in a state s
iff for every m, n >, 0 and for every two states s,, s2 reachable from s by seq’s

FIG. 5.1. An a/b grid.

40 DAVID PELEG

containing m a’s and n b’s, s1 E rc(t/)os2 E rr($). This formula is expressable in
count-CPDL as

l(((a; Ml ub; MZ)*; Cl/?)n((a;M,ub;M,)*; (lIc/)?)>,,c true,

where

spec= {#M, = #IV,, #M,= #M,).

For future purposes, let grid-PDL be the language

PDL u (grid($) 1 t,b Eprop. calculus}.

Finally we show some properties of count-CPDL.

DEFINITION. A u-count-CPDL formula is singly specified iff in any subformula
(a)SppC A, any message Mj participates in at most one specification statement of
spec.

LEMMA 5.1. For any u-count-CPDL formula A there is an equivalent singly
specified formula A’.

Proof Let (a),,, B be a subformula of A, and assume that the message Mi
appears in k different statements of spec. Replace every occurrence of Mi in a with
A4; ;...; M;k, where M{, 1 <j< k are new message symbols, and modify the k
specification statements involving M, so that each will concern exactly one
distinct M/. 1

Consequently, we will freely assume formulas to be singly specified, whenever
convenient.

We now claim that the specification type (S3) (modular comparisons) is redun-
dant in the presence of type (Sl) (modular counting).

LEMMA 5.2. For every u-count-CPDL formula involving modular comparison
statements there is an equivalent formula with no such statements. (The same is true
for count-CPDL, too.)

Proof Construct the equivalent formula inductively, based on the following
main step. Assume that the subformula A = (a),,,. B contains a statement
stat: # Mi = # MJ (mod t). Let spec’ = spec - {stat}, and spec, = (# Mj = 1
(mod t), #M, = 1 (mod t)>, for 0 < I < t - 1, and replace A by
V OGlsr- l((a)spec.uspec, B). I

6. Expressiveness Results

Comparisons of expressive power are based on the following definitions. Two for-
mulas cp, II/ are equvalent (q 3 II/) if 71((p) = 7~($) in every model Jz’. For two logics

CONCURRENTDYNAMIC LOGIC 41

,!,r, L2 interpretable over compatible models, we say that L, <L, iff for every for-
mula cp E L, there is an equivalent formula $ E L,. L, = L, iff L, < L, and L2 < L,.
L, < Lz iff L, < L2 and not L2 < L,.

When we try to compare the logics based on channels and shared variables with
each other, we run into the problem of their incomparable models. Strictly
speaking, channel-CPDL formulas cannot refer to the variables of shared-CPDL.
However, comparisons can be made in a way similar to the comparisons between
the Boolean and propositional versions of PDL and CPDL [A, Pe3], i.e., by ignor-
ing the “shared” part of the semantics, and considering the “state” part alone. Such
comparisons are dependent on the initial values of the shared variables. Thus, every
shared-CPDL formula can be simulated by a set of channel-CPDL formulas, one
formula for each possible assignment Z, of initial values to the variables. The inter-
pretation of any of the channel-CPDL formulas is identical to the “state part” of the
original formula, assuming that initial interpretation.

Let L, be a logic with shared variables and L, be a propositional logic. We define
the following notions. For a formula A EL, involving shared variables
8=(X1,..., X,), a formula BE L2 and a Boolean tuple 6 = (b, ,..., b,), we say that
A E 6 B (b equivalence) iff for every state s and every interpretation Z, in every
shared model, SE n(B)o (s, Z[Z$X]) E n(A). L, GIL, iff for every formula A EL,
(involving X) and f or every Boolean tuple 6, there is a formula Ah E L, s.t. A E h Ah.
L, = I L2 (I-equioalence) iff L, <, L, and L, < L, .

It is easy to see that shared-CPDL can simulate the channel communication of
channel-CPDL, in the usual way. A channel C can be represented by a tuple of
three shared variables, (X,., M,., G,.), where X,. stores the value of the transferred
message, M, stores the mode of the channel (with 0 meaning the channel is free, and
1 meaning a mesage was broadcasted, and the channel awaits a receiving process),
and G, implements the guard ensuring mutual exclusion.

Thus a command C!O can be simulated by

TS(G,); M, = O?; X,. + 0; M,. + 1; G,. +- 0; M,. = O?

and similarly, for C?O,

TS(G,.); M,. = l?; X,. = l?; M, +- 0; G,. c- 0.

Note that we must delay the transmitting process until its message is received by
someone, otherwise it might continue its run, and eventually read its own message.

A formula (a) A in channel-CPDL can now be translated into
(init; a’)(proper-end A A), where init sets initial zero vaues to all G, and M,
variables, a’ is the same as a except that communication commands are replaced as
above, and proper-end checks all that M, variables end with zero values.

Hence we have shown

LEMMA 6.1. channel-CPDL G shared-CPDL.

42 DAVID PELEG

The above simulation involves a subtle point which demonstrates a certain
weakness of CPDL, namely, its inapropriateness for handling deadlocks. During
the simulation of a channel communication operation, a “bad timing” of some
shared-CPDL processes might cause a deadlock. However, such a possible run does
not affect the interpretation p of the program, as it does not result in any legal
“start-end” pair of states; hence, the semantics ignores such a run, much in the
same way that it ignores runs which fail due to a false test (e.g., which try to test for
P? in a state where P is false). See also the discussion in Section 10.

In the other direction we can show

PROPOSITION 6.2. shared-CPDL < , channel-CPDL.

Prooj Let A be a shared-CPDL formula containing occurrences of shared
variables x= (X, ,..., X,). The formulas A6 for any Boolean tuple b are constructed
by structural induction on A.

X-free A: Let A6 = A.
A = B v D, 1 B: Trivial.
A = Xi: Let Ah = b, (or, actually, the corresponding true or false).
A = (a) B: First transform A into (/I) true where j? = a; B?. By the inductive

hypothesis, for every test E? in /? and for every interpretation b there is a channel-
CPDL formula E6 as required.

In the simulating program we have a separate, dedicated process sirnull: for every
shared variable X, simulating X under the assumption that X is initialized by b.
This process uses two channels, C, and G,, to conduct the assignments/tests and
the TS commands, respectively. The program j3 is transformed into j?’ by the
following changes:

(1) Occurrences of Xc 1 (Xc 0) are replaced by C, ! 1 (C, !O), respectively.
(2) Occurrences of KY(X) are replaced by G, ! 1.
(3) Any test E? is replaced by u6 (C,,?b,;...; Cxa?b,; Eb?).

For each shared variable X construct the following programs.

represent:: (c,!l)*

represen tz : (C,!O)*; (true?uG,?l; (C,!l)*)

sim, : (C, ? 1; represent? v C, ?O; represent’:) *

simuli: represent:; sim,

simulz : represent: ; sim,

Finally, for every Boolean tuple b, let

CONCURRENT DYNAMIC LOGIC 43

Note that we do not care to prevent other processes from changing the values of
the shared variables while we check the pre-conditions of a test, in a program
segment (C,, ?b 1 ;...; C,“?b,; E6?). (This could be done by using semaphores to
make this whole segment a critical section.) The reason is that this segment has no
communication other than with the simul, processes, and therefore it has no syn-
chronization constraints on it; if the test can be executed successfully provided some
other process changes the value of Xi during the execution of the program segment,
then it can be executed also with the other process changing Xi before the test
segment started. 1

Consequently we have

COROLLARY 6.3. shared-CPDL = , channel-CPDL.

This yields two possible alternatives for full comparison of the two systems, each
of which requiring a change in one of the logics, to form a common basis.

The first alternative is to consider essentially shared-CPDL models. This requires
us to extend the semantics of channel-CPDL so as to allow it to recognize shared
variables within atomic predicates X= O/l. Call the resulting logic channel-CPDL”.

The other alternative is to consider essentially channel-CPDL models. This
requires us to restrict the syntax of shared-CPDL so that shared variables must be
assigned values before they are tested. Then the semantic rules for the resulting
language, shared-CPDL’, will construct the interpretation Z, for shared variables
gradually, defining Z,(X) only after X was assigned to for the first time.

PROPOSITION 6.4. (1) channel-CPDL” = shared-CPDL.
(2) channel-CPDL = shared-CPDL”.

Proof: The (<) direction of both cases is just as in Lemma 6.1. For the other
direction, let the equivalent of A E shared-CPDL be //h ((x= b) A Ah) in channel-
CPDL”, and let the equivalent of A E shared-CPDL” be Ah for an arbitrary h, where
the formula As is the 6-equivalent of A in channel-CPDL. 1

Next we show that in expressive power

CPDL < count-CPDL < u-count-CPDL < channel-CPDL.

We conjecture that the first inequality is strict too. For instance, we suspect that the
formula even, of count-PDL, given in Example 5.1, is inexpressible in CPDL.
However, we can prove strictness only for the middle inequality.

The first inequality is trivial. Strictness of the second inequality is shown by com-
plexity considerations on the satistiability problem of the involved languages.

LEMMA 6.5. The formula grid(P) of Example 5.2 (for an atomic formula P) is
inexpressible in count-CPDL.

Proof: Assume that there is a count-CPDL formula g(P) equivalent to grid(P).
Then for every formula tj in prop. calculus, the formula grid($) of grid-PDL can be

44 DAVID PELEG

expressed in count-CPDL by replacing every occurrence of P in g(P) with $. This
means that grid-PDL is effectively translatable into count-CPDL. On the other
hand, in the next section it is shown that count-CPDL is decidable while grid-PDL
is not; a contradiction. [

COROLLARY 6.6. count-CPDL < u-count-CPDL.

Finally we show the third inequality.

PROPOSITION 6.7. u-count-CPDL d channel-CPDL.

Proof: channel-CPDL can represent the main counter controls of a u-count-
CPDL formula by means of additional processes, receiving the messages from all
other processes and counting them. Let A = (~l),~~~ B be a (singly specified) for-
mula employing messages M, ,..., M,. By Lemma 5.2 we assume no specifications of
type (S3) are present. Let IX’ be the program obtained by replacing every occurrence
of Mi with C,!l, where Ci is a new channel, for every 1 6 id k. By the inductive
hypothesis, let B’ be a channel-CPDL formula equivalent to B.

For any specification statement stat in spec construct a counting process
count,,,,, according to the type of the message:

(Sl) #M,=f (mod t): let count,,,,: ((C,?l)‘)*; (C,?l)‘.
(S2) #M, = I: let count,tnr: (C,?l)‘.
(S4) # M, = #M,: let count,~,,, : (true? n true?)*; (C,?l n C,?l).

This last program spawns an arbitrary (even) number of parallel processes, half of
which wait to read 1 in channel Ci, and the other half expect 1 in Cj.

Now A can be replaced by the channel-CPDL formula

7. Decidability Issues

Example 3.2 can be easily used to prove that the validity problem for channel-
CPDL is undecidable, by a reduction from Post Correspondence Problem (PCP).
For a given instance of PCP, we can construct a channel-CPDL formula p~p,,~
which is satisfiable iff the given instance has a solution. Specifically, it is necessary
to force the model to be of the desired form of a single path (or several isomorphic
ones), and then state correspondx,Y. Details appear in [Pe2].

Thus the ability to synchronize two parallel processes renders the validity
problem of channel-CPDL undecidable. Note that in this example, the ability to
spawn an unbounded number of processes has not been used; in fact, at most two
processes participated in any program.

We now show that the validity problems of channel-CPDL, u-count-CPDL and
even grid-PDL are actually I;r:-hard. This stems from the capability of unbounded

CONCURRENTDYNAMICLOGIC 45

comparisons, and is shown by reducing a certain recurring domino problem to the
satisfiability problem of grid-PDL. Note that here we do not use any form of syn-
chronization. Thus each of these two capabilities by itself is powerful enough to
cause undecidability.

The proof goes along the lines of several similar proofs in [H3]; in particular,
that non-inference and non-implication in PDL are ,E’i-hard.

The input to the domino problem is a finite set T= {d,,,..., d,,,} of domino types,
each of the form di = (lefi, righti, up,, down,), giving the four colors associated with
the sides of d,. Colors are taken from the set C= {c,,..., ck}. The problem is stated
as follows: Given T, can T tile the grid Nx N such that d, occurs in the tiling
infinitely often in the first column?

PROPOSITION 7.1 [H2, H3]. This domino problem is C;-complete.

The colors of each square on the grid are coded by 4k atomic predicates
(Li, Riy Ui, Di 1 1 $ i< k}. For instance, the fact that the left side is coloured with
ci is expressed by the formula

(LEFT= Ci): Li A A (1 L,).
L<j$k

I#i

The formula

(TILE = di): LEFT = left! A RIGHT = right,

A UP = up, A DOWN = down,

states that the square is tiled by di.
The formula R, forces the model to be in the form of the grid described in

Fig. 5.1 and tiled in the desired way. The necessary formulas are

inftree:

T-tiled:

same-tiling:

sides-match:

[(an b)*]((a) true A (b) true),

[(au b)*l(Vo<,<, (TILE= d;)),
/lo G i G ,,, pi4 TZ.LE = di)

C(‘Ub)*](/I\,.i<k ((UP=c,x [b] DOWN=c,)

A (RIGHT= ci =I [a] LEFT= ci))),

do-recurring: b* TILE= d,,.

Finally

R,: inftree A T-tiled A same-tiling A sides-match A do-recurring.

Clearly R, is satisfiable iff the model can be unwound into an a/b tree
representing a grid (i.e., states reachable by executions of different permutations of

46 DAVID PELEG

the same seq have similar colouring), and d, occurs infinitely often in the first
column. Hence

PROPOSITION 1.2. The satisfiability problem of grid-PDL is Zi-hard; the validity
problem of grid-PDL is #-hard.

COROLLARY 7.3. The validity problem of u-count-CPDL, channel-CPDL, and
shared-CPDL is IZ:-hard.

Next we show that the validity problem of count-CPDL is decidable by reducing
it to c-goto-CPDL.

Let (cr),,,. A (or the equivalent (c(; A?),,, true) be a singly specified
count-CPDL formula. For simplicity assume c(contains a single message A4 and
spec contains a single specification #M=j (mod k) (specifications of type (S2) and
the cases of several specifications and several messages are handled by an
appropriate generalization).

First transform GI into an equivalent concurrent goto scheme with messages,
lY.’ = (1: y,,..., m: 7,). The time required for this translation and the size of the
resulting program are both linear in the size of the original program.

Translating a’ into c-goto-CPDL without messages proceeds as follows. Con-
struct k identical copies of CI, denoted a’,..., uk - ‘, with the labels of c& being 1 ‘,..., mi.
The idea is that a run of the new program will reach label I’ just when the original a
had to reach label I and in the computation of the original program, the subtree
rooted in the corresponding state contains i (mod k) occurrences of M.

Now change the program as follows. Replace every occurrence of I’: A4 by
t.goto(l+ l)(i-I)modk
i v

and every occurrence of Egoto c and 1: by
Oat<k-l(gotozi

a& /(i- r)mod k) (this informal writing corresponds to splitting
nondeterministically into k*possible continuations, resulting in 2k - 1 lines of code).

Finally add to every copy cc’ where i # 0 a line m + 1: false?, and concatenate all
the k schemes (consistently renaming labels) into a single scheme b, starting with
the scheme cri and finishing with ~1’ (the other copies may appear in any order). The
formula (B) true is then equivalent to the original. Hence we have shown

PROPOSITION 7.4. count-CPDL d c-goto-CPDL.

Together with Proposition 2.1 we can now obtain an elementary procedure for
validity in count-CPDL, where the exact complexity depends on the representation
of specifications. If a specification #A4 =i (mod k) is written with a binary
representation fori and k, then the translation causes an exponential blowup. In the
general case where there are several messages (which may be multiply specified) we
get an exponential blowup in the square of the formula size. Therefore we have

PROWSITION 7.5. The validity problem for count-CPDL can be decided nondeter-
ministically in time triple exponential in n2, where n is the size of the formula.

CONCURRENTDYNAMIC LOGIC 47

PART C: THE FIRST-ORDER LEVEL

8.1. channel-CQDL
8. The Logics

The language channel-CQDL relates to CQDL just as channel-CPDL relates to
CPDL, except that the messages are not necessarily Boolean. The syntax is that of
CQDL (Sect. 2.4), with the addition of the channel communication operations C!x,
meaning “transmit the value of x over channel C,” and C?y, meaning “receive the
message from channel C into y.”

The semantics is based on a first-order structure d = (9, Pr,...,f, ,...), and
employs a set of S of states, which are determined, as in CQDL, by the values of all
involved variables. The values of the interpretation functions n and p are deter-
mined as in channel-CPDL, with the following modifications:

(a) On the first-order level, atomic formulas are predicates P(6) where (5 is a
tuple of terms, and are assumed to include equality. Their truth-value in a state is
determined by the value of P(6,) in the structure, where 6, is the evaluation of 6 in
the state s.

(b) Atomic programs here are assignments x t c, for a term cr. As in CQDL,
we let p(x t cr) = ((s, s’) 1 s’ = s[S,/x]}, w h ere (TV is the evaluation of 0 in s.

(c) The semantic rule regarding communication becomes

ifa,=C!x;~,,orj=C?y;fi,,j>iand

WC- 1) b,Cx/yll 3j+ 1, n), 3
l p(CItl, i- 1) lB,l @ti+ Lj- 1) IPA W+ 1, n))

- - then (s, r) E p(a).
A similar rule applies for the case when j < i.

8.2. shared-CQDL

The language of shared-CQDL has also a set of shared variables {Xi}. Here, too,
the semantics is based on a first-order structure as above, and extends that of
CQDL as shared-CPDL extends CPDL. Thus a super-state 5 consists of a vector
S= [s,) ...] s,] of states, with each s, containing a separate valuation for the
ordinary (private) variables, and a valuation Z,: {Xi} -+ 9 for the shared variables.

Shared variables can be used just as any other variables in programs and for-
mulas. Nevertheless, it is clear that on the first-order level too we must have the
test-and-set command, TS(X).

The appropriate semantic rules are:
Semantic rule for Xc g,

ifcci=X+o;/?,~=(F,ZS),
crS is the evaluation of the term u in s^
and (6 Z,C~,/Xl), i)~p(G(l, i- 1) I/31 E(i+ 1, n))
then (i, i) E p(a).

48 DAVID PELEG

Semantic rule for TS(A’),

if ai = TS(X); B, s^ = (S, I,), Z,(X) = 0,
and ((S, Z,[l/Xl), i)~p(cl(l, i- 1) IpI fi(i+ 1, n)),
then (s^, i) E p(k).

Note. Here and in several places hereafter, we implicitly assume the existence of
at least two distinct elements in the structures domain, namely 0 and 1. (This is
needed, for instance, for binary encoding of information in certain simulations.) In
all cases it is clear that the special case of a singleton universe can be taken care of
separately (i.e., by an additional disjunct in the appropriate formula).

8.3. count-CQDL

We let the counting mechanism into count-CQDL just as in the propositional
level; as long as the control specification has to specify the desired messages
explicitly, it gives no additional power to allow general messages (i.e., the contents
of a variable). In fact, in the next section we show that this system is no more
expressive than CQDL itself.

8.4. The kill Command

It is sometimes desirable to be able to terminate the execution of some of the
processes of a concurrent program. For example, we may want to run several
processes of a program LX in parallel, pass some information through the channels,
and then terminate some of the processes and proceed in executing a program /I in
the remaining processes. Recall that in the present situation, a; /? is interpreted so
that /? is executed from the end-state of every branch of the executed tree of ~1, and
similarly, (cr) A is interpreted so as to evaluate A in every leaf of the executed tree.

The kill command described in [Pe3] enables the termination of some branches
of a tree, so that further subprograms, and the final evaluation of the formula, will
not refer to these branches.

The kill command may be defined also in the two extensions described here. For
instance, the semantic rule for kill in channel-CQDL is

if C(~ = kill; fi
and (S(1, i- 1) (S(i+ 1, n), f)~p(GI(l, i- 1)l E(i+ 1, n)) - - then (s, r) E p(k).

In [Pe3] it is shown that the kill command is actually redundant, as it is
expressable in CQDL. The same holds for the extensions proposed here. The
elimination of kill commands is carried out inductively. Given (a) A (where A con-
tains no appearances of kill, by the inductive hypothesis), we construct the formula

A’: (xc l,cr’)(x=O v (x= 1 A A)),

where x is a new variable, and IX’ is obtained from c1 by replacing every sub-
program p with x = O? u (x = l?; fi), and every kill command with x +- 0.

CONCURRENTDYNAMICLOGIC 49

Note. The “Temporary Halt” technique. The same method enables US to sup-
press some branches of a tree temporarily, and then re-activate them, either by re-
assigning xc 1 again, or by eliminating the tests x = l? from some point on. This
technique will be used extensively in the following section.

9. Expressiveness Results

In this section we give some expressiveness results concerning the defined logics
on the first order level. Let us begin by showing that the counting mechanism adds
no power to CQDL.

PROPOSITION 9.1. count-CQDL = CQDL.

Proof: Let (cc),,,. A be a singly specified CQDL formula. The message
collecting process for a specification # M = 1 (mod t) can be simulated as follows. A
[log tl tuple of variables Z = (z, ,..., z~,~~ r,) will hold, in any state s during the com-
putation, the binary representation of the number of M messages (modulo t) expec-
ted to be transmitted by the sub-tree rooted at s. Initially, Z holds 1. Every
occurrence of M is replaced by Z +- Z - 1 (mod t), and every subprogram /I n y is
replaced by

,<iy,-, (2+i;/3n?+-F--i(modt);y).
. .

Similar treatment is given to specifications of type (S2).
The final program a’ contains no occurrences of messages, but involves tuples Z,,,,

for every message M in the original a. The final formula is (a’)(A A A Z, = 0),
where the conjunction is over all message types in 01. 1

Next we show that channel-CQDL and shared-CQDL are fully equivalent in
expressive power.

THEOREM 9.2. channel-CQDL = shared-CQDL.

Proof. (6) The simulation of channels by shared variables goes just as in the
propositional case, only modified to account for the general (non-Boolean) nature
of the messages.

(>) The main problems are the simulation of a shared variable X within a
program and outside programs, and the simulation of TS(X).

Let X be a shared variable in a formula a of shared-CQDL. In channel-CQDL we
use a distinguished (private) variable x to represent X. Outside programs, x is used
directly to replace X. Within a program a, in the context of a sub-formula (a) B,
simulate X by a process simul,, using two channels, G,, C,, and a new (private)
variable y, not appearing in A. Replace (a) B with

((a’; C,?x) n (simul,; kill)) B,

50 DAVID PELEG

where

simul,x: (C,?xuC,!xu(G,?y;x=O?;x+- I))*,

and a’ is obtained from c1 by the following modifications:

(1) Every assignment X t CJ is replaced by x t o; C, !x.
(2) Every occurrence of an assignment zt o(X) is replaced by

C,?x; z +- a(x).
(3) Every occurrence of KS(X) is replaced by G, ! 1.
(4) A test D? containing occurrences of X is translated internally into D’, and

then replaced by C’,?x; D’?. This is meant to ensure that the evaluation of D’ starts
with the current, up-to-date value of X. (Note that each program within D’ has its
own mechanism simul, for handling X.)

This modification has to be repeated for every shared variable appearing in the
program a. 1

Our next goal is to relate these systems in expressiveness to other systems of
dynamic logic.

We consider the following versions. QDL,,, is obtained from QDL by enriching
the control structure of programs with recursive procedures with parameter. The
language arr-QDL is obtained by allowing array assignments, i.e., assignments of
the form J(x) +- g, where f is a function symbol and g is a term.

Now consider a structure &’ with function symbols fi,..., f, and constants
d I ,..., d,,,, and let ,U = (x, ,..., x,) be a tuple of free variables. Define the Herbrand
universe HU(2) as the subset of the domain of & consisting of all elements
equivalent to terms of the language over x (i.e., reachable from d, ,..., d,, x, ,..., x,
by means off,,..., f,). Define Hran(.?, z) as a program assigning to z an arbitrary
element of HU(2). Denote by Hran-CQDL the language of CQDL enriched with
the Hran operation.

PROPOSITION 9.3 [Pel 1. CQDL < QDLproc = Hran-CQDL.

LEMMA 9.4. Hran is programmable in channel-CQDL.

Proof: Assuming the rank of each function fi is ri (1 ~2 i < I), Hran(& z) can be
programmed as

((true? n true?)*;
(Ul<i<n C!X,uUl<i<m C!di
uu, <i</ c?Yl ; . . . ; C?y, ; y + fi(y , ,..., y,,); C!y); kill)

n C?z.

The main part of this program spawns an arbitrary number of processes, each of
which is responsible for issuing an element of the Herbrand universe through chan-

CONCURRENTDYNAMIC LOGIC 51

nel C. Either it sends some di or xi, or it accpets ri values y, ,..., y, through C, and
sends back fi(y I,..., y,,). 1

COROLLARY 9.5. QDL,, < channel-CQDL.

COROLLARY 9.6. CQDL < channel-CQDL.

As an upper bound we would like to compare channel-CQDL with am-QDL.
Denote by (s, co) the collection of infinite denumerable structures (9, SUC, d,...)

with an infinite acyclic successor function suc over the domain, starting with the
constant d. Over such structures, channel-CQDL can be shown no more expressive
than arr-QDL.

Note. Even on these “arithmetical” structures (cf. [Hl]) we compare
expressiveness in the strong sense of uniform translations: for two logics L, , L,, and
a collection G of structures, we say that L, 6 G L2 if for every formula A I E L, there
is a formula &E L2 s.t. rc(AL) = rc(A2) in every structure of G. In contrast, the
expressiveness comparisons stated in [H 1] between languages over arithmetical
structures are non-uniform; they supply different formulas A, as equivalents of A,
over different structures.

THEOREM 9.7. channel-CQDL < (s,mj arr-QDL.

Proof. The simulation of a channel-CQDL program involves a complete trace of
the run of the program, according to the semantics of channel-CQDL. Suppose we
want to simulate a program c(with n variables X = (x, ,..., x,). Assume that in some
given moment there are k active processes, p,,..., pk. In the simulating program,
these processes are identified by do, d, ,..., dk- 1, where d, = sue’(d) (in particular,
do = d). The function f is used to keep track of the current location in the program,
and the functions gr,..., g, store the values of X, in each process. More precisely,
g,(d,),..., g,(d,) keep the current values of the variables x,,..., x, in the process pi,
i.e., they represent the state in which the process is. As for the “next command” of
each process, we apply the same method used to simulate CQDL programs by
QDLproc programs in [Pel]. Define sub(~) as the collection of subprograms of ~1,
and attach a label 1, to every /?Esu~(c(); also define lend to denote the end of the
program. Now f (d,) will contain the label of the current command to be executed
by process pi.

Next, assign a set N, of labels to every p~sub(a). The labels of N, are those to
which one can proceeed after executing fl. These sets are defined by induction, as
follows:

,!I = c1 (the entire program): let N, = (Lnd),

fi=yu -6: let N,, N, = N,,

fi=ynd: let N,, N, = N,,

p=y;i5: let NY= {f6}, Ng= N,,

/3=y*: let NY= {f,> u N,.

52 DAVID PELEG

A formula (a) A is simulated by a formula of the form (init; a’) A’. The
variables are initialized by

init: Kc d;f(K) t 1,; g(K) + x.

(We abbreviate x1 t g,(y);...; x, +-g,(y) by X + g(y), and similarly for g(y) t X
and the like.) The variable K counts the active processes: if there are k active
processes then K = dk ~ 1.

The main body of the simulation is based on a collection of procedures
simulating the execution of subprograms in the different processes. Define a
procedure ruleg for each a~sub(a), except for communication commands, and a
procedure ruleO,y for each matching pair of communication commands (i.e., with the
same channel and complementary punctuation). We make use of the program

pr-id(y): y t d; z c d; (z c SW(Z); (true? u y +- suc(y)))*; z = K?,

which nondeterministically assigns to y an identifier of some active process.
The rule procedures are defined as follows:

For J=yu6,

rulep: pr-idb);f(y) = I,?; (f(v) + 1, uf(~) + 44.

For B=y;S,

ruleB : pr-id(y);f(y) = ls’Vl~) + 1,.

For /I= y*,

rule0 : Wdb); S(Y) = lp‘t (f(y) + 1, u UI~~JIY) + 4.

For /I=~n6,

rules : pr-id(y);f(y) = la’W(r) + 1,;

K+ MK);f(K) + 1s; .dJ4 + i?(y).

For /?=xi+cr,

rulel, : pr-i4yM.v) = l,‘t f + t?(y); gi(y) + 0; U,,,VJ(Y) + 1.

For any pair /I = C!x,, y = C?X,,

rulep,y : pr-id(y,);pr-id(y,);f(y,) = ~,T’?~(Yz)= I,?;

gj(Y*) + gi(Yl)i UIENg f(y,)+1; UkN,f(Y2b-~.

Each procedure rule mimics some semantic rule of channel-CQDL in some
process. Thus each activation of some rules corresponds to advancing the super-

CONCURRENTDYNAMIC LOGIC 53

state, or cut, one step down the computation tree, as described in Fig. 3.1. For
instance, in the case of p = xi t 0, procedure ruleB first picks up some process-idj
and stores it in y. It then checks that process j indeed has to execute /I in its next
step, and simulates it (by assigning Q to gi(j)). Finally, J-S program counterf(j) is
adanced to the next command to be executed after /I (or one of N,, if several
possibilities exist).

All the rules are now combined together into

()
* Cd: (J rules u IJ ruleS,y .

Finally, in A’ we have to verify that B holds in any final state of any of the active
processes, where B is the arr-QDL equivalent of A, guaranteed by the inductive
hypothesis

A’: (Y + d; (f(Y) = LA X +- g(y); B?; y t suc(y))*) y = w(K). 1

In the other direction, it seems that a full simulation of arrays in channel-CQDL
might not be possible. Indeed, an array f can be simulated inside the main flow of a
program c([Pe2], relying on the fact that any specific run of an arr-QDL program
utilizes only a finite segment of J However, this simulation fails when f is to be
additionally used (after being changed) either outside the (a) connective or within
tests in a.

Finally we consider a version with bounded degree of concurrency. Denote by
channel-bc-CQDL the restriction of channel-CQDL to programs with no occurren-
ces of n under *.

PROPOSITION 9.8. channel-bc-CQDL = QDL.

Proof One direction is immediate. For the other direction, use induction on the
structure of a formula in channel-bc-CQDL. In particular, let (a) true be a formula
in channel-bc-CQDL, where by the inductive hypothesis every test of a is a QDL
formula. Translate a into shared-CQDL (i.e., into a program using shared variables
instead of channels). Note that by our translation procedure, the resulting program
must also have a fixed number of processes; one for each process of the original a,
and one for each channel appearing in a.

Now transform (the graph description of) a into a tree form by repeatedly apply-
ing the following rewrite rules to any subprogram of a, whenever possible:

Next, merge concurrent subprograms /I1 n /I1 into sequential programs, cancell-
ing the use of n . This is done inductively, starting with the innermost n, in the
following way. Let X = (x ,,..., x,), X= (X, ,..., X,) be the tuples of private and

54 DAVID PELEG

shared variables of some subprogram fil n p2, respectively. In each of the two sub-
programs pi, i = 1, 2, replace X with a tuple of new variables Xi = (x; ,..., ,$), so that
each fii now uses a set of distinct private variables. Now, regard /?I and Bz as
regular expressions over an alphabet containing all involved tests cp?, assignments
x +. g, X+ 0 and test-and-set commands 7’S(X), and construct the regular
expression y corresponding to the shuffle of 8, and /I*. Finally let 6 =x’ c X;
x2 c X; y, This results in a single sequential program equivalent to the original
p, n &. Proceed in this fashion until there are no more occurrences of n in the
program. Finally replace any occurrence of ES(X) with X= O?; Xc 1. Call the
resulting program CI’. Then (a’) true is the QDL-equivalent of (a) true. [

10. Discussion

The computation model underlying the programs of CDL is that of and/or trees,
appearing in various forms in languages and systems such as concurrent goto
programs [Ma, Ch], Alternating Turing Machines [CKS], Concurrent And/Or
programs [HN], and Concurrent Prolog [Sl]. We discuss some of the semantical
considerations and choices involved in the definitions of our languages by compar-
ing the program schemes of channel-CQDL to those of CSP, the concurrent
programming language of Communicating Sequential Processes [Ho].

One major difference between the two systems is that in programs of CSP, the
tree-like behaviour is restricted to the scope of a parallel command [a, /I . .. I/ cc,].
This means that the execution of the next command starts only after the
termination of all the processes of the current parallel command. Hence, the
fundamental program transformation enabling the global tree behaviour in our
languages, (0 11 y); 6 = (13; 6) 1) (y; 6), does not hold in CSP.

Another difference between our programs and the original version of CSP (as
decribed in [Ho]) is that in CSP, the number of processes is pre-defined, hence
bound by a constant. As we have seen, a restriction of channel-CQDL under this
requirement yields a language no more expressive than regular QDL. Several
papers have since augmented CSP by eliminating this restriction.

Yet another difference is that in the original CSP, communication is achieved by
process naming rather than via channels; the processes are identified by their names,
and a process Pi can send the value of x to Pi by issuing the command P,!x. This
message is received by P, into y by simultaneously executing Pi?y. We have used
Milner’s channel naming instead [Ml], and our communication method is,
therefore, the same as that of [HN].

However, the two methods of communication are equivalent when the number of
processes is fixed. Clearly process naming can be simulated by channels, using a
dedicated channel C, for all messages from Pi to P,. Conversely, channels can be
simulated by process naming in the following way. Suppose the channel C is used in
a program LY for sending messages from processes PI,..., P, and for accepting
messages in Q,,..., Q,. Then in any process R, any appearance of C!x can be

CONCURRENT DYNAMIC LOGIC 55

replaced by U~siG,,~sZR Qi. lx, and any appearance of C?x can be replaced by
Ul<ick,P,ZR pi?x*

There are several other differences which may be viewed as “syntactic sugaring”
of CSP. Such a difference is the existence of arrays. Obviously, pre-defined, fixed-
length arrays can be simulated in regular QDL by a collection of individual
variables, plus a tuple of variables serving as a pointer.

One should note that for comparisons over our uninterpreted structures,
expressions of CSP must also be uninterpreted; for instance, arithmetical built-in
functions such as “plus” are not allowed, unless supplied by the underlying struc-
ture.

The semantics given here for our languages is essentially of operational nature.
The definitions describe the operation of a program as a whole, based on its com-
putation trees. We would like to be able to characterize the basic program connec-
tives by means of simple denotational rules, or “axioms,” as in PDL or CPDL, and
thus define the meaning of a program by induction on its structure. Several works
have proposed denotational semantics for CSP and related models of parallelism,
like those of [Ml, HBR]. Most such semantics (e.g., in [FHLdR, MM, FLP]) are
based on defining the interpretation for each process separately, and then binding
them together to give the joint meaning of a program. This calls for a more com-
plex semantical domain, and essentially requires the semantics to record the history
of communications for each process, in addition to its states. It seems plausible that
such semantics can be defined for our language too, and this appraoch seems a
promising line for future research.

Let us now turn to some of the logical aspects of our systems. There are several
branches of the field of proof systems and logics that consider parallel programs
and processes. Formal (e.g., Hoare-style) proof systems exist for CSP and related
models (cf. [AFdR, ChM]). An important logical framework is temporal Zogic and
its concurrent version [Pn, MaPl, MaP2]. In this system it is possible to express
assertions regarding the ongoing behaviour of a program, i.e., to refer to the inter-
mediate states of a computation path. However, in concurrent temporal logic the
basic environment is the “shared memory” model, in which the concurrent
processors constantly operate on the same data (in an interleaved fashion). Our
focus is slightly different, as we view processes as essentially independent, and allow
interaction and cooperation only via the designated communication mechanisms.
Furthermore, in the basic versions of temporal logic, the semantical world
recognizes only a single, fixed program, whose representation is based on labeled
program schemes rather than on structured schemes, and discussion of parallel
activities might become cumbersome for an involved program. (This situation has
changed in some recent work concerning concurrent and compositional temporal
logic [BKP]). In contrast, DL owes its attraction in part to the fact that programs
are described in it in the structured, modular form of regular expressions, enabling
convenient decomposition of formulas.

CDL, and Dynamic Logic in general, is tailored towards discussing correctness
issues. This makes CDL especially suitable for treating properties of concurrent

56 DAVID PELEG

algorithms for specific computational problems. On the other hand, an apparent
deficiency of CDL is that it is not properly equipped for handling issues like safety,
liveness and fairness, and therefore is less suitable for dicussing distributed systems,
in which such issues play a vital role. The reasons for this situation are rooted in a
basic property of the semantics of Dynamic Logic (DL) namely, the intepretation
of a program as the collection of “start-end” pairs of states of its successful halting
runs. This has the implication that DL has no means of referring to the inter-
mediate states of a computation, but only to its “input-output” relation. Another
implication is that DL considers only finite computations, hence it cannot handle
aspects of infinite computations, such as fairness, inlinite loops etc. Further, DL
lacks a mechanism for distinguishing between different types of failures. All failures
(e.g., unsuccessful tests, inexecutable atomic programs or deadlocks) are handled
the same, by omitting the corresponding run from consideration, as it does not
result in a legal start-end pair of states.

Previous papers have considered extending DL to handle infinite computations
([St], cf. [Hl]). It is conceivable that one can study versions of CDL which take
more of the above-mentioned issues into account. Part of the solution may be
achieved along the lines of the various semantics given for CSP, i.e., by adding
special “deadlock” and “failure” states to the models and changing the semantic
rules accordingly, resulting in a more elaborate semantics. This line of study is left
for further research.

Many other interesting questions still wait to be asked and clarified. It seems to
us that the situation presented in this paper calls for a thorough study of the gap
between “pure” concurrency, represented by CPDL, on the one end, and full global
communication, represented by channel-CPDL, on the other. Various limitations
on the scope of communication may lead to a hierarchy of logics, in terms of
expressiveness and complexity. It may also be possible to obtain axiomatizations
for systems with restricted communication capabilities. In particular, such a line of
research may lead to the development of a more attractive concurrent dynamic
logic, with the desirable properties of admitting a reasonably powerful com-
munication scheme, being decidable, and having a simple complete axiom system.

ACKNOWLEDGMENT

Many discussions and much advise from David Hare1 have helped to bring this paper to its present
form.

REFERENCES

CA1 K. ABRAHAMSON, “Decidability and Expressiveness of Logics of Processes,” Ph.D. thesis,
Univ. of Washington, 1980,

[AFdR] K. R. APT, N. FRANCEZ, AND W. P. DE ROEVER, A Proof System for Communicating
Sequential Processes, TOPLAS, Vol. 2, Assoc. Comput. Mach., New York, 1980.

CONCURRENT DYNAMIC LOGIC 57

CBW H. BARRINGER, R. KUIPER, AND A. PNUELI, Now you may compose temporal logic
specification, in “Proc. 16th ACM Symp. on Theory of Comp.,” pp. 51-63, 1984.

Cchl A. K. CHANDRA, “The Power of Parallelism and Nondeterminism in Programming,” IFIP
pp. 461465, 1974.

CCW A. K. CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER, Alternation, J. Assoc. Cornput. Much.
28 (1981), 114-133.

CChM 1 R. M. CHANDY AND J. MISRA, “An Axiomatic Proof Technique for Networks of Com-
municating Processes,” Tech. Report No. TR-98, University of Texas.

CClMl W. F. CLOCKSIN AND C. S. MELLISH, “Programming in Prolog,” Springer-Verlag, Berlin,
1981.

[FHLdR] N. FRANCEZ, C. A. R. HOARE, D. J. LEHMAN, AND W. P. DEROEVER, Semantics of nondeter-

N-1

CFLPI

Wll

WI

CH31

W41

[HoI
CHBRI

CHKI

CHNI

N’S1

WI

IMa1

WI

[MaPl]

[MaP2]

CMW

IMPI

iTell

minism, concurrency, and communication, J. Cornput. System Sci. 19 (1979), 290-308.
M. J. FISCHER AND R. E. LADNER, Propositional Dynamic Logic of Regular Programs,
J. Comput. Sysrem Sci. 18 (1979), 194-211.
N. FRANCEZ, D. J. LEHMAN AND A. PNUELI, A linear history semantics for distributed
languages, in “Proc. 21th IEEE Symp. on Found. of Comp. Sci.,” pp. 143-151, 1980.
D. HAREL, dynamic logic, in “Handbook of Philosophical Logic 11,” pp. 497-604, Reidel,
Holland, 1984.
D. HAREL, Effective transformations on infinite trees, with applications to high
undecidability, dominoes, and fairness, J. Assoc. Cornput. Mach. 33 (1986) 224248.
D. HAREL, Recurring dominoes: Making the highly undecidable highly understandable,
Annals Discrete Math. 24 (1985), 51-72.
D. HAREL, “And/Or Programs: a New Approach to Structured Programming,” Trans. Prog.
Lang. and Systems, Vol. 2, pp. 1-17, Assoc. Comput. Mach. New York, 1980.
C. A. R. HOARE, Communicating sequential processes, Comm. ACM 21 (1978), 666677.
C. A. R. HOARE, S. D. BRO~KES AND A. W. ROSCOE, “A Theory of Communicating
Processes,” Tech. Report No. PRG-16, Oxford University, 1981.
D. HAREL AND D. C. KOZEN, A programming language for the inductive sets, and
applications, Inform. and Control 63 (1985), 1188139.
D. HAREL AND S. NEHAB, “Concurrent And/Or Programs: Recursion with Communication,”
No. CS82-09, The Weizmann Institute of Science, Rehobot, Israel, revised version Sci.
Compul. Programming, in press.
D. HAREL, A. PNUELI, AND J. STAVI, Propositional dynamic logic of nonregular programs,
J. Comput. System Sci. 26 (1983), 222-243.
R. KOWALSKI, “Logic for Problem Solving,” The Computer Science Library, Artificial
Intelligence Series, North-Holland, Amsterdam, 1983.
Z. MANNA, The correctness of nondeterministic programs, Artificial Intelligence 1 (1970),
l-26.
R. MILNER, “A Calculus of Communicating Systems,” Lect. Notes in Comput. Si., Vol. 92,
Springer-Verlag. Berlin, 1980.
Z. MANNA AND A. PNUELI, Verilication of concurrent programs: The temporal framework, in
“The Correctness Problem in Computer Science” (R. S. Boyer and J. S. Moore, Eds.),
pp. 2155273, International Lecture Series in Computer Science, Academic Press, London,
1982.
Z. MANNA AND A. PNUELI, Verification of concurrent programs: Temporal proof principles,
in “Logics of Programs,” (D. Kozen, Ed.), Lect. Notes in Comput. Sci., Vol. 131,
pp. 2OG252, Springer-Verlag, Berlin, 1982.
G. MILNE AND R. MILNER, Concurrent processes and their syntax, J. Assoc. Comput. Mach.
26 (1979), 302-321.
A. R. MEYER AND R. PARIKH, Delinability in dynamic logic, J. Comput. System Sci. 23
(198 1), 279-298.
D. PELEG, Concurrent Dynamic Logic, J. Assoc. Comput. Much. (1987), in press.

58 DAVID PELEG

We21

Fe31

ml

WI

WI

WI

CT1

D. P!ZLEG, “Communication in Concurrent Dynamic Logic,” No. CS84-15, The Weizmann
Institute of Science, July, 1984.
D. PELEG, “Concurrent Program Schemes and their Logics,” CS84-25, The Weizmann
Institute of Science, November, 1984.
A. PNUELI, The temporal logic of programs, in “Proc. 18th IEEE Symp. on Found. of Comp.
Sci.,” pp. 4657, 1977.
E. Y. SHAPIRO, “A Subset of Concurrent Prolog and Its Interpreter,” No. CS83-06, The
Weizmann Institute of Science, Rehovot, Israel.
E. Y. SHAPIRO, Alternation and the computational complexity of logic programs, J. Logic
Programming 1 (1984).
R. S. STREETT, Propositional logic of looping and converse is elementarily decidable, hform.

and Confrol54 (1982), 121-141.
M. TIOMKIN, “Extensions of Propostional Dynamic Logic,” Ph.D. thesis, the Technion,
Haifa, 1983.

