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A b s t r a c t

Currently, most processes have a volume of histor­
ical information that makes its manual processing 
difficult. Data mining, one of the most significant 
stages in the Knowledge Discovery in Databases 
(KDD) process, has a set of techniques capable 
of modeling and summarizing these historical data, 
making it easier to understand them and helping the 
decision making process in future situations. This 
article presents a new data mining adaptive technique 
called SOM+PSO that can build, from the available 
information, a reduced set of simple classification 
rules from which the most significant relations be­
tween the features recorded can be derived. These 
rules operate both on numeric and nominal attributes, 
and they are built by combining a variation of a 
population metaheuristic and a competitive neural 
network. The method proposed was compared with 
the PART method and measured over 19 databases 
(mostly from the UCI repository), and satisfactory 
results were obtained.
Keywords—Classification Rules, Data Mining, Adaptive 
Strategies, Particle Swarm Optimization, Self-Organizing 
Maps.

1. I n t r o d u c t i o n

Data mining is a research field that in recent years 
has gained attention from various sectors. Govern­
ment employees, business people and academics 
alike, for very different reasons, have contributed 
to the development of various techniques that can 
summarize the information that is available. This is 
one of the most important stages in the Knowledge 
Discovery in Databases (KDD) process, and it is 
characterized for producing useful and novel infor­
mation without any prior hypotheses. It encompasses 
a set of techniques capable of modeling available in­
formation and, even though there are different types 
of models, decision makers usually choose those 
that are self-explanatory. For this reason, rules, i.e., 
statements of the IF conditionl THEN condition2 
type, are preferred when characterizing that huge 
volume of historical data that were automatically 
saved.
There are different types of rules. An association 
rule is an expression whose conditions are conjunc­
tions of propositions of the attribute=value type and

whose only restriction is that the attributes included 
in the antecedent of the rule must not be part of its 
consequent. When the set of association rules has the 
same attribute in the consequent, it is said that this 
is a set of classification rules, while if they must be 
interpreted in the same order as they were obtained, 
they are considered as a decision list.
Unfortunately, most of the existing methods available 
to obtain rules include examples of database view 
with a set of rules that is so large and complex that, 
despite having the IF-THEN structure, it becomes 
almost unreadable. For this reason, a new method to 
obtain classification rules is proposed in this article, 
with two essential features: the cardinality of the 
set of rules obtained is low, and the antecedent of 
the rules that are generated is reduced. To this end, 
the method proposed combines an optimization tech­
nique responsible for directing the search towards 
the appropriate set of rules, and a neural network 
that allows assessing the significance of each of the 
attributes when defining the antecedent for the rule. 
This paper is organized as follows: Section 2 lists 
some related articles, Sections 3 and 4 briefly de­
scribe the neural network and metaheuristic used, 
respectively, Section 5 details the method proposed, 
Section 6 presents the results obtained, and Section 
7 presents a summary of the conclusions along with 
possible future work lines.

2. R e l a t e d  w o r k

There are several methods for building rules. When 
it comes to obtaining association rules, the Apriori 
method [1] or some of its variants [2] can be used. 
The goal is to identify the most frequent sets of 
attributes and then combining them to obtain the 
rules. There are variations to this method, usually 
oriented to reducing calculation time [3].
If working with classification rules, the literature 
includes different tree-based methods for building 
them, such as C4.5 [4], or trimmed tree-based meth­
ods, such as PART [5]. In either case, it is essential 
that the set of rules obtained covers the examples 
with a preset error level. Tree-based rule building 
methods are partitive and based on various attribute 
metrics in order to assess their coverage ability.
This article presents a different approach, one that 
is based on the optimization achieved with parti­
cle swarms (PSO, Particle Swarm Optimization) to
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determine the rules. Even though there are rule- 
generation methods that use PSO [6-13], when op­
erating on nominal attributes the body of available 
examples should be large enough to cover all search 
space areas, which is not always feasible. The result 
is a poor initialization of the population, which in 
turn causes a premature convergence. As a way to 
solve this problem, and at the same time reducing 
generation time, the initial state is obtained from 
a SOM (Self-Organizing Map) competitive neural 
network.
The literature describes methods that optimize SOM 
with PSO and significantly reduce the calculation 
time for the training phase [14], or methods that use 
PSO to determine the optimal number of competitive 
neurons in the network, such as [15]. Unlike these 
papers, our proposal is using PSO to obtain the set of 
rules, and SOM to avoid the premature convergence 
of the population. Even though in this case the SOM 
network being used is static, it could be replaced by a 
dynamic competitive network such as the one defined 
in [16].

3. Se l f -O r g a n i z i n g  M a p s  (SOM)

The SOM (Self-Organizing Maps) neural network 
was defined by Kohonen in 1982 [17]. Its main 
application is grouping all available information, and 
it is characterized by its ability to preserve input data 
topology.
It is a partitive clustering technique, since it asso­
ciates each example to an average vector or centroid. 
It can also relate centroids in order to identify 
similarities among them. This is an exclusive feature 
of this type of networks; is not available in most 
centroid-based clustering techniques. For this reason, 
it is commonly used as visualization tool and to 
reduce the number of dimensions of the input space. 
It can be represented as a two-layer structure: the 
input layer, whose function is only to allow informa­
tion to enter the network, and the competitive layer, 
which is responsible for the clustering task. The neu­
rons that form this second layer are connected and 
have the ability of identifying the number of “hops” 
or connections that separate them from each of the 
remaining neurons in this level. Each competitive 
neuron is associated to a weight vector or centroid 
represented by the values of the arches that reach this 
neuron from the input layer. Thus, the SOM network 
handles two information structures: one in relation to 
the centroids linked to the competitive neurons, and 
another one responsible for determining proximity 
among neurons. This, unlike a “winner-take-all” style 
method such as the K-means method [18], provides 
additional information about the clusters, since those 
neurons that are close by within the architecture will 
represent similar clusters in the input data space. 
Figure 1 shows the structure of a SOM network 
where the input layer is formed by an n-dimensional 
vector and the competitive layer has 4x5=20 neu­
rons. Each neuron in this second layer has 4 direct 
neighbors (immediate connections). This connection

Fig. 1. Classic structure of a SOM network

pattern can change depending on the problem to 
solve.
Network weights, whose values are represented in 
the figure by matrix W , are initially random, but 
they adapt with the successive presentations of input 
vectors. wij  is used to denote the weight of the 
arch going from the j th input neuron to the ith 
competitive neuron.
Since this is a competitive structure, each input 
vector is considered to be represented by (or associ­
ated with) the competitive neuron that has the most 
similar weight vector based on a given similarity 
measurement. The final value of W is obtained by 
means of an iterative process that is repeated until 
the weight vectors do not present any significant 
changes or, in other words, until each input vector is 
represented by the same competitive neuron than in 
the previous iteration.
During the training process of the SOM network, 
in each iteration, for each input vector X p = 
(xp1, xp2, ..., x pn), the representative neuron, that is, 
the most similar neuron so far, is identified. This neu­
ron is called “winning neuron”, since it is the one that 
“wins” the competition to represent the vector for 
being the closest one using a distance measurement. 
That is to say, that being Wi =  (wi1;wi2, win) 
the weight vector of the i th competitive neuron, 
SOM identifies the winning neuron as the one that 
meets equation (1)
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where the winning neuron is the neuron that wins p 
vector representation, ||.|| is a distance measurement 
(usually Euclidean distance), and M  is the total 
number of competitive neurons. Then, the SOM 
updates only the weight vector for that neuron and 
its neighborhood following equation (2)

where n  is the input space dimension, i is the 
competitive neuron whose vector is being updated 
and a  is a value between 0 and 1 that represents a
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W  ^  random initial values
Neighborhood ^  set the size if the initial 
neighborhood
NoIteReduction ^  set the number of itera­
tions that must occur to reduce the neighborhood 
while (termination criterion is not reached) do 

for (each input vector) do
Input the vector to the network and 
calculate the winning neuron 
Update the winning neuron and its 
neighborhood 

end for
Reduce Neighborhood if applicable based 
on NoIteReduction  

end while

Fig. 2. Basic training pseudocode for the SOM network

learning factor. The weight vectors of the remaining 
competitive neurons remain unchanged. Equation (2) 
has variations that can be consulted in [19].
The concept of neighborhood is used to allow the 
network to adapt correctly. This implies that neigh­
boring competitive neurons represent similar input 
patterns. For this reason, the training process (obtain­
ing W  values) is started with a wide neighborhood 
that is then reduced as iterations occur. Figure 2 
describes the pseudocode corresponding to the basic 
process for the adaptation of the SOM network.

4. O b t a i n i n g  c l a s s i f i c a t i o n  r u l e s  w i t h

p s o

Particle Swarm Optimization or PSO is a popula- 
tional metaheuristic proposed by Kennedy and Eber­
hart [20] where each individual in the population, 
called particle, represents a possible solution to the 
problem and adapts by following three factors: its 
knowledge of the environment (its fitness value), 
its historical knowledge or previous experiences (its 
memory), and the historical knowledge or previous 
experiences of the individuals in its neighborhood 
(its social knowledge).
PSO was originally defined to work on continuous 
spaces, so a few considerations should be taken into 
account when working on discrete spaces. For this 
reason, Kennedy and Eberhart defined in [21] a new 
binary version of the PSO method. On of the key 
problems of this last method is its difficulty to change 
from 0 to 1 and from 1 to 0 once it has stabilized. 
This has resulted in different versions of binary PSO 
that seek to improve its exploratory capacity. In 
particular, the variation defined by Lanzarini et al. 
[22] will be used in this article.
Using PSO to generate classification rules that can 
operate on nominal and numerical attributes requires 
a combination of the methods mentioned above, 
since the attributes that will be part of the antecedent 
(discrete) have to be selected and the value or range 
of values they can take (continuous) has to be 
determined.
Since this is a populational technique, the required 
information has to be analyzed for each individual in

the population. A decision has to be made between 
representing a single rule or the entire set for each 
individual, and the representation scheme has to be 
selected for each rule. Given the objectives proposed 
for this work, the Iterative Rule Learning (IRL) [23] 
approach was followed, where each individual rep­
resents a single rule and the solution to the problem 
is built from the best individuals obtained after a 
sequence of runs. Using this approach implies that 
the populational technique will be applied iteratively 
until achieving the desired coverage and obtaining 
a single rule in each iteration: the best individual in 
the population. Additionally, a fixed-length represen­
tation was chosen, where only the antecedent of the 
rule will be coded and, given the approach adopted, 
an iterative process will be carried out to associate 
all individuals in the population to a preset class, 
which does not require consequent codification.
To move in an n-dimensional space, each particle pi 
in the population is formed by:

• p B in i = (pBini i ,p B in i2, . . .  ,p B in in) stores 
the current position of the particle.

• vii = (v1i i , v 1i2, . . .  ,v1in) and v2 i =
(v2i l ,v2i2, . . .  ,v2in) are combined to deter­
mine the direction in which the particle will 
move.

• p B es tB in i = (p B es tB in i i , .. . ,p B e s tB in in) 
stores the best solution found for the particle so 
far.

• f i tn e s s i is the fitness value for the individual.
• f i tness_pB esti is the fitness value for the best 

local solution found (pBestB in i vector).
• pReali = (pRealn,pReali2, ...,pRealin) is 

used only for numerical attributes and it con­
tains the current boundaries of the intervals.

• v3i =  (v3ii, v3i2, ..., v3in) indicates the change 
direction of pReali .

• pBestReali = 
(pBestRealu, ... ,pBestRealin) stores the 
best solution found for the particle within 
interval boundaries.

Every time the ith particle moves, its current position 
and the intervals corresponding to the numerical 
attributes are changed as follows:
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Binary part

where wbin represents the inertia factor, randi and 
rand2 are random values with uniform distribution 
in [0,1], and p i  and p>2 are constant values that indi­
cate the significance assigned to the respective solu­
tions previously found. p B in ij  and localBestBinij 
correspond to the j th digit in the binary vectors 
p B es tB in i and localBestBini , respectively. With 
the method proposed, each particle will take into
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account the position of its closest neighbor whose 
fitness value is higher than its own; therefore, the 
value of localBestBini corresponds to the p B in k 
vector of the particle that is closest to p B in i pro­
vided that f i tn e s s k is higher than f i tn e s s i using 
the Euclidean distance.
It should be noted that, unlike the Binary PSO 
method described in [21], the movement of vector 
v t i  in the directions corresponding to the best solu­
tion found by the particle and the best local value do 
not depend on the current position of the particle, as 
indicated in [22]. Then, each element of the velocity 
vector v1i is controlled by applying (4)

That is, velocity vector v1i is calculated with (3) and 
controlled with (4). Its value is used to update the 
value of velocity vector v2i , as shown in (6).

Vector v2i is also controlled as vector v1i by chang­
ing limit1upperj and lim it1lowerj by limit2upperj
and lim it2lowerj, respectively. This will yield 52j , 
which will be used as in (4) to limit the values of 
v2j. Then, sigmoid function (7) is applied and the 
new position of the particle is calculated with (8).

(7)

Continuous part

was taken to adjust v1i in (3). The values assigned 
to wreal [24], p 1, p2, p3 and p4 are important 
to ensure algorithm convergence. More detailed in­
formation on how to select these values can be 
found in [20] and [25]. Additionally, it should be 
mentioned that the incorporation of sigmoid function
(7) radically changes the way in which the velocity 
vector is used to update the position of the particle. In 
continuous PSO, the velocity vector takes on higher 
values first to facilitate the exploration of the solution 
space, and then reduces them to allow the particle 
to stabilize. In binary PSO, the opposite procedure 
is applied. Extreme values, when mapped by the 
sigmoid function, produce similar probability values, 
close to 0 or 1, reducing the chance of change in 
particle values. On the other hand, velocity vector 
values that are close to zero increase the probability 
of change. Also, if the speed of a particle is the null 
vector, each of the binary digits that determine its 
position has a 0.5 probability of changing to 1. This 
is the most random situation that can occur.
In this paper, the values of limit1  and limit2  are the 
same for all dimensions, [0,1] and [0,6], respectively. 
Therefore, the values of velocity vectors v1 and 
v2 were limited to ranges [-0.5, 0.5] and [-3,3], 
respectively. This means that probabilities within 
the interval [0.0474, 0.9526] can be obtained. The 
values for p i ,  p2, p3 and p4 were established at 
0.25, 0.25, 0.5 and 0.25, respectively. The values of 
wbin and wreal were established between 1.25 and 
0.25 in linearly and proportionally to the number of 
iterations executed, in ascending order for wbin and 
descending order for wreal.
As regards the fitness of each individual, it depends 
on two aspects: rule relevance and rule size. The 
former is calculated based on rule support and confi­
dence, while the latter is the proportion of attributes 
used in the antecedent versus the total number of 
attributes. This is indicated in equation (11).

Fitness — PenalizationF actor * support (11) 
*confidence — SizeFactor  * size

where, once again, wreal represents the inertia factor, 
rand3 and rand4 are random values with uniform 
distribution in [0,1], and ^3 and ^4 are constant 
values that indicate the significance assigned to the 
respective solutions previously found. In this case, 
localBestReali corresponds to the pRealk vector of 
the particle that is closest to pReali , where f i tn e s s k 
is greater than f i tn e s s i using Euclidean distance. 
This is the same particle from which vector pBini

Support and confidence  are the metrics that corre­
spond to the rule representing the particle. Support 
is the proportion of examples that comply with the 
rule, i.e., the number of examples for which both 
the antecedent and the consequent occur, divided by 
the total number of examples. Confidence  is the 
quotient of the number of examples that fulfill the 
rule and the number of those that only fulfill the 
antecedent.
The PenalizationF actor is a value between 0.1 
and 1 whose purpose is balancing the relation be­
tween support and confidence . Those rules with 
a high confidence  but also representative support 
are granted a high f i tn e s s  value. This is handles 
by means of a pair of limits that establish minimum 
and maximum values that are required to that effect. 
Penalization is maximal below the lower limit, it 
is linearly proportional in between limits, and it is
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function PENALIZE (value, L1, L2, min, max) 
if value < L1 then 

response — m in  
else if value < L2 then

Pos — (value — L1)/(L2 — L1) 
response — m in  + (max — min)  * Pos 

else response — 1 
end if
return response 

end function
s1 = max(2, 5% o f the examples in the class) 
s2 = max(4, 7.5% o f the examples in the class) 
PenaSup = Penalize(support, s1, s2, 0.1, 0.75) 
c1 = lower confidence limit (e.g.: 0.4) 
c2 = upper confidence limit (e.g.: 0.7) 
PenaConf=Penalize(confidence, c1, c2, 0.1, 0.7) 
PenalizationFactor=min(PenaSup, PenaConf)

Fig. 3. Pseudocode corresponding to rule penalization calculation

minimum above the upper limit. This is applicable 
both to support and confidence , and the lowest 
of both calculated penalizations is used. Figure 3 
contains pseudocode that represents how to obtain 
this factor.
In the second term of equation (11), size  is the quo­
tient between the number of comparisons involved 
in the antecedent of the rule (one per attribute) and 
the maximum number of comparisons that could 
be present. SizeFactor  is simply a constant that 
quantifies the significance assigned to the length of 
the antecedent.
In brief, the purpose of the second term in equation 
(11) is reducing the fitness value of the individual as 
the number of attributes in the antecedent increases.

5. SOM +PSO. P r o p o s e d  m e t h o d  f o r

OBTAINING RULES

Rules are obtained through an iterative process that 
analyzes non-covered examples in each class, start­
ing with the largest classes (those with the highest 
number of representatives). Each time a rule is ob­
tained, the examples that are correctly covered by the 
rule are removed from the input data set. The process 
continues until all examples are covered or until 
the number of non-covered examples in each class 
is below the corresponding established minimum 
support or until a maximum number of tries has been 
done to obtain a rule, whichever happens first. It 
should be noted that, since the examples are removed 
from the input data set as they are covered by the 
rules, the rules operate as a classification list. That 
is, in order to classify a new example, the rules must 
be applied in the order in which they were obtained, 
and the example will be classified with the class that 
corresponds to the consequent of the first rule whose 
antecedent is verified for the example at hand. 
Before starting the iterative process for obtaining 
the rules, the method starts with the non-supervised 
training of a SOM network using the entire set of ex­
amples that are to be covered. The network is trained

in a non-supervised fashion following the algorithm 
described in Section 3; the purpose of this training 
is identifying the most promising areas of the search 
space. Since the SOM network operates only with 
numerical data, nominal attributes are represented 
as binaries. Therefore, an attribute such as blood 
pressure, whose possible nominal values are “LOW”, 
“MEDIUM” and “HIGH” must be transformed into 
a set of three binary attributes “Pressure = LOW”, 
“Pressure = MEDIUM” and “Pressure = HIGH” and, 
for each record in the database, only one of them will 
have a value of 1 and the other two will have a value 
of 0. Also, before starting the training process, each 
dimension that corresponds to a numerical attribute 
is linearly escalated in [0,1]. The similarity measure­
ment used is the Euclidean distance. Once training 
is finished, each centroid will contain approximately 
the average of the examples it represents. To obtain 
each of the rules, the class to which the consequent 
belongs is first determined. Seeking high-support 
rules, the method proposed will start by analyzing 
those classes with higher numbers of non-covered 
examples. The minimum support that any given rule 
has to meet is proportional to the number of non­
covered examples in the class upon rule generation. 
That is, the minimum required support for each class 
decreases as iterations are run, as the examples in the 
corresponding class are gradually covered. Thus, it is 
to be expected that the first rules will have a greater 
support than the final ones.
After selecting the class, the consequent for the rule 
is determined. To obtain the antecedent, a swarm 
population will be optimized using the algorithm 
described in Section 4. This swarm will be initial­
ized with the information of all centroids capable 
of representing a minimum number of examples 
from the selected class and its immediate neighbors. 
Centroid information is used to determine vector v2. 
In the case of nominal attributes, centroid informa­
tion is linearly escalated to interval [limit2 l o w e r j , 
limit2u p p e r j ], but in the case of numerical attributes, 
the value to be escalated is (1-1.5*deviationj ), 
deviation j  being the j t h  dimension of the deviation 
of the examples represented by the centroid. In both 
cases, the goal is to operate with a value between 
0 and 1 that measures the participation level of the 
attribute (if numerical) or the attribute value (if nom­
inal) when building the antecedent for the rule. In the 
case of nominal attributes, it is clear that the average 
indicates the proportion of elements represented by 
the centroid that match the same value, but in the 
case of numerical attributes, this proportion is not 
present in the centroid but in the deviation of the 
examples (always considering a specific dimension). 
If this deviation in any given dimension is zero, it 
means that all of the examples match the value in 
the centroid; on the other hand, if the deviation is 
too wide, the centroid would not be representative of 
the group and it would therefore not be convenient 
to include it in the antecedent for the rule. Using (1- 
1.5*deviation j ) if the deviation is high, the velocity 
value v2, argument of the sigmoid function, will be
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Train SOM network using all training examples 
Calculate the minimum support for each class 
while (termination criterion is not reached) do 

Choose the class with the highest number of 
non-covered examples 
Build a reduced population of individuals 
from centroids
Evolve the population using PSO as seen in 
Section 4
Obtain R, the best rule for the population 
if (R meets support and confidence require­

ments) then
Add the rule to the set of rules 
Consider the examples classified by this 
rule as correctly covered 
Recalculate the minimum support for this 
class 

end if 
end while

Fig. 4. Pseudocode of the method SOM+PSO

lower and the probability of using the attribute will 
be reduced. In all cases, velocity v1 is initialized 
randomly within [limit1lowerj, limit1upperj]. Fig­
ure 4 corresponds to the pseudocode of the method 
proposed.

6. R e s u l t s  o b t a i n e d

In this section, the performance obtained with the 
method proposed is compared against that of the 
PART method defined by Frank and Witten in [5] 
for generating classification rules for a known set of 
17 databases of the UCI repository [26] and the Drug 
databases.
Thirty separate runs were performed for each 
method, and a SOM network with 30 neurons or­
ganized in 6 rows and 5 columns with 4 neighbors 
per neuron was used. The PART method was run 
with a confidence factor of 0.3 for trimming the tree 
and the default values for all remaining parameters. 
Tables I, II and III summarize the results obtained 
with both methods. In each case, not only the cov­
erage accuracy of the set of rules was considered 
(Table I), but also the clarity of the model obtained, 
which is reflected in the average number of rules 
obtained (Table II) and the average number of terms 
used to form the antecedent (Table III). In each 
case, a two-tailed mean difference test with a sig­
nificance level of 0.05 was carried out, where the 
null hypothesis establishes that the means are equal. 
Since each includes has 30 separate runs for each 
of the methods, the central limit theorem was used 
to assume a normal distribution for each sample. 
Based on the results obtained, when the difference is 
significant, in accordance to the level indicated, the 
best option was highlighted in bold in the table.
In average, considering the 8 cases in which the 
accuracy of PART is higher than that of the method 
proposed, the difference in accuracy in favor of 
PART is 4%, but the size of the set of rules is four

TABLE I
Accuracy of the rule set obtained when applying the 

SOM+PSO AND PART METHODS

Database SOM+PSO PART

Balance scale 0, 713 ±  0, 01 0 , 815  ±  0 , 02
Breast cancer 0 , 708  ±  0 , 02 0, 657 ±  0,02
Breast w 0, 945 ±  0, 00 0 , 955  ±  0 , 00
credit_a 0 , 859  ±  0 , 01 0, 738 ±  0,02
Credit-g 0, 703 ±  0, 01 0, 701 ±  0,01
Diabetes 0 , 738  ±  0 , 01 0, 731 ±  0,01
Heart-c 0, 721 ±  0, 02 0 , 764  ±  0 , 02
Heart-statlog 0, 727 ±  0, 02 0 , 767  ±  0 , 01
Iris 0, 924 ±  0, 02 0 , 9 3 9  ±  0 , 02
Mushroom 0, 939 ±  0, 00 0 , 9 9 7  ±  0 , 00
Promoters 0, 65 ±  0, 03 0, 67 ±  0,05
Soybean 0 , 856  ±  0 , 01 0, 577 ±  0,07
Kr_vs_kp 0, 933 ±  0, 00 0 , 99  ±  0 , 00
Zoo 0 , 923  ±  0 , 02 0, 187 ±  0,05
Slice 0 , 812  ±  0 , 01 0, 722 ±  0,01
Wine 0, 867 ±  0, 03 0 , 8 8 8  ±  0 , 01
Drug5 0,85 ±  0, 01 0, 87 ±  0,06
DrugY 0 , 844  ±  0 , 02 0, 668 ±  0,09
Adult 0, 802 ±  0, 00 0, 801 ±  0,00

TABLE II
Number of rules obtained when applying the 

SOM+PSO AND PART METHODS

Database SOM+PSO PART

Balance scale 7 , 106  ±  0 , 51 38, 71 ±  1, 18
Breast cancer 5 , 033  ±  0 , 19 19, 243 ±  1,49
Breast w 2 , 853  ±  0 , 18 10, 11 ±  0 , 54
credit_a 3 , 446  ±  0 , 21 32, 95 ±  1,88
Credit-g 2 , 3 2 3  ±  0 , 2 62, 543 ±  1, 65
Diabetes 2 , 55 ±  0 , 2 7, 723 ±  0 , 64
Heart-c 3 , 19 ±  0 , 17 19, 24 ±  0 , 75
Heart-statlog 4 , 276  ±  0 , 35 17, 616 ±  0 , 68
Iris 3 , 623  ±  0 , 15 4, 113 ±  0 , 32
Mushroom 3 , 503  ±  0 , 14 11, 196 ±  0 , 24
Promoters 7 , 013  ±  0 , 26 7, 243 ±  0 ,41
Soybean 2 4 , 856  ±  0 , 5 31, 92 ±  0 , 65
Kr_vs_kp 3 ±  0 22, 196 ±  0 , 63
Zoo 6 , 9 9 3  ±  0 , 1 7, 67 ±  0 , 07
Slice 1 0 , 046  ±  0 , 33 103, 303 ±  1, 58
Wine 4 , 803  ±  0 , 38 5, 44 ±  0 , 25
Drug5 7 , 313  ±  0 , 31 15, 42 ±  0 ,45
DrugY 6 , 45  ±  0 , 23 11, 79 ±  0 ,47
Adult 2 , 153  ±  0 , 14 975, 423 ±  10, 59

times larger and generally more attributes are used 
in the antecedent. As it can be observed, in those 
cases mentioned above, the coverage obtained by 
SOM+PSO is very good if the reduced number of 
rules used is taken into account. For instance, for 
the “Breast w” database, the accuracy of SOM+PSO 
is lower than that of PART by approximately 1%, 
but the former uses one third of the number of 
rules of the latter and with less queries in each 
antecedent. Something similar is observed in all 
other 7 cases where PART yields a higher accuracy 
than SOM+PSO. This is due to the emphasis placed
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TABLE III
Antecedent average length for each rule obtained 

WHEN APPLYING THE SOM+PSO AND PART METHODS

Database SOM+PSO PART

Balance scale 1 , 93  ±  0 , 1 3, 098 ±  0 ,06
Breast cancer 1 , 164  ±  0 , 03 2, 039 ±  0 ,07
Breast w 1 , 88  ±  0 , 15 2, 115 ±  0, 1
credit_a 1 , 2 7 8  ±  0 , 11 2, 46 ±  0 ,08
Credit-g 1 , 055  ±  0 , 05 2, 581 ±  0 ,07
Diabetes 1 , 176  ±  0 , 08 1, 98 ±  0 , 1
Heart-c 1 , 565  ±  0 , 08 2, 564 ±  0 , 12
Heart-statlog 1 , 616  ±  0 , 13 2, 875 ±  0, 1
Iris 1, 132 ±  0, 05 1 ,02  ±  0 , 03
Mushroom 1, 34 ±  0, 1 1 , 2 5 9  ±  0 , 02
Promoters 1, 097 ±  0, 02 1 ,03  ±  0 , 04
Soybean 5, 962 ±  0, 26 2 , 731  ±  0 , 05
Kr_vs_kp 2 , 362  ±  0 , 06 3, 122 ±  0 ,08
Zoo 1, 527 ±  0 , 1 1 , 4 7 8  ±  0 , 01
Slice 1 , 4 8 5  ±  0 , 05 2, 663 ±  0 ,04
Wine 3, 052 ±  0, 45 1 ,53  ±  0 , 07
Drug5 1 , 741  ±  0 , 07 2, 066 ±  0 ,03
DrugY 1 , 6 5 7  ±  0 , 13 1, 868 ±  0 ,03
Adult 2 , 2 2 9  ±  0 , 22 4, 679 ±  0 ,05

on the simplification of the model. For the 11 re­
maining cases, there are no significant differences 
in relation to the accuracy achieved or SOM+PSO 
is better. Regardless of accuracy, the average length 
of the set of rules is always smaller in the method 
proposes, with cases such as the “Adult”, “Credit-g” 
and “Slice” databases in which the difference is too 
evident.

7. C o n c l u s i o n s

A novel method for obtaining classification rules has 
been presented. This method is based on PSO and 
can operate with numerical and nominal attributes. 
A SOM neural network was used adequately initial­
ize the population of rules. The centroids obtained 
when grouping available data in an unsupervised 
manner allow identifying the relevance of each at­
tribute for the swarm of examples. In any case, this 
metric is not enough to select the attributes that will 
form the rule, and it is at this point where PSO takes 
control to carry out the final selection.
A representation for the rules was proposed, combin­
ing a binary representation that allows selecting the 
attributes that are used in the rule with a continuous 
representation used only to determine the boundaries 
of the numerical attributes that are part of the an­
tecedent. A variation of binary PSO was designed 
whose population is adequately initialized with the 
information from the centroids in the previously 
trained SOM network.
The results obtained when applying the method 
proposed on a set of test databases show that the 
SOM+PSO method obtains a simpler model. In av­
erage, it uses approximately 40% of the number of 
rules generated by PART, with antecedents formed 
by just a few conditions and an acceptable accuracy 
given the simplicity of the model obtained.

Although not included in this article, the measure­
ments performed using the method proposed but 
skipping the optimization stage introduced by PSO 
resulted in a set of rules with similar accuracy but a 
slightly higher cardinality than PART. This shows 
that the few iterations carried out by PSO with 
the information from the centroids is essential to 
determine an appropriate set of rules.
Currently, even though based on the tests carried 
out there is no evidence of any dependence between 
the results obtained and the initial size of the SOM 
network, the measurements will be repeated using a 
dynamic SOM network.
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