30 research outputs found

    View on 5G Architecture: Version 1.0

    Get PDF
    The current white paper focuses on the produced results after one year research mainly from 16 projects working on the abovementioned domains. During several months, representatives from these projects have worked together to identify the key findings of their projects and capture the commonalities and also the different approaches and trends. Also they have worked to determine the challenges that remain to be overcome so as to meet the 5G requirements. The goal of 5G Architecture Working Group is to use the results captured in this white paper to assist the participating projects achieve a common reference framework. The work of this working group will continue during the following year so as to capture the latest results to be produced by the projects and further elaborate this reference framework. The 5G networks will be built around people and things and will natively meet the requirements of three groups of use cases: • Massive broadband (xMBB) that delivers gigabytes of bandwidth on demand • Massive machine-type communication (mMTC) that connects billions of sensors and machines • Critical machine-type communication (uMTC) that allows immediate feedback with high reliability and enables for example remote control over robots and autonomous driving. The demand for mobile broadband will continue to increase in the next years, largely driven by the need to deliver ultra-high definition video. However, 5G networks will also be the platform enabling growth in many industries, ranging from the IT industry to the automotive, manufacturing industries entertainment, etc. 5G will enable new applications like for example autonomous driving, remote control of robots and tactile applications, but these also bring a lot of challenges to the network. Some of these are related to provide low latency in the order of few milliseconds and high reliability compared to fixed lines. But the biggest challenge for 5G networks will be that the services to cater for a diverse set of services and their requirements. To achieve this, the goal for 5G networks will be to improve the flexibility in the architecture. The white paper is organized as follows. In section 2 we discuss the key business and technical requirements that drive the evolution of 4G networks into the 5G. In section 3 we provide the key points of the overall 5G architecture where as in section 4 we elaborate on the functional architecture. Different issues related to the physical deployment in the access, metro and core networks of the 5G network are discussed in section 5 while in section 6 we present software network enablers that are expected to play a significant role in the future networks. Section 7 presents potential impacts on standardization and section 8 concludes the white paper

    Empowering the 6G Cellular Architecture with Open RAN

    Full text link
    Innovation and standardization in 5G have brought advancements to every facet of the cellular architecture. This ranges from the introduction of new frequency bands and signaling technologies for the radio access network (RAN), to a core network underpinned by micro-services and network function virtualization (NFV). However, like any emerging technology, the pace of real-world deployments does not instantly match the pace of innovation. To address this discrepancy, one of the key aspects under continuous development is the RAN with the aim of making it more open, adaptive, functional, and easy to manage. In this paper, we highlight the transformative potential of embracing novel cellular architectures by transitioning from conventional systems to the progressive principles of Open RAN. This promises to make 6G networks more agile, cost-effective, energy-efficient, and resilient. It opens up a plethora of novel use cases, ranging from ubiquitous support for autonomous devices to cost-effective expansions in regions previously underserved. The principles of Open RAN encompass: (i) a disaggregated architecture with modular and standardized interfaces; (ii) cloudification, programmability and orchestration; and (iii) AI-enabled data-centric closed-loop control and automation. We first discuss the transformative role Open RAN principles have played in the 5G era. Then, we adopt a system-level approach and describe how these Open RAN principles will support 6G RAN and architecture innovation. We qualitatively discuss potential performance gains that Open RAN principles yield for specific 6G use cases. For each principle, we outline the steps that research, development and standardization communities ought to take to make Open RAN principles central to next-generation cellular network designs.Comment: This paper is part of the IEEE JSAC SI on Open RAN. Please cite as: M. Polese, M. Dohler, F. Dressler, M. Erol-Kantarci, R. Jana, R. Knopp, T. Melodia, "Empowering the 6G Cellular Architecture with Open RAN," in IEEE Journal on Selected Areas in Communications, doi: 10.1109/JSAC.2023.333461

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    5G Network Slicing using SDN and NFV: A Survey of Taxonomy, Architectures and Future Challenges

    Get PDF
    In this paper, we provide a comprehensive review and updated solutions related to 5G network slicing using SDN and NFV. Firstly, we present 5G service quality and business requirements followed by a description of 5G network softwarization and slicing paradigms including essential concepts, history and different use cases. Secondly, we provide a tutorial of 5G network slicing technology enablers including SDN, NFV, MEC, cloud/Fog computing, network hypervisors, virtual machines & containers. Thidly, we comprehensively survey different industrial initiatives and projects that are pushing forward the adoption of SDN and NFV in accelerating 5G network slicing. A comparison of various 5G architectural approaches in terms of practical implementations, technology adoptions and deployment strategies is presented. Moreover, we provide a discussion on various open source orchestrators and proof of concepts representing industrial contribution. The work also investigates the standardization efforts in 5G networks regarding network slicing and softwarization. Additionally, the article presents the management and orchestration of network slices in a single domain followed by a comprehensive survey of management and orchestration approaches in 5G network slicing across multiple domains while supporting multiple tenants. Furthermore, we highlight the future challenges and research directions regarding network softwarization and slicing using SDN and NFV in 5G networks.Comment: 40 Pages, 22 figures, published in computer networks (Open Access

    Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges

    Full text link
    The Open Radio Access Network (RAN) and its embodiment through the O-RAN Alliance specifications are poised to revolutionize the telecom ecosystem. O-RAN promotes virtualized RANs where disaggregated components are connected via open interfaces and optimized by intelligent controllers. The result is a new paradigm for the RAN design, deployment, and operations: O-RAN networks can be built with multi-vendor, interoperable components, and can be programmatically optimized through a centralized abstraction layer and data-driven closed-loop control. Therefore, understanding O-RAN, its architecture, its interfaces, and workflows is key for researchers and practitioners in the wireless community. In this article, we present the first detailed tutorial on O-RAN. We also discuss the main research challenges and review early research results. We provide a deep dive of the O-RAN specifications, describing its architecture, design principles, and the O-RAN interfaces. We then describe how the O-RAN RAN Intelligent Controllers (RICs) can be used to effectively control and manage 3GPP-defined RANs. Based on this, we discuss innovations and challenges of O-RAN networks, including the Artificial Intelligence (AI) and Machine Learning (ML) workflows that the architecture and interfaces enable, security and standardization issues. Finally, we review experimental research platforms that can be used to design and test O-RAN networks, along with recent research results, and we outline future directions for O-RAN development.Comment: 33 pages, 16 figures, 3 tables. Submitted for publication to the IEE

    Network Service Orchestration: A Survey

    Full text link
    Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking~(SDN), and Network Function Virtualization~(NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration~(NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way towards a common understanding of the various ongoing efforts around the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.Comment: Accepted for publication at Computer Communications Journa

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    Configuração automática de plataforma de gestão de desempenho em ambientes NFV e SDN

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaWith 5G set to arrive within the next three years, this next-generation of mobile networks will transform the mobile industry with a profound impact both on its customers as well as on the existing technologies and network architectures. Software-Defined Networking (SDN), together with Network Functions Virtualization (NFV), are going to play key roles for the operators as they prepare the migration from 4G to 5G allowing them to quickly scale their networks. This dissertation will present a research work done on this new paradigm of virtualized and programmable networks focusing on the performance management, supervision and monitoring domains, aiming to address Self-Organizing Networks (SON) scenarios in a NFV/SDN context, with one of the scenarios being the detection and prediction of potential network and service anomalies. The research work itself was done while participating in a R&D project designated SELFNET (A Framework for Self-Organized Network Management in Virtualized and Software Defined Networks) funded by the European Commission under the H2020 5G-PPP programme, with Altice Labs being one of the participating partners of this project. Performance management system advancements in a 5G scenario require aggregation, correlation and analysis of data gathered from these virtualized and programmable network elements. Both opensource monitoring tools and customized catalog-driven tools were either integrated on or developed with this purpose, and the results show that they were able to successfully address these requirements of the SELFNET project. Current performance management platforms of the network operators in production are designed for non virtualized (non- NFV) and non programmable (non-SDN) networks, and the knowledge gathered while doing this research work allowed Altice Labs to understand how its Altaia performance management platform must evolve in order to be prepared for the upcoming 5G next generation mobile networks.Com o 5G prestes a chegar nos próximos três anos, esta próxima geração de redes móveis irá transformar a indústria de telecomunicações móveis com um impacto profundo nos seus clientes assim como nas tecnologias e arquiteturas de redes. As redes programáveis (SDN), em conjunto com a virtualização de funções de rede (NFV), irão desempenhar papéis vitais para as operadoras na sua migração do 4G para o 5G, permitindo-as escalar as suas redes rapidamente. Esta dissertação irá apresentar um trabalho de investigação realizado sobre este novo paradigma de virtualização e programação de redes, concentrando-se no domínio da gestão de desempenho, supervisionamento e monitoria, abordando cenários de redes auto-organizadas (SON) num contexto NFV/SDN, sendo um destes cenários a deteção e predição de potenciais anomalias de redes e serviços. O trabalho de investigação foi enquadrado num projeto de I&D designado SELFNET (A Framework for Self-Organized Network Management in Virtualized and Software Defined Networks) financiado pela Comissão Europeia no âmbito do programa H2020 5G-PPP, sendo a Altice Labs um dos parceiros participantes deste projeto. Avanços em sistemas de gestão de desempenho em cenários 5G requerem agregação, correlação e análise de dados recolhidos destes elementos de rede programáveis e virtualizados. Ferramentas de monitoria open-source e ferramentas catalog-driven foram integradas ou desenvolvidas com este propósito, e os resultados mostram que estas preencheram os requisitos do projeto SELFNET com sucesso. As plataformas de gestão de desempenho das operadoras de rede atualmente em produção estão concebidas para redes não virtualizadas (non-NFV) e não programáveis (non- SDN), e o conhecimento adquirido durante este trabalho de investigação permitiu à Altice Labs compreender como a sua plataforma de gestão de desempenho (Altaia) terá que evoluir por forma a preparar-se para a próxima geração de redes móveis 5G
    corecore