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Abstract

Substantial reduction of gate delay occurred in recent times owing to radical decrement
of transistor size. The interconnect length and delay are accordingly increased owing to
the exponential escalation of packaging density with additional transistors being fabri-
cated on the same chip area. The function of VLSI routing that seems to be more defying
to the scholars, is categorized in global routing and detailed routing phase. In global
routing phase, the prevalent method to lessen the wire length for reducing interconnect
delay is to adjust the cost of the Steiner tree, devised by the terminal nodes to be
interconnected. Nevertheless, Steiner tree problem is a NP-complete problem in classical
graph theory where meta-heuristics might impart beneficial elucidations. Particle
swarm optimization (PSO) is a robust algorithm concerning VLSI routing field. This
chapter is regarding the proposal of a self-adaptive mechanism for monitoring acceler-
ation coefficient of PSO and evaluating its functionalities with the existing acceleration
coefficient controlled PSO in numerous allocation topologies of terminal nodes within
definite VLSI layout. The outcomes of PSO variant with constriction factor in context to
VLSI route reduction ability and robustness are also inspected. Additionally, a new
effort in adapting the PSO with embracement of genetic algorithm is established.

Keywords: VLSI, global routing, Steiner tree, meta heuristics, PSO

1. Introduction

Stating optimization as a usual phenomenon is a bit of exaggeration, which includes economic

development to engineering strategy as well as job scheduling to resource allocation. The

intention of optimization is certainly to produce comparable outcomes under specified condi-

tions bearing some parametric minimization or maximization. In VLSI physical design context
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numerous parameters are needed to be optimized like transistor count, power delay product,

interconnect delay.

Conferring to Moore’s Law, the transistor count doubles up in every 18 months [1]. Since the

dimensions of the transistors are radically diminishing by the contemporary ages as a result of

massive development in technologies, additional transistors are getting assimilated in that

single chip region than before by means of cutting-edge assembling techniques. Therefore the

length of interconnect has also been considerably amplified. Previously it was sufficient to

overhaul the gate delay but interconnect delay has been more noticeable after the 130 nm

technological node was pioneered.

The objective of VLSI physical design is to optimize the devices arrangements and intercon-

nection schemes among these devices for desired performance.

Wire-length approximation of interconnects is considered in the routing phase of VLSI physi-

cal design process, which is largely categorized into Global Routing and Detailed Routing. In

Global routing phase the circuit interconnections in shortest possible wavelength and mini-

mum interconnect delay is required to be achieved. The complexities of global routing prob-

lem is solved to some extent with sequential approach where VLSI nets are sequenced

according to their criticality and practical routers employs improvement phase. Technique of

rerouting after ripping interfering wires [2] and ‘shove-aside’ technique [3] and also introduc-

ing concurrent approach where parallel integer programming concept are tried for enhance-

ment of global routing but with limitations.

The Routing problem of VLSI physical design can also be mapped in classical Graph Theory

where wire-length minimization of interconnected nodes rests in solving the Rectilinear Min-

imal Steiner Tree Problem (RMST) [4], a renowned NP Complete problem of Graph Theory.

Such NP complete problems can be aimed to solve by a division of Artificial Intelligence

known as Swarm Intelligence. Swarms interact among themselves to persist in any situation.

It has been observed that these social agents have restricted competences of their own as an

individual, however as an assemblage they are capable of accomplishing an assignment,

somewhat perceptively for their existence. Scientists and engineers were ardent to mimic these

activities of these natural swarm systems. Swarm intelligence was maidenly commenced in

1989 by G Beni and J Wang [5] to crack some practical problems associated to global optimiza-

tion. These algorithms are heuristics and meta-heuristics in character. Heuristic infers “to

ascertain by trial and error”. These approaches are fairly beneficial in obtaining optimal

solution or near optimal solution aimed at a complex optimization problem (like NP-complete

problems) within a judicious time frame. Meta-heuristics (“meta” means “beyond” or “higher

level”) conversely execute even better than heuristic algorithms herein because they comprise

of precise compromises related to randomization & local search. One such prevalent meta-

heuristics algorithm is PSO (Particle Swarm Optimization) [6].

In VLSI system for solving the Routing problem the researcher Dong et al. [7] used PSO in

2009. The proposal by the authors was mainly novel encoding and updating schemes for a

discrete or binary version of PSO where Interconnect delay is one of the most important

disadvantage. A routing scheme based on PSO combined with buffer insertion at suitable

intervals, was taken into consideration for overcoming the disadvantage, as proposed by Ayob
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et al. [8]. Again a PSO algorithm was proposed by Liu et al. [9] to reduce binding during

routing where this version of PSO algorithm was successful in reducing the binding problem

but in turn it increased the cost of the wire lengths. Among many other proposed algorithm,

the one proposed by Shen et al. [10] has some important significance which dealt with the self-

adaptive technique of inertia weight update. Many other technique based on SI has been used

for escalation of VLSI routing, among them the one proposed by Arora and Moses is impor-

tant. Both Manhattan as well as a non- Manhattan routing scheme based on Ant Colony

Optimization (ACO) [11] were proposed by the duo. A proposal was introduced by Ayob

et al to evade VLSI routing scheme by using Firefly optimization [12].

Two algorithms centered on inertia weighted PSO (PSO-W) [13] are presented in here. In the prior

one, named as Self-Adaptive acceleration coefficient PSO (PSO-SAAC), the acceleration coeffi-

cients are adjusted by the means of an adaptive procedure of local search and global search to

heighten the property of the searching technique composed with efficient converging rate. Addi-

tional new tactic is implemented where the perception of the genetic algorithm is hybridized with

PSO-W by comprising a component related with a breading factor in the position update charac-

teristic equation of PSO-W. In supplement to the above two alternatives of PSO, PSO with

constriction factor (PSO-C) [14] are evaluated with these algorithms, most lately familiarized, on

a mutual platform of optimization of VLSI global routing. Further all the algorithms are verified

in several distribution topologies of VLSI terminal nodes in a definite search area.

The remaining chapter is arranged accordingly. Section 2 portrays the elementary theory of

VLSI Global routing, RMSTand PSO. In Section 3 algorithms variants on PSO-Ware illustrated

in specifics shadowed by the implementation of modified PSO algorithms in Section 4. Section 5

confers the experimental results acquired in context to VSLI global routing and lastly the chapter

gets concluded with Section 6.

2. Preliminaries

2.1. Global routing in VLSI physical design

VLSI routing in Physical Design context initiates with the procedure of interconnections

amongst the circuit blocks and pins, specified according to the net list, generate results in the

phase of placement. The inputs to the general routing problem are as follows:

• Net list.

• Timing budget for the critical nets.

• RC delay of per unit length of metal layers and vias.

Conventionally, the routing fashion can be broadly cleft into twomain stages: the initial stage, also

called as the “Global Routing” allocates a list of routing areas for individual net, putting aside the

absolute geometrical blueprint of wires; whereas, the secondary stage, called as “Detailed

Routing”, finds the absolute geometrical blueprint of any net within the allocated routing areas.

The purpose of the routing problem is to curtail the wire length, at the same time accommo-

dating the timing budget for the critical nets. Global routing is the initial phase of routing
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where a catalogue of routing regions are essentially allocated for a net, in default of stipulat-

ing the tangible geometric layout of interconnects, acknowledging that no net could be

crisscrossing each other.

Now, the complications related to global routing can be overcome using two basic approaches-

the sequential approach and the concurrent approach.

The term ‘sequential’ in sequential approach refers to something which occurs in a sequence of

steps; and here as the name indicates, nets are connected in succession. This approach of routing

is very susceptible to the order in which the nets are considered for routing, because a net once

routed may hinder other nets. The parameters based on which the nets are ordered includes half

of the total area of the confining polygon, their criticality, and the number of terminals. High

criticality number is assigned to the net on the critical path as the performance of the circuit is

dependent on them to a great extent. But nonetheless these techniques of sequencing are not

impeccable. As a blunt aftermath of this, a factual router engages a development or improve-

ment phase besides the sequencing phase to do away with the jam when no more routing is

possible. But still this may not conquer the frailty of the sequential approach. ‘Rip-up and

reroute’ [2] and ‘shove-aside’ techniques [3] are examples of improvement phase like this. As

the name indicates, in case of the ‘rip-up and reroute’, the intrusive cables are ripped up and

rerouted; but in case of the ‘shove aside’ technique, cables which make is viable to outright the

failed connections are put aside without curbing the extant connections in any way.

In Concurrent approach, by simultaneously considering all the nets, the complications related to

ordering can be evaded. There is no compelling polynomial algorithm (not even for nets with

only two terminals) and as a consequence this approach is computationally tougher. Ergo, it was

proposed to use integer programming; nonetheless as a consequence of the very large size of the

resulting program, it can’t be utilized efficiently. So, to overcome this problem, the program is

fragmented into smaller sub programs using hierarchical method (which follows top down

approach), which can be then readily dealt with by integer programming. A sequence of routing

channels is accredited to each net by global routing without contravening the capacity of chan-

nels. At the same time, the total length of the wire is also occasionally revamped.

The intention of the routing problem is reliant on the attributes of IC which is to be fabricated.

Nowadays, VLSI chips contain up to billions of transistors which makes it possible to complete

a layout to route millions of nets. In turn there may be several thousands of routes in each net.

It comprises the trade-off between routability of all nets and minimization of the wire length in

interconnects. The objective function of this routing puzzle is an eminent NP-complete prob-

lem. All these attributes results the routing problem to be a computationally tough one which

furnishes the scope for metaheuristic algorithm, like for resolving the problem, SI based

algorithm are to be used.

2.2. Rectilinear Steiner tree problem

Rectilinear Steiner Tree (RST) is the resulting of Minimum Spanning Tree (MST) for a specified

grid graph. For a certain set of vertices of a graph, minimum spanning tree is shaped by

interconnecting them where MST is the maximal sub graph and the MST cost is the sum of the

weights of all edges in the tree. Certain additional intermediate vertices are appended with MST
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to create Steiner tree in turn to lessen the entire length of the MSTwhere intermediate vertices are

Steiner points. The challenges remain in selecting the number and position of Steiner vertices in

the Gird layout. Steiner tree with restricted edge to be in rectilinear in rectangular grid graph

originates RST. This tool is utilized to acquire the least possible length of the inter connections for

a specified set of nodes in the grid graph. RST, although NP complete problem [15], is an efficient

method in improving the length of interconnects in VLSI circuits.

Nonetheless some other constraints for instance noise, power, electro-migration, signal integ-

rity, packaging density, skew, inductance, reliability etc., frequently have vast impact on the

objective function in deep-submicron VLSI design, the length of the non-critical nets however

preserves its significance in wire length minimization.

2.3. Particle swarm optimization

PSO is a multi-agent equivalent search technique which engages incorporates an iterative

method to obtain the ideal solution in a multi-dimensional search space. Assume that there

exists a d dimensional search space, where the number of agents arbitrarily allocated are n. The

agents are primed with certain position and velocity vectors as Xi ¼ X1;X3;……;Xnf g and

V i ¼ V1;V2;……;Vnf g respectively. These vectors are periodically updated rendering to the

characteristic equations of PSO as given in Eqs. (1) and (2).

V i, tþ1 ¼ V i, t þ c1∗r1∗ pbest � Xi, t

� �

þ c2∗r2 gbest � Xi, t

� �

(1)

Xi, tþ1 ¼ Xi, t þ V i, tþi (2)

Where the constants c1 and c2 are accountable for the impact of the distinctive particle’s

individual information and so as of the group information correspondingly. The variables

r1 and r2are unvaryingly distributed random numbers [16]. All particles are adjusted ran-

domly and keep on promoting the fitness value influenced by the pbest value (best position

value of the individual) and gbest value (best position value of the entire swarm) correspond-

ingly in anticipation of the optimal solution to be accomplished.

2.4. PSO parameters

2.4.1. Swarm size

Swarm size infers the number of particles existing in the swarm. A huge number of particles

can exploit a huge extent of a search space; therefore fewer iterations are required so as to

achieve the optimal solution. Contrariwise an enormous swarm size upsurges the computa-

tional complexity and time complexity likewise.

2.4.2. Iteration number

Number of iterations is a problem contingent parameter related to swarm size. An inadequate

number of iterations can terminate the program precipitately earlier to the conjunction

whereas huge number of iterations generates a redundant computational and time complexity.
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2.4.3. Velocity component

The velocity update factor in Eq. (1) comprises of three terms. The first term is the preceding

velocity vector i.e. the former direction & the magnitude of the velocity of a particle. This

component averts a particle from a radical alteration in velocity in current iteration. The

following component is the cognitive one. It is centered on the memory of an agent in agree-

ment with its proficiency. The cognitive component continuously inspire a particle to reappear

to its position, suitable for it in local. The subsequent component is the social component. This

is the knowledge to an individual by social communication, which constantly encourage the

particle to travel in the direction of the best position, knowledgeable by its vicinity.

2.4.4. Acceleration coefficients

The variables c1 and c2 are known as acceleration coefficients, which attempt to generate an

equilibrium amid the cognitive component and social component of the velocity.

• If c1 ¼ c2 ¼ 0, Eq. (1) will be V i, t þ 1 ¼ V i, t. This implies that all the particles retain to

hover with their initial velocity, ensuing no search condition.

• If c1 > 0 and c2 ¼ 0, Eq. (1) resolves to Vi, tþ1 ¼ Vt þ c1∗r1∗ pbest � Xi, t

� �

þ 0. This implies

that all the particles revolve around their searching space autonomously. Since they are

not interacting with the neighbours, they are incapable to obtain the global optimal

solution whatsoever.

• If c1 ¼ 0 and c2 > 0, Eq. (1) resolves to Vi, tþ1 ¼ Vt þ 0þ c2∗r2∗ gbest � Xi, t

� �

. It infers that

all particles are fascinated to a single point, which is not revised in each time step.

• If c1 ¼ c2, all particles will travel towards average pbest and gbest values.

• If c1 ≫ c2, it results in manipulating the particles in the direction of pbest position and

c2 ≫ c1, resulting the particles to be enticed towards the gbest position and in both circum-

stances the particles sprint precipitately to the optimum solution.

Usually c1 and c2 are considered as equal, constant values and various intellectual articles

propose their values as 2 for getting decent optimal results [14].

3. Analysis of PSO characteristics & modification

3.1. Velocity clamping

Particle’s velocity, a significant parameter of PSO algorithm, is the step size of swarm in every

iteration. With all time step, the particles alter their velocity & travel in all direction in the

problem space. If the velocity is extreme, the assessment attribute of the particle turn out to be

high and simultaneously the particle might hastily vacant the periphery of the search space

and swerve. On a converse if velocity is low, the movement of particles is limited upon a small

boundary and it happens confined in a local optima. Therefore, it is required to preserve an

equilibrium amidst exploration & exploitation by situating a parameter Vmax, assumed as

Vmax ¼
Xmax�Xminð Þ

k . The empirical value of k is set as 2 [14].
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3.2. Inertia weight

Inertia Weight (w) was additionally familiarized [13] progressing PSO-W to substitute Vmax, to

regulate the momentum of the particle in assessing the updated velocity. It is presented to

regulate the exploration and exploitation aptitudes of the swarm with the intention of the

algorithm to converge more efficiently upon time. Therefore Eq. (1) is adapted as Eq. (3).

V i, tþ1 ¼ w∗V i, t þ c1∗r1∗ pbest � Xi, t

� �

þ c2∗r2 gbest � Xi, t

� �

(3)

• If w ¼ 1: then Eq. (3) is similar to the original Eq. (1).

• If w > 1: then the velocity will increase over time and the particles will barely be capable

of altering their direction.

• If w < 1: particles can rapidly alter their route subjective to pbest and gbest values.

• If w ¼ 0: particles travel lack of any acquaintance of the preceding velocity.

Typically the inertia weight w is selected dependent to the size of the search space. A high

value of w is essential for complex high dimensional problem space and trivial value for small

dimensional search space.

The inertia weight can be differed by Eq. (4), where s is the population size, D is the Dimension

size and R is relative quality of corresponding solution standardized to [0,1].

w 3� exp
�s

200

� �

þ
R

8
∗D

� �2
" #

�1

(4)

3.3. Constriction factor

The PSO algorithm is reorganized to substitute the inertia weight w & max velocity Vmax by a

fresh parameter χ, known as constriction factor given in Eq. (6). Clerc [17] pioneered this factor,

which proved to be exceptionally significant in regulating the exploration & exploitation trade-

off, thus guaranteeing an efficient conjunction of algorithm. Eq. (1) gets amended as Eq. (5).

V i, tþ1 ¼ χ∗ V i, t þΦ1∗ pbest � Xi, t

� �

þΦ2∗ gbest � Xi, t

� �� 	

(5)

χ ¼
2

2� ɸ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ɸ2 � 4ɸ
p

h i (6)

Here, ɸ ¼ ɸ1 þ ɸ2, ɸ1 ¼ c1∗r1 and ɸ2 ¼ c2∗r2. Characteristically applying the value of ɸ as 4.1

the value of χ results to 0.729. Therefore, χ∗w ¼ 0:729∗w < w, infers that the particles rapidly

alter their course manipulated by pbest and gbest with assured convergence. Both

pbest � Xi, t

� �

and gbest � Xi, t

� �

are multiplied by 2∗0:729 ¼ 1:458 [18]. Generally these values are

preferred for improved stability and convergence.

3.4. Acceleration coefficient

Acceleration coefficient as a PSO parameter has previously been explained in the preceding

segment. Usually both the values of c1 and c2 are applied to be 2 [19]. The equilibrium concerning
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these parameters can be monitored in two distinct ways, mentioned underneath, to accomplish

superior result in perspective of path minimization of VLSI global routing.

3.4.1. Self-tuned

In this algorithm PSO-ST [20], the acceleration constants both c1 and c2 are reduced linearly

throughout the time steps in the range of 2 to 1.49. At the beginning, the algorithm is primed

with c1=c2 =2. By this changing of linear decrement, both exploration and exploitation abilities

of the swarm can be preserved efficiently for velocities updating and can deliver a swift

convergence to the algorithm. This algorithm turns out to be competent to obtain optimal

result with lofty convergence rate.

3.4.2. Self-adaptation

An algorithm PSO-SAAC is introduced where the two acceleration constant parameters c1 and c2
have been assorted in such a style that they got enhanced influence over the trade-off in between

global exploration and local exploitation. The algorithm commences with highest exploration and

lowest exploitation aptitudes of swarm, which have eventually been altered in every time step

over the entire iteration process. Therefore the particles of the swarm are capable of dispersing all

over the search space consistently, motivated by the social component of the velocity vector at the

first phase of experiment. Since the cognitive component outpace the social component in the

subsequent phase of the experiment, the swarm accomplish the local search process entered on

the assessed results of the Global search process with the intention of obtaining the finest local

optima. Throughout the whole searching process this self-adaptive procedure can be effectual in

producing most significant gbest value and thus in this manner heightening the optimization rate.

3.5. PSO with mutation

A fresh algorithm is presented where the principle of Genetic Algorithm is featured in PSO

[21]. The algorithm after utilizing some time steps initiates with selection of swarms from

existing generation in the first phase. The swarms with high fitness probability get selected

where the probability of selection factor is
f jPN

j¼1
f j
, where N is the population size. The high

fitness factor is extracted from the selected pool generating a mutant in the second phase. This

enhanced knowledge of high fitness property is induced in the position vector Eq. (2) to evolve

a new generation of swarms causing mutation in PSO [22]. The proposed position vector in

Eq. (7) is given below.

Xi, tþ1 ¼ ψ∗Xi, t þ ξð Þ þ V i, tþ1 (7)

where, ψ is the randomization factor and ξ is the mutant fitness factor.

4. Problem formulation and implementation

The challenge of global routing problem of a VLSI Physical design rests in two objectives. First

in minimizing power dissipation and secondly increase the speed of signaling among the
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partitions or blocks in VLSI layout which can be achieved by reducing the complete wire

length of interconnected terminals or blocks. The Global routing problem can be formally

stated where N={N1,N2,N3…Nm} be the set of nets denoting interconnections among blocks in

the VLSI layout and the estimated wirelength of net Ni, 1< i < m is denoted by Di. The problem

function can be expressed such that overall total wirelength
Pm

i¼1 Diis minimized. Global

routing formulation is done by mapping the required VLSI layout in classical graph theory as

Grid Graph model. Here the grid graph model is regarded as to execute the above proposed

algorithms. The grid graph, G ¼), is an exemplification of a routing region layout where region

is carved into a number of unit square cells as shown in Figure 1. Each cell representing

routing areas between blocks as empty area is signified by vertex a vi and the edge eij, linking

the two neighboring vertices vi and vj. The vertices resemble to the nodes and edges resemble

to the routing paths between blocks in a VLSI layout.

To obtain the solution of the VLSI routing problem for a multi-terminal net, the primary

assignment is to articulate it as the problem of obtaining an RMST (Rectilinear Minimum

Spanning Tree) from a Graph. The Minimum spanning tree of the interconnected terminal

nodes is generated using graph algorithms results in measuring the minimum cost of

interconnected length. With introduction of random Steiner nodes along with the terminal

nodes of multi-terminal VLSI layout the cost or the overall wirelength is further reduced

generating the minimum Steiner tree cost (length) in the graph. Depending on the position

and the number of Steiner nodes the cost or overall length can be further minimized. With

large number of terminal nodes the probability of determining the number of Steiner nodes

and desired positioning of these Steiner node become computationally hard and hence the

PSO algorithm is used to select probable number of Steiner nodes and generate these random

position in order to optimize the Steiner cost.

The algorithm commenced with random generation of swarms size of z particles and they are

placed in required graph of n x n dimension. Each of the swarm consists at most (p-2)

randomly generated Steiner points drawn from Steiner set S with njj2–pð Þpoints where p is

Figure 1. Routing region layout in grid graph.
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the number of terminal nodes with designated vertex Vi, i = {1,2,3,…r} and thereby Steiner

subset Qj
⊆S, where j = {1, 2, 3……, z} is formed. 100 � 100 search space is used. The defined

destination nodes or terminal nodes are represented by 1 to generate the problem matrix.

Rows & Columns without the destination nodes are eliminated to reduce computational

complexity generating the reduced matrix Steiner points are introduced in a randomly in the

problem space, is denoted by 1. The reduced matrix and the corresponding Steiner matrix, are

shown in Figure 2.

For implementation of PSO, mapping is done with the creation of swarm particles where each

these Steiner matrix is considered as a particle. One such particle with the destination nodes is

shown is Figure 3. Fitness Fi for each particle seed is calculated by evaluating Minimum Recti-

linear Steiner Tree (MRST) cost using objective functionMST(Gi) and alsoMIN (MST(Gi)) which

Figure 2. Matrix generated from reduced graph and corresponding Steiner matrix.

Figure 3. Flow chart of PSO algorithm and its variants.
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is minimum among all MST(Gi) is calculated. PSO parameter are initialized and maximum

iterations are fixed. Evaluation of pbest and gbest values are made using PSO velocity equations

with acceleration coefficient tuned either in linear decreasing or in self-adaptive mode as

described earlier and the corresponding position equation either in classical mode or with

mutation factor is evaluated. When maximum iteration is reached the corresponding gbest value

generated or the best swarm particle, is the optimized RMST cost. The optimized RMST cost on

termination of the PSO algorithm is the minimum overall length of the interconnected terminal

nodes in the VLSI system and thereby minimum wire length routing path of VLSI layout is

achieved. The flow chart of the PSO algorithms and its variants are shown in Figure 3.

The pseudo code of the PSO algorithm and modifications for implementation is given below.

Input:

Search space and terminal nodes are defined

Swarm size and Max-iterations are defined

Initialization:

Generate an initial population of particles Xi ¼ X1;X3;……;Xnf g

Calculation of f Xj□jið Þ and MIN f Xj□jið Þð Þ

Output:

Optimized result of MIN f Xj□jið Þð Þ

Begin:

While (t < max iter)

Evaluate c1 and c2 according to any of the variants mentioned in this chapter.

Evaluate Inertia Weight (w) as in Eq. (4) or evaluate Constriction Factor (χ) as in Eq. (6)

Set pbest = f Xj□jið Þand gbest =MIN f Xj□jið Þð Þ

for i=1: n (for particles)

Calculate particle velocity V i, tþ1 according to the velocity equation as in Eq. (3) or Eq. (5)

Update the particle position Xi, tþ1 in accordance to position equation as in Eq. (2) or

Update the particle position as in Eq. (7)

Evaluate f Xj□jið Þ and MIN f Xj□jið Þð Þ

Update pbest and gbest

end for n

t ¼ tþ 1

end while

Post processing the results and visualization
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5. Experimental results and discussion

Two coordinate sets of 15 terminal nodes are randomly created based on varied distribution

topology of terminal nodes in VLSI system on a defined two dimensional 100 � 100 search

space. Coordinate sets for nearly Uniform distribution and Bivariate distribution are graphi-

cally represented in Figures 4 and 5 respectively.

Experiments on all the algorithms are performed 25 times for each of these coordinate sets of

varied distribution topologies in VLSI system. The population size of the swarms has been set

as 100 and maximum iteration of 75 is used for all the algorithms.

Figure 4. Nearly uniform distribution of terminal nodes on 100 � 100 search space.

Figure 5. Bivariate distribution of terminal nodes on 100 � 100 search space.
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5.1. Experiment A

Experiments on PSO-Was well as on the modified algorithms PSO-ST [20] and PSO-SAAC are

performed separately for two said coordinate sets to interconnect the terminal points for each

set and to return the minimum cost of interconnection correspondingly. The minimum inter-

connection VLSI global routing cost, the average interconnection VLSI global routing cost over

the 25 simulations of the algorithms and the corresponding standard deviations are recorded.

The results of average gbest and minimum gbest are summarized in Table 1.

For nearly uniform distribution of terminal nodes in VLSI layout, PSO-SAAC works best in

compared to the other two algorithms. In SET 1 ‘338’ is achieved as the minimum interconnec-

tion global cost value for PSO-SAAC, given in Figure 6. From Table 1 it can be analyzed that

for bivariate distribution of terminal nodes in VLSI layout, self-tuned acceleration constant

controlling mechanism for PSO-ST outruns the other two algorithms. In random uniform

distribution environment, PSO-ST generates lowest minimum interconnection cost as 253,

Test case gbest value PSO-W PSO-ST PSO-SAAC

SET 1 Average 354.5 348.4 341.7

Minimum 350 343 338

SET 2 Average 256.7 254.9 257.3

Minimum 253 253 255

Table 1. Comparison of PSO-W with PSO-ST and PSO-SAAC.

Figure 6. Minimum ‘cost’ Steiner tree obtained for PSO-SACC in SET 1.
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given in Figure 7. It is also seen that acceleration constant tuning mechanism of PSO improves

the average interconnection cost of the VLSI global best parameter.

So, it can be safely stated that for nearly uniform distribution PSO-SAAC and for increased

random bivariate distributions PSO-ST reduces the cost of RMST, constructed by

interconnecting the terminal nodes. So RSMT problem of graphs can be effectively managed

and thereby the VLSI interconnect length is reduced to a great extent.

It is also observed that from Table 2, that standard deviation value for PSO-SAAC is lowest for

SET 1 whereas PSO-ST achieves lowest standard deviation value for SET 2. This implies that

for nearly uniform and less random distribution, self-adaptive mechanism of PSO ensures

more consistency while self-tuned mechanism of PSO is more consistent in case of highly

random distribution of terminal nodes in the defined search space.

5.2. Experiment B

The experiments are performed first on weighted PSO (PSO-W) and then on PSO with con-

striction factor (PSO-C) and lastly on PSO with mutation algorithm (PSO-MU) for all two

Figure 7. Minimum ‘cost’ Steiner tree obtained for PSO-ST in SET 2.

Test case PSO-W PSO-ST PSO-SAAC

SET 1 7.77 0.71 5.41

SET 2 1.94 1.88 4.12

Table 2. Standard deviation of gbest values.
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coordinate set which have been considered. The results of minimum interconnect cost, average

cost and average execution time of all algorithms are recorded on Table 3.

The Minimum Rectilinear Spanning Tree (RMST) for minimum interconnect cost generated for

the said VLSI topologies in case of all algorithms are shown in Figures 8, 9, and 10. It reveals

that the algorithm PSO-MU generate lowest minimum global best value as well as minimum

mean value in all two coordinate sets. This indicates that this algorithm PSO-MU, in compar-

ison to PSO-W and PSO-C, ensure efficient VLSI global routing cost minimization and better

convergence.

It is observed from Table 3 that for Coordinate Set 1, gbest value of PSO –MU is found to be 329

where execution time of this algorithm is much greater than PSO-W. Runtime of PSO-C is

found to be 101.51 compared to 85.48 for PSO-MU algorithm. This implies that PSO-MU

Test case gbest value PSO-W PSO-C PSO-MU

SET 1 Average 354.5 350.4 336.8

Minimum 350 345 329

System time 52.825 101.51 85.48

SET 2 Average 256.7 256 250.4

Minimum 253 254 248

System time 49.05 86.01 66.96

Table 3. Comparison of PSO variants over average, minimum gbest value and system time.

Figure 8. Minimum ‘interconnection cost’ Steiner Tree obtained for PSO-W in SET 1.
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Figure 9. Minimum ‘interconnection cost’ Steiner Tree obtained for PSO-C in SET 1.

Figure 10. Minimum ‘interconnection cost’ Steiner Tree obtained for PSO-MU in SET 1.
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algorithm outperforms the performance of conventional PSO-W and PSO-C algorithm while

reducing the Timing budget with respect to PSO-C algorithm in context to VLSI global routing.

In order to analyze the consistency of these algorithms, the standard deviation (SD) values are

calculated for all algorithms on each of the two coordinate sets and are recorded in the Table 4.

SD value of PSO-C is found to be 0.71 and 2.25 for the two coordinate sets. These values are

much lower compared to all other SD values of PSO-W and PSO-MU ensuring robustness

although sacrificing system execution time of the algorithm independent of the distribution

complexities of the search space in VLSI layout. This implies that PSO-C although generates

higher value of global routing interconnection cost as well as system execution time compared

to PSO-W and PSO-MU, it exhibits robustness of the algorithm throughout all varied distribu-

tion topologies of the terminal nodes in the said VLSI layout.

6. Conclusion

This chapter intends variants developed on Particle Swarm Optimization algorithm to resolve

the global routing problem in VLSI domain. Simultaneously the controlling of acceleration

constant in PSO has been verified for the VLSI routing problem. Lastly, a proportional analysis

is done amongst the pre mentioned algorithms beside three variants of PSO, which have been

recognized as decent routing algorithms in VLSI design. Researches are piloted to inspect the

optimization property, rate of convergence, computational time and robustness of the algo-

rithms including the ways by which algorithms work proficiently in problem space with

dissimilar distributive topologies of VLSI layout.

The outcomes demonstrates that from the standpoint of topologically dissimilar problem

spaces of VLSI domain, the general performance of PSO-ST [20] is very agreeable, however

PSO-SAAC executes finest in an approximately uniform distributed problem space. It has also

been observed that the performance of PSO-C and PSO-MU are unhampered of the diverse

distribution of VLSI global routing problem space. The performance of the algorithm PSO-MU

preserves a balance between the optimization and convergence rate. Although PSO-MU is

realized to be steady in random problem space [22], PSO-C is appeared to be the best algo-

rithm in the perspective of robustness.

Therefore the chapter indicated the exclusive merits and demerits of the PSO algorithm and its

variants, well-matched for solving the wire-length minimization problem of global routing in

VLSI physical design. It is projected that in the situation of VLSI global routing optimization,

the paradigm of hybridization with essence of genetics can contest with the functioning of PSO

conventional ones and can exhibit enhanced performance. Hence the global routing problem

Test case PSO-W PSO-C PSO-MU

SET 1 7.77 0.71 5.65

SET 2 1.94 1.88 3.83

Table 4. Standard deviation of gbest values.
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in VLSI can be competently managed by contemporary PSO meta-heuristics and by hybridi-

zation of distinct swarm intelligence.
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