4,700 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Load Feasible Region Determination by Using Adaptive Particle Swarm Optimization

    Get PDF
    The proposed of a method for determination a space of feasible boundary points, by using adaptive particle swarm optimization in order to solve the boundary region which represented by particle swarm points. This paper present method supports the calculation for a large-scale power system. In case of contingency will illustrate the point on the plane x-axis and y-axis dimensional power flow space. In addition, This method not only demonstrates the optimal particle swarm through the boundary tracing method of the feasible region but also present the boundary points are obtained by optimization. Moreover, receding loss function and operational constraints simultaneously are considering. The formulation points of feasible region can also determine the boundary points which is the contingencies are taken into account and the stability of load demand that system allows to execute in the normal requirements. These feasible points defined the limit of control actions and the robustness of operating points. Finally, the test systems shown the impact of system parameters on the load shedding, generator voltage control, and load level

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    Intelligent proportional-integral-derivate controller using metaheuristic approach via crow search algorithm for vibration suppression of flexible plate structure

    Get PDF
    Proportional-integral-derivate (PID) controller has gained popularity since the advancement of smart devices especially in suppressing the vibration on flexible structures using different approaches. Such structures required accurate and reliable responses to prevent system failures. Swarm intelligence algorithm (SIA) is one of the optimization methods based on nature that managed to solve real-world problems. Crow search is a well-known algorithm from the SIA group that can discover optimum solutions in both local and global searches by utilizing fewer tuning parameters compared to other methods. Hence, this study aimed to simulate a PID controller tuned by SIA via crow search for vibration cancellation of horizontal flexible plate structures. Prior to that, an accurate model structure is developed as a prerequisite for PID controller development. After the best model is achieved, the proportional-integral-derivative-crow-search (PID-CS) performance was compared to a traditional tuning approach known as the Ziegler Nichols (ZN) to validate its robustness. The result revealed the PID-CS outperformed the proportional-integral-derivative-Ziegler Nichols (PID-ZN) with attenuation values of 44.75 and 42.74 dB in the first mode of vibration for single sinusoidal and real disturbances, respectively. In addition, the value of mean squared error (MSE) for PID-ZN and PID-CS for single sinusoidal disturbance are 0.0167 and 0.0081, respectively. Meanwhile, PID-ZN and PID-CS achieved 2.3981 × 10−4 and 2.3737 × 10−4 when they were exerted with real disturbance. This proves that the PID-CS is more accurate compared to the PID-ZN as it achieved the lowest MSE value

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments

    Computational Intelligence Application in Electrical Engineering

    Get PDF
    The Special Issue "Computational Intelligence Application in Electrical Engineering" deals with the application of computational intelligence techniques in various areas of electrical engineering. The topics of computational intelligence applications in smart power grid optimization, power distribution system protection, and electrical machine design and control optimization are presented in the Special Issue. The co-simulation approach to metaheuristic optimization methods and simulation tools for a power system analysis are also presented. The main computational intelligence techniques, evolutionary optimization, fuzzy inference system, and an artificial neural network are used in the research presented in the Special Issue. The articles published in this issue present the recent trends in computational intelligence applications in the areas of electrical engineering

    Assessment of Various Methods in Solving Inverse Heat Conduction Problems

    Get PDF

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Particle swarm optimization-based superconducting magnetic energy storage for low-voltage ride-through capability enhancement in wind energy conversion system

    Get PDF
    This article presents a novel application of the particle swarm optimization technique to optimally design all the proportional-integral controllers required to control both the real and reactive powers of the superconducting magnetic energy storage unit for enhancing the low-voltage ride-through capability of a grid-connected wind farm. The control strategy of the superconducting magnetic energy storage system is based on a sinusoidal pulse-width modulation voltage source converter and proportional-integral-controlled DC-DC converter. Control of the voltage source converter depends on the cascaded proportional-integral control scheme. All proportional-integral controllers in the superconducting magnetic energy storage system are optimally designed by the particle swarm optimization technique. The statistical response surface methodology is used to build the mathematical model of the voltage responses at the point of common coupling in terms of the proportional-integral controller parameters. The effectiveness of the proportional-integral-controlled superconducting magnetic energy storage optimized by the proposed particle swarm optimization technique is then compared to that optimized by a genetic algorithm technique, taking into consideration symmetrical and unsymmetrical fault conditions. A two-mass drive train model is used for the wind turbine generator system because of its large influence on the fault analyses. The systemic design approach is demonstrated in determining the controller parameters of the superconducting magnetic energy storage unit, and its effectiveness is validated in augmenting the low-voltage ride-through of a grid-connected wind farm
    • …
    corecore