
JCS&T Vol. 15 No. 1 April 2015

SOM+PSO
A Novel Method to Obtain Classification Rules

Laura Lanzarini, Augusto Villa Monte and Franco Ronchetti
Instituto de Investigación en Informatica LIDI (III-LIDI)

Facultad de Informatica, Universidad Nacional de La Plata (UNLP)
Calle 50 y 120, S/N (CP 1900). La Plata, Buenos Aires, Argentina

{laural,avillamonte,fronchetti}@lidi.info.unlp.edu.ar

A b s t r a c t

Currently, most processes have a volume of histor­
ical information that makes its manual processing
difficult. Data mining, one of the most significant
stages in the Knowledge Discovery in Databases
(KDD) process, has a set of techniques capable
of modeling and summarizing these historical data,
making it easier to understand them and helping the
decision making process in future situations. This
article presents a new data mining adaptive technique
called SOM+PSO that can build, from the available
information, a reduced set of simple classification
rules from which the most significant relations be­
tween the features recorded can be derived. These
rules operate both on numeric and nominal attributes,
and they are built by combining a variation of a
population metaheuristic and a competitive neural
network. The method proposed was compared with
the PART method and measured over 19 databases
(mostly from the UCI repository), and satisfactory
results were obtained.
Keywords—Classification Rules, Data Mining, Adaptive
Strategies, Particle Swarm Optimization, Self-Organizing
Maps.

1. I n t r o d u c t i o n

Data mining is a research field that in recent years
has gained attention from various sectors. Govern­
ment employees, business people and academics
alike, for very different reasons, have contributed
to the development of various techniques that can
summarize the information that is available. This is
one of the most important stages in the Knowledge
Discovery in Databases (KDD) process, and it is
characterized for producing useful and novel infor­
mation without any prior hypotheses. It encompasses
a set of techniques capable of modeling available in­
formation and, even though there are different types
of models, decision makers usually choose those
that are self-explanatory. For this reason, rules, i.e.,
statements of the IF conditionl THEN condition2
type, are preferred when characterizing that huge
volume of historical data that were automatically
saved.
There are different types of rules. An association
rule is an expression whose conditions are conjunc­
tions of propositions of the attribute=value type and

whose only restriction is that the attributes included
in the antecedent of the rule must not be part of its
consequent. When the set of association rules has the
same attribute in the consequent, it is said that this
is a set of classification rules, while if they must be
interpreted in the same order as they were obtained,
they are considered as a decision list.
Unfortunately, most of the existing methods available
to obtain rules include examples of database view
with a set of rules that is so large and complex that,
despite having the IF-THEN structure, it becomes
almost unreadable. For this reason, a new method to
obtain classification rules is proposed in this article,
with two essential features: the cardinality of the
set of rules obtained is low, and the antecedent of
the rules that are generated is reduced. To this end,
the method proposed combines an optimization tech­
nique responsible for directing the search towards
the appropriate set of rules, and a neural network
that allows assessing the significance of each of the
attributes when defining the antecedent for the rule.
This paper is organized as follows: Section 2 lists
some related articles, Sections 3 and 4 briefly de­
scribe the neural network and metaheuristic used,
respectively, Section 5 details the method proposed,
Section 6 presents the results obtained, and Section
7 presents a summary of the conclusions along with
possible future work lines.

2. R e l a t e d w o r k

There are several methods for building rules. When
it comes to obtaining association rules, the Apriori
method [1] or some of its variants [2] can be used.
The goal is to identify the most frequent sets of
attributes and then combining them to obtain the
rules. There are variations to this method, usually
oriented to reducing calculation time [3].
If working with classification rules, the literature
includes different tree-based methods for building
them, such as C4.5 [4], or trimmed tree-based meth­
ods, such as PART [5]. In either case, it is essential
that the set of rules obtained covers the examples
with a preset error level. Tree-based rule building
methods are partitive and based on various attribute
metrics in order to assess their coverage ability.
This article presents a different approach, one that
is based on the optimization achieved with parti­
cle swarms (PSO, Particle Swarm Optimization) to

15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296378426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JCS&T Vol. 15 No. 1 April 2015

determine the rules. Even though there are rule-
generation methods that use PSO [6-13], when op­
erating on nominal attributes the body of available
examples should be large enough to cover all search
space areas, which is not always feasible. The result
is a poor initialization of the population, which in
turn causes a premature convergence. As a way to
solve this problem, and at the same time reducing
generation time, the initial state is obtained from
a SOM (Self-Organizing Map) competitive neural
network.
The literature describes methods that optimize SOM
with PSO and significantly reduce the calculation
time for the training phase [14], or methods that use
PSO to determine the optimal number of competitive
neurons in the network, such as [15]. Unlike these
papers, our proposal is using PSO to obtain the set of
rules, and SOM to avoid the premature convergence
of the population. Even though in this case the SOM
network being used is static, it could be replaced by a
dynamic competitive network such as the one defined
in [16].

3. Se l f -O r g a n i z i n g M a p s (SOM)

The SOM (Self-Organizing Maps) neural network
was defined by Kohonen in 1982 [17]. Its main
application is grouping all available information, and
it is characterized by its ability to preserve input data
topology.
It is a partitive clustering technique, since it asso­
ciates each example to an average vector or centroid.
It can also relate centroids in order to identify
similarities among them. This is an exclusive feature
of this type of networks; is not available in most
centroid-based clustering techniques. For this reason,
it is commonly used as visualization tool and to
reduce the number of dimensions of the input space.
It can be represented as a two-layer structure: the
input layer, whose function is only to allow informa­
tion to enter the network, and the competitive layer,
which is responsible for the clustering task. The neu­
rons that form this second layer are connected and
have the ability of identifying the number of “hops”
or connections that separate them from each of the
remaining neurons in this level. Each competitive
neuron is associated to a weight vector or centroid
represented by the values of the arches that reach this
neuron from the input layer. Thus, the SOM network
handles two information structures: one in relation to
the centroids linked to the competitive neurons, and
another one responsible for determining proximity
among neurons. This, unlike a “winner-take-all” style
method such as the K-means method [18], provides
additional information about the clusters, since those
neurons that are close by within the architecture will
represent similar clusters in the input data space.
Figure 1 shows the structure of a SOM network
where the input layer is formed by an n-dimensional
vector and the competitive layer has 4x5=20 neu­
rons. Each neuron in this second layer has 4 direct
neighbors (immediate connections). This connection

Fig. 1. Classic structure of a SOM network

pattern can change depending on the problem to
solve.
Network weights, whose values are represented in
the figure by matrix W , are initially random, but
they adapt with the successive presentations of input
vectors. wij is used to denote the weight of the
arch going from the j th input neuron to the ith
competitive neuron.
Since this is a competitive structure, each input
vector is considered to be represented by (or associ­
ated with) the competitive neuron that has the most
similar weight vector based on a given similarity
measurement. The final value of W is obtained by
means of an iterative process that is repeated until
the weight vectors do not present any significant
changes or, in other words, until each input vector is
represented by the same competitive neuron than in
the previous iteration.
During the training process of the SOM network,
in each iteration, for each input vector X p =
(xp1, xp2, ..., x pn), the representative neuron, that is,
the most similar neuron so far, is identified. This neu­
ron is called “winning neuron”, since it is the one that
“wins” the competition to represent the vector for
being the closest one using a distance measurement.
That is to say, that being Wi = (wi1;wi2, win)
the weight vector of the i th competitive neuron,
SOM identifies the winning neuron as the one that
meets equation (1)

16

where the winning neuron is the neuron that wins p
vector representation, ||.|| is a distance measurement
(usually Euclidean distance), and M is the total
number of competitive neurons. Then, the SOM
updates only the weight vector for that neuron and
its neighborhood following equation (2)

where n is the input space dimension, i is the
competitive neuron whose vector is being updated
and a is a value between 0 and 1 that represents a

JCS&T Vol. 15 No. 1 April 2015

W ^ random initial values
Neighborhood ^ set the size if the initial
neighborhood
NoIteReduction ^ set the number of itera­
tions that must occur to reduce the neighborhood
while (termination criterion is not reached) do

for (each input vector) do
Input the vector to the network and
calculate the winning neuron
Update the winning neuron and its
neighborhood

end for
Reduce Neighborhood if applicable based
on NoIteReduction

end while

Fig. 2. Basic training pseudocode for the SOM network

learning factor. The weight vectors of the remaining
competitive neurons remain unchanged. Equation (2)
has variations that can be consulted in [19].
The concept of neighborhood is used to allow the
network to adapt correctly. This implies that neigh­
boring competitive neurons represent similar input
patterns. For this reason, the training process (obtain­
ing W values) is started with a wide neighborhood
that is then reduced as iterations occur. Figure 2
describes the pseudocode corresponding to the basic
process for the adaptation of the SOM network.

4. O b t a i n i n g c l a s s i f i c a t i o n r u l e s w i t h

p s o

Particle Swarm Optimization or PSO is a popula-
tional metaheuristic proposed by Kennedy and Eber­
hart [20] where each individual in the population,
called particle, represents a possible solution to the
problem and adapts by following three factors: its
knowledge of the environment (its fitness value),
its historical knowledge or previous experiences (its
memory), and the historical knowledge or previous
experiences of the individuals in its neighborhood
(its social knowledge).
PSO was originally defined to work on continuous
spaces, so a few considerations should be taken into
account when working on discrete spaces. For this
reason, Kennedy and Eberhart defined in [21] a new
binary version of the PSO method. On of the key
problems of this last method is its difficulty to change
from 0 to 1 and from 1 to 0 once it has stabilized.
This has resulted in different versions of binary PSO
that seek to improve its exploratory capacity. In
particular, the variation defined by Lanzarini et al.
[22] will be used in this article.
Using PSO to generate classification rules that can
operate on nominal and numerical attributes requires
a combination of the methods mentioned above,
since the attributes that will be part of the antecedent
(discrete) have to be selected and the value or range
of values they can take (continuous) has to be
determined.
Since this is a populational technique, the required
information has to be analyzed for each individual in

the population. A decision has to be made between
representing a single rule or the entire set for each
individual, and the representation scheme has to be
selected for each rule. Given the objectives proposed
for this work, the Iterative Rule Learning (IRL) [23]
approach was followed, where each individual rep­
resents a single rule and the solution to the problem
is built from the best individuals obtained after a
sequence of runs. Using this approach implies that
the populational technique will be applied iteratively
until achieving the desired coverage and obtaining
a single rule in each iteration: the best individual in
the population. Additionally, a fixed-length represen­
tation was chosen, where only the antecedent of the
rule will be coded and, given the approach adopted,
an iterative process will be carried out to associate
all individuals in the population to a preset class,
which does not require consequent codification.
To move in an n-dimensional space, each particle pi
in the population is formed by:

• p B in i = (pBini i ,p B in i2, . . . ,p B in in) stores
the current position of the particle.

• vii = (v1i i , v 1i2, . . . ,v1in) and v2 i =
(v2i l ,v2i2, . . . ,v2in) are combined to deter­
mine the direction in which the particle will
move.

• p B es tB in i = (p B es tB in i i , .. . ,p B e s tB in in)
stores the best solution found for the particle so
far.

• f i tn e s s i is the fitness value for the individual.
• f i tness_pB esti is the fitness value for the best

local solution found (pBestB in i vector).
• pReali = (pRealn,pReali2, ...,pRealin) is

used only for numerical attributes and it con­
tains the current boundaries of the intervals.

• v3i = (v3ii, v3i2, ..., v3in) indicates the change
direction of pReali .

• pBestReali =
(pBestRealu, ... ,pBestRealin) stores the
best solution found for the particle within
interval boundaries.

Every time the ith particle moves, its current position
and the intervals corresponding to the numerical
attributes are changed as follows:

17

Binary part

where wbin represents the inertia factor, randi and
rand2 are random values with uniform distribution
in [0,1], and p i and p>2 are constant values that indi­
cate the significance assigned to the respective solu­
tions previously found. p B in ij and localBestBinij
correspond to the j th digit in the binary vectors
p B es tB in i and localBestBini , respectively. With
the method proposed, each particle will take into

JCS&T Vol. 15 No. 1 April 2015

account the position of its closest neighbor whose
fitness value is higher than its own; therefore, the
value of localBestBini corresponds to the p B in k
vector of the particle that is closest to p B in i pro­
vided that f i tn e s s k is higher than f i tn e s s i using
the Euclidean distance.
It should be noted that, unlike the Binary PSO
method described in [21], the movement of vector
v t i in the directions corresponding to the best solu­
tion found by the particle and the best local value do
not depend on the current position of the particle, as
indicated in [22]. Then, each element of the velocity
vector v1i is controlled by applying (4)

That is, velocity vector v1i is calculated with (3) and
controlled with (4). Its value is used to update the
value of velocity vector v2i , as shown in (6).

Vector v2i is also controlled as vector v1i by chang­
ing limit1upperj and lim it1lowerj by limit2upperj
and lim it2lowerj, respectively. This will yield 52j ,
which will be used as in (4) to limit the values of
v2j. Then, sigmoid function (7) is applied and the
new position of the particle is calculated with (8).

(7)

Continuous part

was taken to adjust v1i in (3). The values assigned
to wreal [24], p 1, p2, p3 and p4 are important
to ensure algorithm convergence. More detailed in­
formation on how to select these values can be
found in [20] and [25]. Additionally, it should be
mentioned that the incorporation of sigmoid function
(7) radically changes the way in which the velocity
vector is used to update the position of the particle. In
continuous PSO, the velocity vector takes on higher
values first to facilitate the exploration of the solution
space, and then reduces them to allow the particle
to stabilize. In binary PSO, the opposite procedure
is applied. Extreme values, when mapped by the
sigmoid function, produce similar probability values,
close to 0 or 1, reducing the chance of change in
particle values. On the other hand, velocity vector
values that are close to zero increase the probability
of change. Also, if the speed of a particle is the null
vector, each of the binary digits that determine its
position has a 0.5 probability of changing to 1. This
is the most random situation that can occur.
In this paper, the values of limit1 and limit2 are the
same for all dimensions, [0,1] and [0,6], respectively.
Therefore, the values of velocity vectors v1 and
v2 were limited to ranges [-0.5, 0.5] and [-3,3],
respectively. This means that probabilities within
the interval [0.0474, 0.9526] can be obtained. The
values for p i , p2, p3 and p4 were established at
0.25, 0.25, 0.5 and 0.25, respectively. The values of
wbin and wreal were established between 1.25 and
0.25 in linearly and proportionally to the number of
iterations executed, in ascending order for wbin and
descending order for wreal.
As regards the fitness of each individual, it depends
on two aspects: rule relevance and rule size. The
former is calculated based on rule support and confi­
dence, while the latter is the proportion of attributes
used in the antecedent versus the total number of
attributes. This is indicated in equation (11).

Fitness — PenalizationF actor * support (11)
*confidence — SizeFactor * size

where, once again, wreal represents the inertia factor,
rand3 and rand4 are random values with uniform
distribution in [0,1], and ^3 and ^4 are constant
values that indicate the significance assigned to the
respective solutions previously found. In this case,
localBestReali corresponds to the pRealk vector of
the particle that is closest to pReali , where f i tn e s s k
is greater than f i tn e s s i using Euclidean distance.
This is the same particle from which vector pBini

Support and confidence are the metrics that corre­
spond to the rule representing the particle. Support
is the proportion of examples that comply with the
rule, i.e., the number of examples for which both
the antecedent and the consequent occur, divided by
the total number of examples. Confidence is the
quotient of the number of examples that fulfill the
rule and the number of those that only fulfill the
antecedent.
The PenalizationF actor is a value between 0.1
and 1 whose purpose is balancing the relation be­
tween support and confidence . Those rules with
a high confidence but also representative support
are granted a high f i tn e s s value. This is handles
by means of a pair of limits that establish minimum
and maximum values that are required to that effect.
Penalization is maximal below the lower limit, it
is linearly proportional in between limits, and it is

18

JCS&T Vol. 15 No. 1 April 2015

function PENALIZE (value, L1, L2, min, max)
if value < L1 then

response — m in
else if value < L2 then

Pos — (value — L1)/(L2 — L1)
response — m in + (max — min) * Pos

else response — 1
end if
return response

end function
s1 = max(2, 5% o f the examples in the class)
s2 = max(4, 7.5% o f the examples in the class)
PenaSup = Penalize(support, s1, s2, 0.1, 0.75)
c1 = lower confidence limit (e.g.: 0.4)
c2 = upper confidence limit (e.g.: 0.7)
PenaConf=Penalize(confidence, c1, c2, 0.1, 0.7)
PenalizationFactor=min(PenaSup, PenaConf)

Fig. 3. Pseudocode corresponding to rule penalization calculation

minimum above the upper limit. This is applicable
both to support and confidence , and the lowest
of both calculated penalizations is used. Figure 3
contains pseudocode that represents how to obtain
this factor.
In the second term of equation (11), size is the quo­
tient between the number of comparisons involved
in the antecedent of the rule (one per attribute) and
the maximum number of comparisons that could
be present. SizeFactor is simply a constant that
quantifies the significance assigned to the length of
the antecedent.
In brief, the purpose of the second term in equation
(11) is reducing the fitness value of the individual as
the number of attributes in the antecedent increases.

5. SOM +PSO. P r o p o s e d m e t h o d f o r

OBTAINING RULES

Rules are obtained through an iterative process that
analyzes non-covered examples in each class, start­
ing with the largest classes (those with the highest
number of representatives). Each time a rule is ob­
tained, the examples that are correctly covered by the
rule are removed from the input data set. The process
continues until all examples are covered or until
the number of non-covered examples in each class
is below the corresponding established minimum
support or until a maximum number of tries has been
done to obtain a rule, whichever happens first. It
should be noted that, since the examples are removed
from the input data set as they are covered by the
rules, the rules operate as a classification list. That
is, in order to classify a new example, the rules must
be applied in the order in which they were obtained,
and the example will be classified with the class that
corresponds to the consequent of the first rule whose
antecedent is verified for the example at hand.
Before starting the iterative process for obtaining
the rules, the method starts with the non-supervised
training of a SOM network using the entire set of ex­
amples that are to be covered. The network is trained

in a non-supervised fashion following the algorithm
described in Section 3; the purpose of this training
is identifying the most promising areas of the search
space. Since the SOM network operates only with
numerical data, nominal attributes are represented
as binaries. Therefore, an attribute such as blood
pressure, whose possible nominal values are “LOW”,
“MEDIUM” and “HIGH” must be transformed into
a set of three binary attributes “Pressure = LOW”,
“Pressure = MEDIUM” and “Pressure = HIGH” and,
for each record in the database, only one of them will
have a value of 1 and the other two will have a value
of 0. Also, before starting the training process, each
dimension that corresponds to a numerical attribute
is linearly escalated in [0,1]. The similarity measure­
ment used is the Euclidean distance. Once training
is finished, each centroid will contain approximately
the average of the examples it represents. To obtain
each of the rules, the class to which the consequent
belongs is first determined. Seeking high-support
rules, the method proposed will start by analyzing
those classes with higher numbers of non-covered
examples. The minimum support that any given rule
has to meet is proportional to the number of non­
covered examples in the class upon rule generation.
That is, the minimum required support for each class
decreases as iterations are run, as the examples in the
corresponding class are gradually covered. Thus, it is
to be expected that the first rules will have a greater
support than the final ones.
After selecting the class, the consequent for the rule
is determined. To obtain the antecedent, a swarm
population will be optimized using the algorithm
described in Section 4. This swarm will be initial­
ized with the information of all centroids capable
of representing a minimum number of examples
from the selected class and its immediate neighbors.
Centroid information is used to determine vector v2.
In the case of nominal attributes, centroid informa­
tion is linearly escalated to interval [limit2 l o w e r j ,
limit2u p p e r j], but in the case of numerical attributes,
the value to be escalated is (1-1.5*deviationj),
deviation j being the j t h dimension of the deviation
of the examples represented by the centroid. In both
cases, the goal is to operate with a value between
0 and 1 that measures the participation level of the
attribute (if numerical) or the attribute value (if nom­
inal) when building the antecedent for the rule. In the
case of nominal attributes, it is clear that the average
indicates the proportion of elements represented by
the centroid that match the same value, but in the
case of numerical attributes, this proportion is not
present in the centroid but in the deviation of the
examples (always considering a specific dimension).
If this deviation in any given dimension is zero, it
means that all of the examples match the value in
the centroid; on the other hand, if the deviation is
too wide, the centroid would not be representative of
the group and it would therefore not be convenient
to include it in the antecedent for the rule. Using (1-
1.5*deviation j) if the deviation is high, the velocity
value v2, argument of the sigmoid function, will be

19

JCS&T Vol. 15 No. 1 April 2015

Train SOM network using all training examples
Calculate the minimum support for each class
while (termination criterion is not reached) do

Choose the class with the highest number of
non-covered examples
Build a reduced population of individuals
from centroids
Evolve the population using PSO as seen in
Section 4
Obtain R, the best rule for the population
if (R meets support and confidence require­

ments) then
Add the rule to the set of rules
Consider the examples classified by this
rule as correctly covered
Recalculate the minimum support for this
class

end if
end while

Fig. 4. Pseudocode of the method SOM+PSO

lower and the probability of using the attribute will
be reduced. In all cases, velocity v1 is initialized
randomly within [limit1lowerj, limit1upperj]. Fig­
ure 4 corresponds to the pseudocode of the method
proposed.

6. R e s u l t s o b t a i n e d

In this section, the performance obtained with the
method proposed is compared against that of the
PART method defined by Frank and Witten in [5]
for generating classification rules for a known set of
17 databases of the UCI repository [26] and the Drug
databases.
Thirty separate runs were performed for each
method, and a SOM network with 30 neurons or­
ganized in 6 rows and 5 columns with 4 neighbors
per neuron was used. The PART method was run
with a confidence factor of 0.3 for trimming the tree
and the default values for all remaining parameters.
Tables I, II and III summarize the results obtained
with both methods. In each case, not only the cov­
erage accuracy of the set of rules was considered
(Table I), but also the clarity of the model obtained,
which is reflected in the average number of rules
obtained (Table II) and the average number of terms
used to form the antecedent (Table III). In each
case, a two-tailed mean difference test with a sig­
nificance level of 0.05 was carried out, where the
null hypothesis establishes that the means are equal.
Since each includes has 30 separate runs for each
of the methods, the central limit theorem was used
to assume a normal distribution for each sample.
Based on the results obtained, when the difference is
significant, in accordance to the level indicated, the
best option was highlighted in bold in the table.
In average, considering the 8 cases in which the
accuracy of PART is higher than that of the method
proposed, the difference in accuracy in favor of
PART is 4%, but the size of the set of rules is four

TABLE I
Accuracy of the rule set obtained when applying the

SOM+PSO AND PART METHODS

Database SOM+PSO PART

Balance scale 0, 713 ± 0, 01 0 , 815 ± 0 , 02
Breast cancer 0 , 708 ± 0 , 02 0, 657 ± 0,02
Breast w 0, 945 ± 0, 00 0 , 955 ± 0 , 00
credit_a 0 , 859 ± 0 , 01 0, 738 ± 0,02
Credit-g 0, 703 ± 0, 01 0, 701 ± 0,01
Diabetes 0 , 738 ± 0 , 01 0, 731 ± 0,01
Heart-c 0, 721 ± 0, 02 0 , 764 ± 0 , 02
Heart-statlog 0, 727 ± 0, 02 0 , 767 ± 0 , 01
Iris 0, 924 ± 0, 02 0 , 9 3 9 ± 0 , 02
Mushroom 0, 939 ± 0, 00 0 , 9 9 7 ± 0 , 00
Promoters 0, 65 ± 0, 03 0, 67 ± 0,05
Soybean 0 , 856 ± 0 , 01 0, 577 ± 0,07
Kr_vs_kp 0, 933 ± 0, 00 0 , 99 ± 0 , 00
Zoo 0 , 923 ± 0 , 02 0, 187 ± 0,05
Slice 0 , 812 ± 0 , 01 0, 722 ± 0,01
Wine 0, 867 ± 0, 03 0 , 8 8 8 ± 0 , 01
Drug5 0,85 ± 0, 01 0, 87 ± 0,06
DrugY 0 , 844 ± 0 , 02 0, 668 ± 0,09
Adult 0, 802 ± 0, 00 0, 801 ± 0,00

TABLE II
Number of rules obtained when applying the

SOM+PSO AND PART METHODS

Database SOM+PSO PART

Balance scale 7 , 106 ± 0 , 51 38, 71 ± 1, 18
Breast cancer 5 , 033 ± 0 , 19 19, 243 ± 1,49
Breast w 2 , 853 ± 0 , 18 10, 11 ± 0 , 54
credit_a 3 , 446 ± 0 , 21 32, 95 ± 1,88
Credit-g 2 , 3 2 3 ± 0 , 2 62, 543 ± 1, 65
Diabetes 2 , 55 ± 0 , 2 7, 723 ± 0 , 64
Heart-c 3 , 19 ± 0 , 17 19, 24 ± 0 , 75
Heart-statlog 4 , 276 ± 0 , 35 17, 616 ± 0 , 68
Iris 3 , 623 ± 0 , 15 4, 113 ± 0 , 32
Mushroom 3 , 503 ± 0 , 14 11, 196 ± 0 , 24
Promoters 7 , 013 ± 0 , 26 7, 243 ± 0 ,41
Soybean 2 4 , 856 ± 0 , 5 31, 92 ± 0 , 65
Kr_vs_kp 3 ± 0 22, 196 ± 0 , 63
Zoo 6 , 9 9 3 ± 0 , 1 7, 67 ± 0 , 07
Slice 1 0 , 046 ± 0 , 33 103, 303 ± 1, 58
Wine 4 , 803 ± 0 , 38 5, 44 ± 0 , 25
Drug5 7 , 313 ± 0 , 31 15, 42 ± 0 ,45
DrugY 6 , 45 ± 0 , 23 11, 79 ± 0 ,47
Adult 2 , 153 ± 0 , 14 975, 423 ± 10, 59

times larger and generally more attributes are used
in the antecedent. As it can be observed, in those
cases mentioned above, the coverage obtained by
SOM+PSO is very good if the reduced number of
rules used is taken into account. For instance, for
the “Breast w” database, the accuracy of SOM+PSO
is lower than that of PART by approximately 1%,
but the former uses one third of the number of
rules of the latter and with less queries in each
antecedent. Something similar is observed in all
other 7 cases where PART yields a higher accuracy
than SOM+PSO. This is due to the emphasis placed

20

JCS&T Vol. 15 No. 1 April 2015

TABLE III
Antecedent average length for each rule obtained

WHEN APPLYING THE SOM+PSO AND PART METHODS

Database SOM+PSO PART

Balance scale 1 , 93 ± 0 , 1 3, 098 ± 0 ,06
Breast cancer 1 , 164 ± 0 , 03 2, 039 ± 0 ,07
Breast w 1 , 88 ± 0 , 15 2, 115 ± 0, 1
credit_a 1 , 2 7 8 ± 0 , 11 2, 46 ± 0 ,08
Credit-g 1 , 055 ± 0 , 05 2, 581 ± 0 ,07
Diabetes 1 , 176 ± 0 , 08 1, 98 ± 0 , 1
Heart-c 1 , 565 ± 0 , 08 2, 564 ± 0 , 12
Heart-statlog 1 , 616 ± 0 , 13 2, 875 ± 0, 1
Iris 1, 132 ± 0, 05 1 ,02 ± 0 , 03
Mushroom 1, 34 ± 0, 1 1 , 2 5 9 ± 0 , 02
Promoters 1, 097 ± 0, 02 1 ,03 ± 0 , 04
Soybean 5, 962 ± 0, 26 2 , 731 ± 0 , 05
Kr_vs_kp 2 , 362 ± 0 , 06 3, 122 ± 0 ,08
Zoo 1, 527 ± 0 , 1 1 , 4 7 8 ± 0 , 01
Slice 1 , 4 8 5 ± 0 , 05 2, 663 ± 0 ,04
Wine 3, 052 ± 0, 45 1 ,53 ± 0 , 07
Drug5 1 , 741 ± 0 , 07 2, 066 ± 0 ,03
DrugY 1 , 6 5 7 ± 0 , 13 1, 868 ± 0 ,03
Adult 2 , 2 2 9 ± 0 , 22 4, 679 ± 0 ,05

on the simplification of the model. For the 11 re­
maining cases, there are no significant differences
in relation to the accuracy achieved or SOM+PSO
is better. Regardless of accuracy, the average length
of the set of rules is always smaller in the method
proposes, with cases such as the “Adult”, “Credit-g”
and “Slice” databases in which the difference is too
evident.

7. C o n c l u s i o n s

A novel method for obtaining classification rules has
been presented. This method is based on PSO and
can operate with numerical and nominal attributes.
A SOM neural network was used adequately initial­
ize the population of rules. The centroids obtained
when grouping available data in an unsupervised
manner allow identifying the relevance of each at­
tribute for the swarm of examples. In any case, this
metric is not enough to select the attributes that will
form the rule, and it is at this point where PSO takes
control to carry out the final selection.
A representation for the rules was proposed, combin­
ing a binary representation that allows selecting the
attributes that are used in the rule with a continuous
representation used only to determine the boundaries
of the numerical attributes that are part of the an­
tecedent. A variation of binary PSO was designed
whose population is adequately initialized with the
information from the centroids in the previously
trained SOM network.
The results obtained when applying the method
proposed on a set of test databases show that the
SOM+PSO method obtains a simpler model. In av­
erage, it uses approximately 40% of the number of
rules generated by PART, with antecedents formed
by just a few conditions and an acceptable accuracy
given the simplicity of the model obtained.

Although not included in this article, the measure­
ments performed using the method proposed but
skipping the optimization stage introduced by PSO
resulted in a set of rules with similar accuracy but a
slightly higher cardinality than PART. This shows
that the few iterations carried out by PSO with
the information from the centroids is essential to
determine an appropriate set of rules.
Currently, even though based on the tests carried
out there is no evidence of any dependence between
the results obtained and the initial size of the SOM
network, the measurements will be repeated using a
dynamic SOM network.

Re f e r e n c e s

[1] R. Agrawal and R. Srikant, “Fast algorithms for
mining association rules in large databases,” in
Proceedings o f the 20th International Confer­
ence on Very Large Data Bases, ser. VLDB ’94.
San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1994, pp. 487-499.

[2] T. Scheffer, “Finding association rules that
trade support optimally against confidence,” in
Principles o f Data Mining and Knowledge Dis­
covery, ser. Lecture Notes in Computer Science,
L. Raedt and A. Siebes, Eds. Springer Berlin
Heidelberg, 2001, vol. 2168, pp. 424-435.

[3] Y. Ye and C.-C. Chiang, “A parallel apriori
algorithm for frequent itemsets mining,” in Pro­
ceedings o f the Fourth International Conference
on Software Engineering Research, Manage­
ment and Applications, ser. SERA ’06. Wash­
ington, DC, USA: IEEE Computer Society,
2006, pp. 87-94.

[4] J. R. Quinlan, C4.5: programs for machine
learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993.

[5] E. Frank and I. H. Witten, “Generating accu­
rate rule sets without global optimization,” in
Proceedings o f the Fifteenth International Con­
ference on Machine Learning, ser. ICML '98.
San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1998, pp. 144-151.

[6] Z. Wang, X. Sun, and D. Zhang, “A pso-based
classification rule mining algorithm,” in Pro­
ceedings o f the 3rd International Conference
on Intelligent Computing: Advanced Intelligent
Computing Theories and Applications. With As­
pects o f Artificial Intelligence, ser. ICIC ’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp.
377-384.

[7] T. Sousa, A. Silva, and A. Neves, “Particle
swarm based data mining algorithms for clas­
sification tasks,” Parallel Comput., vol. 30, no.
5-6, pp. 767-783, May 2004.

[8] N. Khan, M. Iqbal, and A. Baig, “Data mining
by discrete pso using natural encoding,” in
Future Information Technology (FutureTech),
2010 5th International Conference on, 2010,
pp. 1- 6.

[9] N. Khan, A. Baig, and M. Iqbal, “A new
discrete pso for data classification,” in Infor­

21

JCS&T Vol. 15 No. 1 April 2015

mation Science and Applications (ICISA), 2010
International Conference on, 2010, pp. 1-6.

[10] M. Chen and S. Ludwig, “Discrete particle
swarm optimization with local search strategy
for rule classification,” in Nature and Bio­
logically Inspired Computing (NaBIC), 2012
Fourth World Congress on, 2012, pp. 162-167.

[11] Y. Jiang, L. Wang, and L. Chen, “A hybrid
dynamical evolutionary algorithm for classifica­
tion rule discovery,” in Intelligent Information
Technology Application, 2008. IITA ’08. Second
International Symposium on, vol. 3, 2008, pp.
76-79.

[12] H. Wang and Y. Zhang, “Improvement of
discrete particle swarm classification system,”
in Fuzzy Systems and Knowledge Discovery
(FSKD), 2011 Eighth International Conference
on, vol. 2, 2011, pp. 1027-1031.

[13] L. Yan and J. Zeng, “Using particle swarm op­
timization and genetic programming to evolve
classification rules,” in Intelligent Control and
Automation, 2006. WCICA 2006. The Sixth
World Congress on, vol. 1, 2006, pp. 3415­
3419.

[14] A. Ozcift, M. Kaya, A. Gülten, and M. Karabu-
lut, “Swarm optimized organizing map (swom):
A swarm intelligence based optimization of
self-organizing map,” Expert Systems with Ap­
plications, vol. 36, no. 7, pp. 10640 - 10648,
2009.

[15] C. Hung and L. Huang, “Extracting rules from
optimal clusters of self-organizing maps,” in
Computer Modeling and Simulation, 2010. IC-
CMS ’10. Second International Conference on,
vol. 1, 2010, pp. 382-386.

[16] H. W. and L. L., “Dynamic self-organizing
maps,” in XXXI Conf. Latinoamericana de In­
formatica, CELI2005, 2005.

[17] T. Kohonen, “Neurocomputing: foundations of
research,” J. A. Anderson and E. Rosenfeld,
Eds. Cambridge, MA, USA: MIT Press, 1988,
ch. Self-organized formation of topologically
correct feature maps, pp. 509-521.

[18] J. B. MacQueen, “Some methods for classi­

fication and analysis of multivariate observa­
tions,” in Proc. o f the fifth Berkeley Sympo­
sium on Mathematical Statistics and Probabil­
ity, L. M. L. Cam and J. Neyman, Eds., vol. 1.
University of California Press, 1967, pp. 281­
297.

[19] T. Kohonen, M. R. Schroeder, and T. S. Huang,
Eds., Self-Organizing Maps, 3rd ed. Secau-
cus, NJ, USA: Springer-Verlag New York, Inc.,
2001.

[20] J. Kennedy and R. C. Eberhart, “Particle swarm
optimization,” in Proceedings o f the IEEE In­
ternational Conference on Neural Networks,
1995, pp. 1942-1948.

[21] ------ , “A discrete binary version of the particle
swarm algorithm,” in Proceedings o f the IEEE
International Conference on Systems, Man, and
Cybernetics, vol. 5. Washington, DC, USA:
IEEE Computer Society, 1997, pp. 4104-4108.

[22] L. Lanzarini, J. Lopez, J. A. Maulini, and
A. Giusti, “A new binary pso with velocity
control,” in Advances in Swarm Intelligence,
ser. Lecture Notes in Computer Science, Y. Tan,
Y. Shi, Y. Chai, and G. Wang, Eds. Springer
Berlin Heidelberg, 2011, vol. 6728, pp. 111­
119.

[23] G. Venturini, “Sia: A supervised inductive algo­
rithm with genetic search for learning attributes
based concepts,” in Machine Learning: ECML-
93, ser. Lecture Notes in Computer Science,
P. Brazdil, Ed. Springer Berlin Heidelberg,
1993, vol. 667, pp. 280-296.

[24] Y. Shi and R. Eberhart, “Parameter selection
in particle swarm optimization,” in Evolution­
ary Programming VII, ser. Lecture Notes in
Computer Science, V. Porto, N. Saravanan,
D. Waagen, and A. Eiben, Eds. Springer Berlin
Heidelberg, 1998, vol. 1447, pp. 591-600.

[25] J. Kennedy and R. C. Eberhart, Swarm intel­
ligence. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001.

[26] K. Bache and M. Lichman, “UCI machine
learning repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml
Received: October 2014. Accepted: February 2015.

22

http://archive.ics.uci.edu/ml

