5,918 research outputs found

    Decentralized Access Control in Networked File Systems

    Get PDF
    The Internet enables global sharing of data across organizational boundaries. Traditional access control mechanisms are intended for one or a small number of machines under common administrative control, and rely on maintaining a centralized database of user identities. They fail to scale to a large user base distributed across multiple organizations. This survey provides a taxonomy of decentralized access control mechanisms intended for large scale, in both administrative domains and users. We identify essential properties of such access control mechanisms. We analyze popular networked file systems in the context of our taxonomy

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Droplet: Decentralized Authorization for IoT Data Streams

    Full text link
    This paper presents Droplet, a decentralized data access control service, which operates without intermediate trust entities. Droplet enables data owners to securely and selectively share their encrypted data while guaranteeing data confidentiality against unauthorized parties. Droplet's contribution lies in coupling two key ideas: (i) a new cryptographically-enforced access control scheme for encrypted data streams that enables users to define fine-grained stream-specific access policies, and (ii) a decentralized authorization service that handles user-defined access policies. In this paper, we present Droplet's design, the reference implementation of Droplet, and experimental results of three case-study apps atop of Droplet: Fitbit activity tracker, Ava health tracker, and ECOviz smart meter dashboard

    A component-based middleware framework for configurable and reconfigurable Grid computing

    Get PDF
    Significant progress has been made in the design and development of Grid middleware which, in its present form, is founded on Web services technologies. However, we argue that present-day Grid middleware is severely limited in supporting projected next-generation applications which will involve pervasive and heterogeneous networked infrastructures, and advanced services such as collaborative distributed visualization. In this paper we discuss a new Grid middleware framework that features (i) support for advanced network services based on the novel concept of pluggable overlay networks, (ii) an architectural framework for constructing bespoke Grid middleware platforms in terms of 'middleware domains' such as extensible interaction types and resource discovery. We believe that such features will become increasingly essential with the emergence of next-generation e-Science applications. Copyright (c) 2005 John Wiley & Sons, Ltd

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems
    corecore