1,724 research outputs found

    A simple multigrid scheme for solving the Poisson equation with arbitrary domain boundaries

    Get PDF
    We present a new multigrid scheme for solving the Poisson equation with Dirichlet boundary conditions on a Cartesian grid with irregular domain boundaries. This scheme was developed in the context of the Adaptive Mesh Refinement (AMR) schemes based on a graded-octree data structure. The Poisson equation is solved on a level-by-level basis, using a "one-way interface" scheme in which boundary conditions are interpolated from the previous coarser level solution. Such a scheme is particularly well suited for self-gravitating astrophysical flows requiring an adaptive time stepping strategy. By constructing a multigrid hierarchy covering the active cells of each AMR level, we have designed a memory-efficient algorithm that can benefit fully from the multigrid acceleration. We present a simple method for capturing the boundary conditions across the multigrid hierarchy, based on a second-order accurate reconstruction of the boundaries of the multigrid levels. In case of very complex boundaries, small scale features become smaller than the discretization cell size of coarse multigrid levels and convergence problems arise. We propose a simple solution to address these issues. Using our scheme, the convergence rate usually depends on the grid size for complex grids, but good linear convergence is maintained. The proposed method was successfully implemented on distributed memory architectures in the RAMSES code, for which we present and discuss convergence and accuracy properties as well as timing performances.Comment: 33 pages, 15 figures, accepted for publication in Journal of Computational Physic

    A Comparison Study of Two Methods for Elliptic Boundary Value Problems

    Full text link
    In this paper, we perform a comparison study of two methods (the embedded boundary method and several versions of the mixed finite element method) to solve an elliptic boundary value problem

    Solving elliptic problems with discontinuities on irregular domains – the Voronoi Interface Method.

    Get PDF
    We introduce a simple method, dubbed the Voronoi Interface Method, to solve Elliptic problems with discontinuities across the interface of irregular domains. This method produces a linear system that is symmetric positive definite with only its right-hand-side affected by the jump conditions. The solution and the solution's gradients are second-order accurate and first-order accurate, respectively, in the L∞L∞ norm, even in the case of large ratios in the diffusion coefficient. This approach is also applicable to arbitrary meshes. Additional degrees of freedom are placed close to the interface and a Voronoi partition centered at each of these points is used to discretize the equations in a finite volume approach. Both the locations of the additional degrees of freedom and their Voronoi discretizations are straightforward in two and three spatial dimensions

    A cusp-capturing PINN for elliptic interface problems

    Full text link
    In this paper, we propose a cusp-capturing physics-informed neural network (PINN) to solve discontinuous-coefficient elliptic interface problems whose solution is continuous but has discontinuous first derivatives on the interface. To find such a solution using neural network representation, we introduce a cusp-enforced level set function as an additional feature input to the network to retain the inherent solution properties; that is, capturing the solution cusps (where the derivatives are discontinuous) sharply. In addition, the proposed neural network has the advantage of being mesh-free, so it can easily handle problems in irregular domains. We train the network using the physics-informed framework in which the loss function comprises the residual of the differential equation together with certain interface and boundary conditions. We conduct a series of numerical experiments to demonstrate the effectiveness of the cusp-capturing technique and the accuracy of the present network model. Numerical results show that even using a one-hidden-layer (shallow) network with a moderate number of neurons and sufficient training data points, the present network model can achieve prediction accuracy comparable with traditional methods. Besides, if the solution is discontinuous across the interface, we can simply incorporate an additional supervised learning task for solution jump approximation into the present network without much difficulty
    • …
    corecore