554 research outputs found

    Injecting problem-dependent knowledge to improve evolutionary optimization search ability

    Full text link
    The flexibility introduced by evolutionary algorithms (EAs) has allowed the use of virtually arbitrary objective functions and constraints even when evaluations require, as for real-world problems, running complex mathematical and/or procedural simulations of the systems under analysis. Even so, EAs are not a panacea. Traditionally, the solution search process has been totally oblivious of the specific problem being solved, and optimization processes have been applied regardless of the size, complexity, and domain of the problem. In this paper, we justify our claim that far-reaching benefits may be obtained from more directly influencing how searches are performed. We propose using data mining techniques as a step for dynamically generating knowledge that can be used to improve the efficiency of solution search processes. In this paper, we use Kohonen SOMs and show an application for a well-known benchmark problem in the water distribution system design literature. The result crystallizes the conceptual rules for the EA to apply at certain stages of the evolution, which reduces the search space and accelerates convergence. (C) 2015 Elsevier B.V. All rights reserved.Izquierdo Sebastián, J.; Campbell-Gonzalez, E.; Montalvo Arango, I.; Pérez García, R. (2016). Injecting problem-dependent knowledge to improve evolutionary optimization search ability. Journal of Computational and Applied Mathematics. 291:281-292. doi:10.1016/j.cam.2015.03.019S28129229

    Performance Comparison of PSO and Its New Variants in the Context of VLSI Global Routing

    Get PDF
    Substantial reduction of gate delay occurred in recent times owing to radical decrement of transistor size. The interconnect length and delay are accordingly increased owing to the exponential escalation of packaging density with additional transistors being fabricated on the same chip area. The function of VLSI routing that seems to be more defying to the scholars, is categorized in global routing and detailed routing phase. In global routing phase, the prevalent method to lessen the wire length for reducing interconnect delay is to adjust the cost of the Steiner tree, devised by the terminal nodes to be interconnected. Nevertheless, Steiner tree problem is a NP-complete problem in classical graph theory where meta-heuristics might impart beneficial elucidations. Particle swarm optimization (PSO) is a robust algorithm concerning VLSI routing field. This chapter is regarding the proposal of a self-adaptive mechanism for monitoring acceleration coefficient of PSO and evaluating its functionalities with the existing acceleration coefficient controlled PSO in numerous allocation topologies of terminal nodes within definite VLSI layout. The outcomes of PSO variant with constriction factor in context to VLSI route reduction ability and robustness are also inspected. Additionally, a new effort in adapting the PSO with embracement of genetic algorithm is established

    Heterogeneous Swarms for Maritime Dynamic Target Search and Tracking

    Full text link
    Current strategies employed for maritime target search and tracking are primarily based on the use of agents following a predetermined path to perform a systematic sweep of a search area. Recently, dynamic Particle Swarm Optimization (PSO) algorithms have been used together with swarming multi-robot systems (MRS), giving search and tracking solutions the added properties of robustness, scalability, and flexibility. Swarming MRS also give the end-user the opportunity to incrementally upgrade the robotic system, inevitably leading to the use of heterogeneous swarming MRS. However, such systems have not been well studied and incorporating upgraded agents into a swarm may result in degraded mission performances. In this paper, we propose a PSO-based strategy using a topological k-nearest neighbor graph with tunable exploration and exploitation dynamics with an adaptive repulsion parameter. This strategy is implemented within a simulated swarm of 50 agents with varying proportions of fast agents tracking a target represented by a fictitious binary function. Through these simulations, we are able to demonstrate an increase in the swarm's collective response level and target tracking performance by substituting in a proportion of fast buoys.Comment: Accepted for IEEE/MTS OCEANS 2020, Singapor

    SOM+PSO : A novel method to obtain classification rules

    Get PDF
    Currently, most processes have a volume of historical information that makes its manual processing difficult. Data mining, one of the most significant stages in the Knowledge Discovery in Databases (KDD) process, has a set of techniques capable of modeling and summarizing these historical data, making it easier to understand them and helping the decision making process in future situations. This article presents a new data mining adaptive technique called SOM+PSO that can build, from the available information, a reduced set of simple classification rules from which the most significant relations between the features recorded can be derived. These rules operate both on numeric and nominal attributes, and they are built by combining a variation of a population metaheuristic and a competitive neural network. The method proposed was compared with the PART method and measured over 19 databases (mostly from the UCI repository), and satisfactory results were obtained.Facultad de Informátic

    SOM+PSO : A novel method to obtain classification rules

    Get PDF
    Currently, most processes have a volume of historical information that makes its manual processing difficult. Data mining, one of the most significant stages in the Knowledge Discovery in Databases (KDD) process, has a set of techniques capable of modeling and summarizing these historical data, making it easier to understand them and helping the decision making process in future situations. This article presents a new data mining adaptive technique called SOM+PSO that can build, from the available information, a reduced set of simple classification rules from which the most significant relations between the features recorded can be derived. These rules operate both on numeric and nominal attributes, and they are built by combining a variation of a population metaheuristic and a competitive neural network. The method proposed was compared with the PART method and measured over 19 databases (mostly from the UCI repository), and satisfactory results were obtained.Facultad de Informátic

    Distribution system reliability enhancement

    Get PDF
    Practically all everyday life tasks from economic transactions to entertainment depend on the availability of electricity. Some customers have come to expect a higher level of power quality and availability from their electric utility. Federal and state standards are now mandated for power service quality and utilities may be penalized if the number of interruptions exceeds the mandated standards. In order to meet the requirement for safety, reliability and quality of supply in distribution system, adaptive relaying and optimal network reconfiguration are proposed. By optimizing the system to be better prepared to handle a fault, the end result will be that in the event of a fault, the minimum number of customers will be affected. Thus reliability will increase. The main function of power system protection is to detect and remove the faulted parts as fast and as selectively as possible. The problem of coordinating protective relays in electric power systems consists of selecting suitable settings such that their fundamental protective function is met under the requirements of sensitivity, selectivity, reliability, and speed. In the proposed adaptive relaying approach, weather data will be incorporated as follows. By using real-time weather information, the potential area that might be affected by the severe weather will be determined. An algorithm is proposed for adaptive optimal relay setting (relays will optimally react to a potential fault). Different types of relays (and relay functions) and fuses will be considered in this optimization problem as well as their coordination with others. The proposed optimization method is based on mixed integer programming that will provide the optimal relay settings including pickup current, time dial setting, and different relay functions and so on. The main function of optimal network reconfiguration is to maximize the power supply using existing breakers and switches in the system. The ability to quickly and flexibly reconfigure the power system of an interconnected network of feeders is a key component of Smart Grid. New technologies are being injected into the distribution systems such as advanced metering, distribution automation, distribution generation and distributed storage. With these new technologies, the optimal network reconfiguration becomes more complicated. The proposed algorithms will be implemented and demonstrated on a realistic test system. The end result will be improved reliability. The improvements will be quantified with reliability indexes such as SAIDI.M.S.Committee Chair: A.P. Meliopoulos; Committee Member: Carlos S Grijalva; Committee Member: Deepakraj M Diva
    corecore